# **Recent Results from T2K**



Kate Scholberg, Duke University SMU, March 2012

# **Standard Three-Flavor Neutrino Picture**





**Charged and neutral** current interactions

Flavor states related to mass states by a unitary mixing matrix



$$|\nu_f\rangle = \sum_{i=1}^N U_{fi}^* |\nu_i\rangle$$

#### Parameterize mixing matrix U as



### **Consequence of this framework:**

*Flavor transitions* as neutrinos propagate



For appropriate L/E (and  $U_{ij}$ ), oscillations "decouple", and flavor change probability can be described by:

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$



### We now know neutrinos change flavor!

In each case, first measurement with 'wild' v's was confirmed and improved with 'tame' ones

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

#### SOLAR NEUTRINOS Electron neutrinos from the Sun are disappearing... $\nu_e \to \nu_\mu, \nu_\tau | \quad \bar{\nu}_e \to \nu_x$ ... now confirmed by a reactor v's **KamLAND** CI, Ga, SK, SNO, **Described by** $\theta_{12}$ , $\Delta m_{12}^2$ **Borexino ATMOSPHERIC NEUTRINOS** Muon neutrinos created in cosmic ray showers are *disappearing* on their way through the Earth $\nu_{\mu} \rightarrow \nu_{\tau}$ ...now confirmed by beam experiments iMB, Kam, K2K, MINOS, Described by $\theta_{23}$ , $\Delta m^2_{23}$ T2K, OPERA, Soudan, MACRO, SK, MINOS, IceCube Icarus

### Now entering precision measurement era for two-flavor oscillations



# After 15 years of oscillation measurements, remaining unknowns in the 3-flavor picture:



#### Masses





Measuring these parameters will constrain mass models, leptogenesis, etc.; but it's not just about measuring numbers

→ we need to test the 3-flavor paradigm in multiple ways ... new physics?

# Strategies for determining $\theta_{13}$

## Beams

# Reactors





Oscillation probability at 295 km



Look for appearance of ~GeV  $v_e$  in  $v_\mu$  beam on ~300 km distance scale

K2K, MINOS, T2K, NOvA





Look for *disappearance* of ~few MeV  $\bar{v}_e$  on ~km distance scale

CHOOZ, Double Chooz, Daya Bay, RENO

# We're closing in on the answer...



# Getting at $\theta_{13}$ experimentally: look for disappearance of reactor $\overline{v}_{a}$

$$1 - P(\bar{\nu}_e \to \bar{\nu}_e) \sim \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) \left| \begin{array}{c} (\text{few MeV,} \\ \textbf{``km}) \end{array} \right|$$

# Current best limits for $\theta_{13}$ from CHOOZ



$$\bar{\nu}_e \to \nu_x$$

⇒ disappearance amplitude < 5-10%</p>



# Current generation of proposed experiments: improved reactor disappearance search

$$1 - P(\bar{\nu}_e \to \bar{\nu}_e) \sim \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2}{4E}\right)$$



# The long-baseline beam approach:

# $\theta_{13}$ signature: look for small $v_{\rm e}$ appearance in a $v_{\rm u}$ beam



Hard to measure... known from the CHOOZ reactor experiment that it's a *small* modulation! Need good statistics, clean sample

# **Current Long Baseline Beam Projects**

Physics goals : precision 2-3 mixing, non-zero  $\theta_{13}$  search

T2K: "Tokai to Kamioka"

NOvA at NuMi





Pre-existing detector: Super-K New beam from J-PARC (~750 kW) 295 km baseline Water Cherenkov detector Pre-existing beam: Fermilab NuMi upgrade 810 km baseline Scintillator tracking detector

## How To Make a Neutrino Beam



# **Off-axis beams**



#### 2-body pion decay kinematics



Off-axis,  $\nu$  energy becomes relatively independent of  $\pi$  energy



Get more sharply peaked ∨ energies, and more flux at the oscillation minimum → good for background reduction and oscillation fits



#### The T2K (Tokai to Kamioka) Experiment Super-K **J-PARC** Senda Super Kamiokande / 295km JAER 🖲 (Tokai) KEK Tokvo(≆) Kawasaki Magnya Kunt Vokáhama 🔪 Osaka (c) 2000 ESH < 420.0 mi / 675.8 km across

### • second generation long baseline experiment (following K2K, MINOS)

• high-intensity (750 kW) 2.5° off-axis  $v_{\mu}$  beam from J-PARC 295 km to Super-K, a large water Cherenkov detector

## The T2K Collaboration

Canada TRIUMF U of Alberta U of B Columbia **U** of Regina **U** of Toronto U of Victoria **U** Winnipeg York U Switzerland Bern **ETH Zurich** U of Geneva Poland **NCBJ IFJ PAN** T U Warsaw U of Silesia Warsaw U Wroclaw U Russia INR

<u>Korea</u> Chonnam Nat'l U Dongshin U Seoul Nat'l U <u>Italy</u> INFN Bari INFN Roma Napoli U Padova U <u>France</u> CEA Saclay IPN Lyon LLR E Poly LPNHE-Paris <u>Spain</u> IFIC, Valencia IFAE, Barcelona

Japan ICRR Kamioka ICRR RCCN KEK Kobe U Kyoto U Miyagi U of Ed Osaka City U U of Tokyo USA **Boston U** Colorado State U Duke U Louisiana State U Stony Brook U U of California, Irvine U of Colorado **U** of Pittsburgh **U** of Rochester **U** of Washington UK U of Oxford **Imperial C London** Lancaster U Queen Mary U of L Sheffield U STFC/RAL STFC/Daresbury **U** of Liverpool U of Warwick Germany **RWTH Aachen U** 



# **T2K Experiment Overall Design**



Near detector suite at 280 m for beam characterization → predict flux/spectrum at SK for oscillation measurement



# Signature of non-zero $\theta_{13}$ at far detector



### Near detectors at 280 m



#### INGRID on-axis neutrino beam monitoring ~10K interactions/day at full power Side view 120 100 v beam 80 Run32 Run32 $\chi^2$ / ndf 10.4/4 χ<sup>2</sup> / ndf 8.148/4 Constant 1.03e+04 ± 61.16 Constant 1.064e+04 + 61.76 12000 $-2.817 \pm 2.918$ -7.991±3.117 Mear 12000 Mear $439.2 \pm 4.815$ $461.4 \pm 5.393$ Sign Sigm 10000 10000 measured

8000 6000 4000 2000 400 -200 0 200 400 distance from INGRID center[cm] 400 -200 0 200 400 distance from INGRID center[cm] -400 -200

8000

6000

4000

2000

-400 -200

beam profile; ~7 cm resolution

# ND280 complex



- $v_{\mu}$  and  $v_{e}$  flux and spectrum for extrapolation to SK FGD, FC cross-sections for signal and ba
- CC cross-sections, for signal and bg
- $\pi^0$  production cross-sections  $\implies$  POD, FGD, ECAL



# Sample ND280 event displays





Refurbished in 2008 with new electronics; now running as 'Super-K IV'

# **Neutrino beam properties**



8 bunches (6 for first running period)

> Spills matched to events by GPS timing at Super-K

Beam peaked at ~600 MeV (optimized for oscillation physics)

# **T2K neutrino beam history**



1.43x10<sup>20</sup> pot by March 11, 2011 (~2% of eventual goal)

# **Great East Japan Earthquake**

- magnitude 9 on Richter scale, >6 at J-PARC
- tsunami did not reach J-PARC (thanks to barrier)
- no reported injuries to any J-PARC or T2K personnel
- no effect at all on SK



Neutrino beam dump



- damage to J-PARC infrastructure and accelerator has been repaired
- near detectors required only minor repairs, now complete
- first beam in late Dec 2011 (no horn)
- T2K run scheduled for ~4 months prior to summer 2012 shutdown

# **T2K Physics Results So Far**

 $v_e$  appearance: search for non-zero  $\theta_{13}$ 

 $v_{\mu}$  disappearance: (eventually) precision 2-3 parameters



# ND280 off-axis analysis



 $R_{data/MC} = 1.036 \pm 0.028(stat.) + 0.044 - 0.037$  (det. syst.)  $\pm 0.038$  (phys. model)

- Only normalization is used in the present analysis
- More ND280 work in progress

$$N_{SK}^{exp} ~=~ R_{ND}^{\mu, ~Data} ~ imes ~~ rac{N_{SK}^{MC}}{R_{ND}^{\mu, ~MC}}$$

# **T2K Event Selection in SK**

 $\Delta T_0$ : relative event timing to the spill timing



# **T2K FC event selection in Super-K**

- 1. Total energy deposit in the inner counter is >30 MeV
- 2. No outer counter activity or pre-activity
- 3. Time correlation with the neutrino beam

**Final FC selected events:** 

33 events in Jan 2010 - Jun 2010

121 events in Jan 2010 - Mar 2011 (88 in FV)



(atmospheric bg: 0.003 events)

# Number of Super-K events observed in the T2K, 1.431x10<sup>20</sup> POT

|  |                                                  |            | MC                 |                                                                                          |                        |
|--|--------------------------------------------------|------------|--------------------|------------------------------------------------------------------------------------------|------------------------|
|  |                                                  | Data       | No oscillation     | 2-flavor osc.<br>$\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$<br>$\sin^2 2\theta_{23} = 1.0$ | ΒG<br>(12μs<br>window) |
|  | Fully-Contained                                  | 121        | 246                | 109                                                                                      | 0.023                  |
|  | Fiducial Volume,<br>E <sub>vis</sub> > 30MeV     | 88         | 166                | 74.1                                                                                     | 0.0028                 |
|  | Single-ring μ-like<br>(P <sub>μ</sub> >200MeV/c) | 33<br>(33) | 112<br>(111 ± 16)  | 32.0<br>(31.8 ± 5.3)                                                                     | -                      |
|  | Single-ring e-like<br>(P <sub>e</sub> >100MeV/c) | 8<br>(7)   | 8.5<br>(6.8 ± 3.0) | 6.7<br>(5.8 ± 2.2)                                                                       | -                      |
|  | Multi-ring                                       | 47         | 45.3               | 35.4                                                                                     | -                      |

# **Event displays** (single-ring µ-like events)



# Pμ = 1061 MeV/c 1 decay-e

Pμ = 1025 MeV/c 1 decay-e
### **Vertex distributions for FC events**

**FV** boundary



#### **Backgrounds to electron neutrino appearance**



## Electron neutrino selection cuts (predefined cuts)

- 0. Fully contained in SK
- 1. In fiducial volume (200 cm from wall)
- 2. Single ring
- 3. e-like
- 4. Visible energy > 100 MeV
- 5. No decay electron
- Reconstructed invariant mass < 105 MeV/c<sup>2</sup> (specialized π<sup>0</sup> fitter)
- 7. Reconstructed energy < 1250 MeV

|                                      | Data | $\nu_{\mu}CC$ | $\nu_e CC$ | NC   | $\nu_{\mu} \rightarrow \nu_e CC$ |
|--------------------------------------|------|---------------|------------|------|----------------------------------|
| (0) interaction in FV                | n/a  | 67.2          | 3.1        | 71.0 | 6.2                              |
| (1) fully-contained $\mathbf{FV}$    | 88   | 52.4          | 2.9        | 18.3 | 6.0                              |
| (2) single ring                      | 41   | 30.8          | 1.8        | 5.7  | 5.2                              |
| (3) e-like                           | 8    | 1.0           | 1.8        | 3.7  | 5.2                              |
| (4) $E_{vis} > 100 \text{ MeV}$      | 7    | 0.7           | 1.8        | 3.2  | 5.1                              |
| (5) no delayed electron              | 6    | 0.1           | 1.5        | 2.8  | 4.6                              |
| (6) non- $\pi^0$ -like               | 6    | 0.04          | 1.1        | 0.8  | 4.2                              |
| (7) $E_{\nu}^{rec} < 1250~{\rm MeV}$ | 6    | 0.03          | 0.7        | 0.6  | 4.1                              |



### Events as a function of $v_e$ selection cut



#### Distribution of $v_e$ candidate times wrt beam bunch



### **Reconstructed energies after all** $v_e$ cuts



# Results after $\nu_{e}$ selection cuts

|    | Jan. 2010 – Mar. 2011<br>1.43x10 <sup>20</sup> POT | Data | Expected B.G. |  |
|----|----------------------------------------------------|------|---------------|--|
| Si | ngle Ring e-like (before add. $v_e$ cut)           | 7    |               |  |
|    | Single Ring e-like (after add. $v_e$ cut)          | 6    | 1.5 ± 0.3     |  |
|    | Beam $v_e$ Background                              |      | 0.8           |  |
|    | Neutral Current interactions                       |      | 0.6           |  |
|    | Oscillated $v_{\mu}$ - $v_{e}$ with solar term     |      | 0.1           |  |

### **Electron neutrino candidate(1)**



Times (ns)

### **Electron neutrino candidate(2)**



Times (ns)

### Systematic uncertainty for $v_e$ appearance search

# Systematic uncertainty for number of background events at Super-Kamiokande in the $\nu_e$ appearance search

| yst. error           |
|----------------------|
| $\pm 8.5\%$          |
| $\pm 14.0\%$         |
| $^{+5.6}_{-5.2}\%$   |
| $\pm 14.7\%$         |
| $\pm 2.7\%$          |
| $^{+22.8}_{-22.7}\%$ |
|                      |

 $sin^{2}2\theta_{13} = 0$ 

### Allowed values of $sin^2 2\theta_{13}$ as a function of $\delta_{CP}$

(assuming  $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$ ,  $\sin^2 2\theta_{23}=1$ ) π  $\Delta m_{23}^2 < 0$  $\Delta m_{23}^2 > 0$  $\pi/2$  $\pi/2$  $\delta_{\mathrm{CP}}$  $\delta_{\rm CP}$ normal inverted 0 0 hierarchy hierarchy T2K Best fit to T2K data -π/2  $-\pi/2$  $1.43 \times 10^{20}$  p.o.t. 68% CL 90% CL -π -π 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0 0.6 0  $\sin^2 2\theta_{13}$  $\sin^2 2\theta_{13}$ 

90% C.L. interval & Best fit point (assuming  $\Delta m_{23}^2=2.4 \times 10^{-3} eV^2$ ,  $\sin^2 2\theta_{23}=1$ ,  $\delta_{CP}=0$ ) $0.03 < \sin^2 2\theta_{13} < 0.28$  $0.04 < \sin^2 2\theta_{13} < 0.34$  $\sin^2 2\theta_{13} = 0.11$  $\sin^2 2\theta_{13} = 0.14$ 

### Vertex distribution of all $v_e$ candidates



Many checks done:

- probability ~ few % (trials factor hard...)
- entering contamination should be negligible according to MC
- OD events look fine
- atmospheric neutrino vertices look fine

#### Vertex distribution of events with light in the OD



No anomalies...

#### Study of possible entering contamination



### $v_e$ appearance results from MINOS are consistent



# **First Double Chooz** θ<sub>13</sub> **Results**



### Summary of latest $\theta_{13}$ measurements



# Assuming current best-fit values are the true ones, how well will we know $\theta_{13}$ by the end of 2012?



Daya Bay not included in this work

Machado et al. arXiv:1111.3330

#### Future T2K sensitivity in $sin^2 2\theta_{13}$ -CP $\delta$ space





Best fit:  $|\Delta m^2_{32}| = 2.65 \times 10^{-3} \text{ eV}^2$  $\sin^2 2\theta_{23} = 0.98$ 

Number of events

### **First post-earthquake neutrinos**



### Next on the list...



# Summary

With 1.43 x 10<sup>20</sup> pot, observed 6  $v_e$  candidates, expect 1.5 ± 0.3 background (2.5  $\sigma$ )

The constraints on  $\sin^2 2\theta_{13}$  are:

 $\sin^2 2\theta_{13} = 0.11$  (best fit) and  $0.03 < \sin^2 2\theta_{13} < 0.28$  (90% C.L.) for normal hierarchy,  $\delta_{CP}=0$  $\sin^2 2\theta_{13} = 0.14$  (best fit) and  $0.04 < \sin^2 2\theta_{13} < 0.34$  (90% C.L.) for inverted hierarchy,  $\delta_{CP}=0$  $(\Delta m^2_{23}=2.4 \times 10^{-3} eV^2, \sin^2 2\theta_{23}=1.0)$ 

First off-axis beam  $v_{\mu}$  disappearance result

Running has resumed: expect more by summer!

- **Fully Contained**
- **Fiducial Volume**
- Single Ring
- e-like

Number of events /(100 MeV)

3

2

0

0

- Evisible>100 MeV
- $N_{decay} = 0$
- $m_{\pi} < 105 \text{ MeV}$
- Data: 6 Events...

1000

Visible energy (MeV)

-+ Data

v CĆ

NC

2000

# $v_e$ Appearance



### $v_e$ appearance results from MINOS are consistent



# And now: getting at **CP Violation**

Observed for quarks; how about leptons? ... helpful for understanding matter-antimatter asymmetry

nhood S in mixing matrix

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Compare transition probabilities for  $u_{\mu} \rightarrow \nu_{e} \quad \text{and} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ 

But not simple to extract CP violating phase  $\delta$ ... transition rates depend on all mixing matrix parameters, plus matter effects...

### **CP Violating Observables**

$$\begin{split} P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} &= s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) \text{ Non-CP terms} \\ \text{Changes sign for antineutrinos } &+ c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \text{ breases of the terms} \\ \text{CP violating } &+ \tilde{J} \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\pm \delta - \frac{\Delta_{13}L}{2}\right) \\ \tilde{J} &\equiv c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \qquad \Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E_{\nu}}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e \\ \theta_{13}, \Delta_{12}L, \Delta_{12}/\Delta_{13} \text{ are small} \\ \text{A. Cervera et al., Nuclear Physics B 579 (2000)} \end{split}$$

### More complicated...

effects (need long L)

Need precision measurements of parameters....

Multiple measurements (v's and  $\overline{v}$ 's) at different L, E needed to resolve intrinsic ambiguities

### **Neutrino beam line**





### **Beam monitors**

Optical Transition Radiation monitor just upstream of target, to monitor proton beam position



#### **Muon/proton intensity**



Muon monitor: stable within <1 mrad, intensity (normalized) stable within 1%

### First Super-K event from the T2K beam



# **Event display** (multi-ring µ-like event)



# Next in the U.S.: NOvA



### **Future beam power**



#### **Atmospheric neutrino two-flavor parameter space**



Y. Takeuchi, Nu2010

#### K. Sakashita

#### 7 selection cuts

- 1. T2K beam timing & Fully contained (FC) (synchronized with the beam timing, no activities in the OD)
- In fiducial volume (FV) (distance btw recon. vertex and wall > 200 cm)
- \* Events too close to the wall are difficult to accurately reconstruct vertex
- \* Reject events which are originated outside the ID
- \* Define FV 22.5kton
- 3. Single electron (# of ring is one & e-like)



#### K. Sakashita


## K. Sakashita

5

Number of events /(15 MeV/c<sup>2</sup>)

6. Reconstructed invariant mass (M<sub>inv</sub>) < 105 MeV/c<sup>2</sup>

## \* Suppress NC π<sup>0</sup> background

Find 2nd e-like ring by forcing to fit light pattern under the 2 e-like rings assumption, and then reconstruct invariant mass of these 2 e-like rings

T2K MC







## K. Sakashita

- 7. Reconstructed energy  $(E_{rec}) < 1250 \text{ MeV}$ 
  - \* Reject intrinsic beam ve backgrounds at high energy
  - \* Signal ( $v_{\mu} \rightarrow v_{e}$ ) has a sharp peak at E~600MeV





| rec = | $m_n$ | $E_l - m_l^2/2 - (m_n^2 - m_p^2)/2$ |
|-------|-------|-------------------------------------|
|       |       | $m_n - E_l + p_l \cos 	heta_l$      |
|       |       | (with correcting nuclear potential  |

After all the selection criteria background rejection : 77 % for beam v<sub>e</sub>, 99 % for NC signal efficiency : 66 % for the number of events in FV