Search for Annual Modulation in CDMS II

Scott Hertel SMU Physics Seminar April 9th, 2012

Search for Annual Modulation in CDMS II

Scott Hertel SMU Physics Seminar April 9th, 2012

Introduction CDMS II CDMS II at low energies Annual Modulation Introduction: WIMPs and Yield-based Discrimination

Everywhere we look, we see ~5x more gravity than expected.

-galaxies -clusters of galaxies -the Universe as a whole

Everywhere we look, we see ~5x more gravity than expected.

-galaxies -clusters of galaxies -the Universe as a whole

Explainable only by hypothesizing a new, nearly non-interacting type of matter.

Everywhere we look, we see ~5x more gravity than expected.

-galaxies -clusters of galaxies -the Universe as a whole

Explainable only by hypothesizing a new, nearly non-interacting type of matter.

Observed cosmological density (1.3 GeV/m³) could result from weak-scale interactions.

NIMS

assuming m_χ ≈ 70 GeV , ~100,000 /cm²/sec

Phonons Charge Carriers Photons

Relative fractions depend on dE/dx

Introduction

1. CDMS II

Electron recoil band ¹³³Ba gamma calibration

Nuclear recoil band ²⁵²Cf neutron calibration

Electron recoil band ¹³³Ba gamma calibration

Surface electron recoils ¹³³Ba gamma calibration

Nuclear recoil band ²⁵²Cf neutron calibration

1. CDMS II

Surface events can exhibit suppressed yield. 0V (h^+, e^-) (h^+)

CDMS II strategy: phonon timing

Yield vs Timing Space:

2. CDMS II at Low Energies

Motivation: DAMA, CoGeNT, CRESST

CDMS timing rejection fails below ~10 keV...

Low Background CDMS II Data

CDMS timing rejection fails below ~10 keV...

Low Background CDMS II Data

... where a 7 GeV WIMP would appear.

A Nuclear Recoil Yield band is defined, using the -0.5σ to +1.25σ range to maximize reach.

The 'candidate' events were selected from WIMP-search data, ignoring pulse shape.

DAMA/LIBRA, light blue CoGeNT region, and combined region: Hooper et al., PRD 82 123509 (2010)

Question: Are we sure of the energy scale?

Two types of phonons

At 3V running...

Electron Recoils:

Nuclear Recoils:

Baryons

orbit 'together' roughly circular orbits small velocity dispersion

Halo DM

orbit 'individually' no circular preference large velocity dispersion

Baryons

orbit 'together' roughly circular orbits small velocity dispersion

Halo DM

orbit 'individually' no circular preference large velocity dispersion

Must understand efficiency vs time

Must understand efficiency vs time

 I: constrain energy range, to safely assume constant trigger-efficiency

Must understand efficiency vs time

 I: constrain energy range, to safely assume constant trigger-efficiency

2: place limits on cut efficiencies, given this energy range

Recoil Energy [keVnr]

NR band widened to ±2σ

Multiples
Singles
Run 123 Nuclear Recoils
Run 124 Nuclear Recoils
Run 125 Nuclear Recoils
Run 126 Nuclear Recoils
Run 127 Nuclear Recoils
Run 128 Nuclear Recoils

Binning the exposure in time...

Candidate Event Rate vs. Time

(each detector)

Candidate Event Rate vs. Time

(detectors DCsubtracted, then combined)

Candidate Event Rate vs. Time

(detectors DCsubtracted, then combined)

combined likelihood of data, for all time bins (β), and all dets (d)

$$\ell = \prod_{\beta,d} e^{-\mu_{\beta d}} \left(\mu_{\beta d}\right)^{n_{\beta d}}$$

where $\mu_{\beta d}$ is the model prediction for det d, bin β

$$\mu_{\beta d} = \{ \begin{array}{c} \Gamma_{d} + M \cos \left[\omega \left(t_{\beta} - \phi \right) \right] \} \\ \begin{array}{c} \mathsf{DC} & \mathsf{Mod.} \\ \mathsf{Rate} & \mathsf{Rate} \end{array} \\ \begin{array}{c} \mathsf{Mod.} \\ \mathsf{Phase} \end{array} \\ \begin{array}{c} \mathsf{m}_{d} \varepsilon_{\beta d} f_{\beta d} \Delta t_{\beta} \Delta E \\ \mathsf{exposure} \\ \mathsf{exposure} \\ \end{array}$$

106-day phase (CoGeNT Best-Fit)

