A novel way to search for new physics in the Z + Jets+ MET final state: The Jet-Z-Balance Analysis

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Southern Methodist University 19 March 2012, Dallas, Texas K. Theofilatos

Standard Model

Highly successful physics theory:

- Under stress test over several decades
- Always in agreement with the experimental data

Nevertheless it is known to be incomplete:

- Accounts just for 4% of visible Universe
- Why particles are massive?
- Too many different scales involved

Provokes us to think that **this is not yet the final** Physics Theory

K. Theofilatos

Boson-Fermion Symmetry ?

Supersymmetry:

 Hierarchy problem, unification, dark matter candidate;experimental signature in a pp collider: production of events with large missing momentum due to the weakly interacting massive particles

Why experimentalist love SUSY:

- Most challenging experimental signature
- Need to master the reconstruction of:
 - muons, electrons, & photons
 - jets, b-jets, taus
 - Missing E_T (neutrinos or LSPs)
- We don't have a particular preference among the plethora of available SUSY benchmark models

SUSY benchmark models usage:

- Spot weak points/reduce number of blind corners in our physics search program
- Develop new analysis strategies, make all possible tests to our LHC data

Stephen Martin (SUSY primer) http://arxiv.org/pdf/hep-ph/9709356v6.pdf

The Large Hadron Collider

The Compact Muon Solenoid

All-Silicon Tracker

• pixel/strips

E/M Calorimeter-ECAL

- Lead tungsten crystals
- $\Delta E/E \sim 0.5$ % at high E

Hadronic Calorimeter-HCAL

- scintillator/brass
- |η|<5.2

Redundant Muon Systems

• RPCs, Drift Tubes, CSC

- One of the two general purpose detectors installed in the LHC
- Compact (all subsystems within R=7m)
- Precisely aligned detector (sub millimeter precision)

The Compact Muon Solenoid

All-Silicon Tracker

• pixel/strips

E/M Calorimeter-ECAL

- Lead tungsten crystals
- $\Delta E/E \sim 0.5$ % at high E

Hadronic Calorimeter-HCAL

- scintillator/brass
- |η|<5.2

Redundant Muon Systems

• RPCs, Drift Tubes, CSC

- One of the two general purpose detectors installed in the LHC
- Compact (all subsystems within R=7m)
- Precisely aligned detector (sub millimeter precision)
- Calorimeters are placed inside the CMS Magnet B=3.8 T

Event Reconstruction

- Reconstruction efficiency i.e. P(read-out | particle)
- Particle ID: complementary info from more than one subsystem
- Reconstruct what you don't see, MET = Missing $E_T = P_T^{miss}$
- Understand your background means know your P(read-out | particle)

Think Fast & Decide

LHC bunch crossing (40 MHz)

L1 Trigger (40 MHz →100 KHz):

- On-detector (radiation resistant) electronics calculating energy, hits
- Info transmitted with optical cables to the counting room ~ 100m
- Data are kept in a buffer until a L1 accept is received, can't wait much
- coarse reconstruction & fast algo are used to evaluate the event

HLT Trigger (100 KHz \rightarrow 100Hz):

 Regional reconstruction with more precise algo, closer to offline

What do we trigger on?

- the basics: jets, electrons, photons, HT, MET
- the not so basic: jet-electron, HT-MET and other cross-triggers
- \blacktriangleright cross-triggers: lower rate and hence p_T thresholds
- complexity of trigger path: harder to understand (efficiency, rate stability)

Which Trigger to Use?

Common triggers (used for SUSY & high p_T **exotic searches):**

- multijets, HT AND/OR MET (hadronic analysis)
- leptons + HT, di-leptons (leptonic analysis)

• photons + HT

- s (leptonic analysis) (photon analysis)
- single-lepton, single-jet, single-photon: too high p⊤ thresholds OR are pre-scaled (used for background & efficiency studies)

Di-leptons: perhaps the simplest trigger for a SUSY search

- di-leptons are clean experimental signatures
- rate is acceptable with a medium p_T threshold ~20 GeV on both leptons
- trigger rate monitored by EWK SM candles
- don't bias the MET distribution with online cuts

Event selection strategy (signal region):

- start from your favorite trigger
- select hard (high p_T) jets
- select high MET events
- select leptons
- select photons

background

Search in the MET tail

MET is the most discriminating variable of S against B:

- We need to be careful (cleaning w/o removing the signal)
- As far as we don't see an excess we are OK (MC-driven analysis can publish limits)
- BUT exclusion limits don't translate in readiness for a discovery
- If an excess of DATA over the MC is observed, we are not going to get excited unless a data-driven analysis confirms the excess

Why search in Z+Jets+MET ?

Main background (Z→II + jets) at parton level MET~0

Cons:

- MET is apparent due to detector resolution and reconstruction effect
- Detector response ($p^{T}_{reco}/p^{T}_{true}$): hard for MC sim
- Rare mis-measurements x σ_{EWK} = can give sizable MET tail
- If an excess is observed extreme tails of SM Z+jets will have to be ruled out, how?

Pros:

- Best studied SM process (NNLO)
- Best understood experimental data
- Cleanest SM candle: used for calibration
- High purity event selection & easy trigger

It's like searching for your keys under the light lamp

 \checkmark always a good starting point :-)

Signal vs Background

n jets

• Z⁰ is non prompt

Traditional MET searches just ask Z + MET>200 GeV:

don't exploit fully the kinematic information (multi cascade)

don't exploit angular correlations

The Jet-Z-Balance Variable

JZB is ~ like signed MET:

- Positive signed for signal (real MET)
- Random sign for the Z+Jets background (no real MET)

1) nice diagram from S.A. Koay

How does JZB work?

Z⁰ and LSP have a common mother which introduces an angular correlation $\Delta \Phi(Z,LSP)$. Results in **large JZB** when $p^* < p_M$

$$p^* = \frac{[(M^2 - (m_X + m_Z)^2)(M^2 - (m_X - m_Z)^2)]^{1/2}}{2M}$$

 p_M = LAB momentum of Z⁰ 's mother

 Z^0 helps LSP to balance the event

JZB for the Background

Background phase space

- Leading Z: can be negatively JZB signed (conservative in discovery mode)
- Spectator Z: jets counter balance, angular correlations $\Delta \Phi(Z,J_n)$ are lost

At high jet multiplicity Z becomes a spectator

- Systematic effects on $p_T^{(reco)}/p_T^{(true)}$ counter-cancel
- JZB distributions approaches normality (angular randomization)

What about other B? (eg ttbar)

- W decays in a ttbar event are uncorrelated in flavor
- ttbar does not peak in mll and is flat below Mz

Divide di-lepton data in 4 sub-samples (2 flavor comb. x 2 mass window)

B w/o Z⁰ (mostly TTbar): estimate it from 3 control samples (1/3 Σ B_i)

B with real Z⁰ evenly populates SFZP: estimate it from JZB<0

Statistically subtract B w/o Z in the JZB<0 using the 3 regions -1/3 Σ B[']_i

B-prediction (making of)

First we check the individual shapes from the 3 + 1 control regions, then we average to gain ~40 % precision in the tail

First Things First: MC Closure

First Things First: MC Closure

ETH Zurich

11 Nov 2011

DiBosons(WW/WZ/ZZ)?

Results in CMS 2011 Data

JZB Analysis Summary

Analysis Properties:

- 3 + 1 control samples model the B in the signal region
- Extrapolation of the B to the signal region is straightforward
- No reliance on MC in any part of the B estimation
- B extraction solely done with **in-situ data** from CMS

Pros:

- All higher orders are included, up to infinite ;-)
- Realistic detector model is used, the real CMS
- Not sensitive to luminosity uncertainties
- Transient experimental conditions are embedded in the control data
- What is transient? pileup, channel masking, hot towers, inter channel calibration & synchronization, p_T^{reco}/p_T^{true} response & resolution

Cons:

- Not as inclusive as a Jet + MET analysis
- JZB analysis is blind to JZB symmetric signals

Complementary Analysis

references: SUS-11-017 & SUS-11-021

Summary

JZB analysis:

- Exploits kinematical info to control the background with **in-situ data**
- No excess in the first 4.7 fb-1 data

high JZB event 2010 data

high JZB event 2011 data

References :

- K.Theofilatos PhD thesis 2009
- SUS-10-010 (34 pb-1)
- SUS-11-012 (190 pb-1)
- SUS-11-019 (2.1 fb-1)
- SUS-11-021 (4.7 fb-1)

SUS-1*-*** are available in CMS Public twiki https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Backup Slides

K. Theofilatos

Pile-up (PU)

PU a necessary complexity

• $\mathbf{N} = \boldsymbol{\sigma} \mathbf{x} \mathbf{L} \mathbf{x} \boldsymbol{\epsilon}$

- \bullet for small σ better be ϵ and have a lot of L
- increase L by more #protons/bunch
- BUT that increases the number of in-time #PU-interactions/event
- Need more Lumi ? increase #bunches/ LHC fill (reduced bunch spacing)
- Out-of-time PU (readout voltage pulses coming from different bunch crossings)
- (OOT PU) IT PU mix different physics event with different timing properties

Number of interactions vertices in a data

cking threshold in pr~ 100 MeV. Fake rate

A cloud of soft mesons

 $H{\rightarrow}ZZ \rightarrow \mu\mu ee,\,M_{\text{H}}{=}$ 300 GeV for different luminosities in CMS

PU is not good for the event reconstruction, can kill the signal

PU and MET in 2011 DATA

remember: we want to search for NP in the tail of the MET

Collider Physics Analysis

Basic equation is simple:

- N = $(\sigma_{NP} + \sigma_{SM}) \times L \times \epsilon$
 - ε = detector efficiency
 - L = integrated luminosity
 - σ_{SM} = Standard Model cross-section O(mb)
 - σ_{NP} = New Physics cross-section <pb

S/B ratio (S/B = σ_{NP}/σ_{SM}):

- $pb/mb = 10^{-9} = 0.000000001$
- but most of SM events is just a soft cloud of hadrons better not to store them on disk :-)

Need an event preselection:

- Concentrate in corners of phase space where $O(\sigma_{NP'}) \sim O(\sigma_{SM'}) \rightarrow look$ for high pT events
- An example selection:
 - 3 jets (pt>30 GeV && $|\eta|<2.4$)
 - 2 leptons (pt>20 GeV && $|\eta| < 2.4$) with mll~m_z

SMU - 19 March 2012

• MET> 300 GeV

K. Theofilatos

We recorded 0 such events in the whole 2011 CMS dataset \rightarrow placed a limit on the σ_{NP}

(proton - proton)

Example: $Z \rightarrow vv$ from DATA

Z→vv + jets is irreducible background for hadronic SUSY Jets + MET inclusive search

SUS-11-004 and references within

control samples for data-driven analysis?

Z→ $\mu\mu$ + jets MET' = $p_T(\mu\mu)$ best but not enough

W→ μ v + jets MET' = p_T(μ)+ MET not so clean

gamma + jets MET' = p⊤(gamma) R(Z/gamma) ?