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We analyze in perturbative QCD the asymptotic behaviour of deep inelastic processes in the
semi-hard region x - 0. The study is done by extending the soft gluon insertion techniques. We
confirm and extend the analysis recently performed by Ciafaloni. The main results are the
following: (i) Soft gluon emission from the incoming parton takes place in a region where the
angles between incoming and outgoing partons are ordered. This is due to coherent effects similar
to the ones in the x - 1 region . (ii) Virtual corrections involving an internal line with energy
fraction x give rise, for x -0, to a new form factor of non-Sudakov type . This regularizes

collinear singularities when an emitted gluon is parallel to the incoming parton . (iii) At the

complete inclusive level, the new form factor plays the same role as the virtual corrections in the

Lipatov equation for the Regge regime . We show that, in the semi-hard regime, the gluon
anomalous dimension coincides with the Lipatov ansatz . (iv) We identify the branching structure

of initial-state radiation including the semi-hard regime . The branching is formulated as a
probability process given in terms of Sudakov and non-Sudakov form factors . This process. in
principle, can be used to extend the existing simulations of QCD cascades to the semi-hard
regime .

1 . Introduction

One of the most arduous problems in perturbative QCD is the analysis of
processes involving incoming hadrons in the regime

0550-3213/90/$03 .50 T~ Elsevier Science Publishers B.V .
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A<<Q«~_s_ ,

	

(1 .1)

where V~s_ is the energy, Q is the hard scale of the process and A the QCD scale.
This regime has been the subject of intensive studies in perturbative QCD [1-6] but
a general theoretical understanding is still lacking .
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The extension of the QCD analysis to the semi-hard regime (1.1) is becoming
crucial for the interpretation of a large set of high energy data from hadron-hadron
and hadron-lepton collisions .
At the inclusive level we have, for instance, the cross sections and the distribu-

tions of semi-hard jets with ET << vfs- (minijets), and the emission of heavy particles
with mass M << ~s_ . Such quantities crucially depend on the behaviour of the quark
and gluon structure functions for small x - Q/ 6_. In perturbative QCD these
functions grow rapidly for x - 0 (see refs . [1-3,6]) so that semi-hard jet events
provide a large contribution to the total cross section .
At the semi-inclusive level the structure of the emitted radiation is characterized

by the soft gluon interference effect (coherence) . In the hard regime x - 1 or in the
timelike processes of final state emission (e.g . in e + e- annihilation) we have a quite
satisfactory understanding of this phenomenon, at least to leading order (see refs .
[1, 2,6,7]) . In the regime x - 0, instead, the QCD coherence of the radiation emitted
by the incoming parton is not completely known.
Monte Carlo simulations of hard events are important tools both for theoretical

and phenomenological study of QCD. At least to leading order, coherence of the
soft gluon radiation in hard processes can be described by a Markov process . A
reliable description of coherence in the initial state radiation is already implemented
in one of the existing Monte Carlo program [7] . However in regime (1 .1), a
satisfactory description is still lacking.
On the theoretical point of view, the analysis of the phase space region (1 .1) is

quite interesting . Let us recall some of the known results .
(i) On the basis of the analysis of soft emission amplitudes at tree level, it has

been suggested [6] that the initial state soft gluon radiation is emitted within an
angular ordered region . Outside this region, destructive interference takes place and
the distribution vanishes to leading order. In this spacelike process for x - 0, the
structure of soft gluon coherence is the same for x - 1 or in the timelike processes
(e.g . in e'e - annihilation) .

(ü) On the contrary, virtual corrections to the initial state radiation in the
semi-hard regime (1.1) are expected to be quite different from virtual corrections to
the final state radiation of a soft gluon . Consider for instance the timelike and
spacelike gluon anomalous dimension yx, for N - 1, with N the energy-moment
index . In the timelike case we have the known result [81

N
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(1 .2)

which shows that, at the perturbative order as, the leading singularity as N - 1 is
as(N_ 1) î _ 2n

.
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The structure of the spacelike anomalous dimension for N - 1 is quite different .
From two-loop calculations [14] it is known that

According
expansion

YN(as) =

	

+ a

	

+ . . . ,

	

(1 .3)
N-1 N-1

with a a known number . In contrast with the timelike case the leading as/(N - 1)3
and the next to leading as/(N - 1) 2 singularities are absent .

(iii) From the analysis of the complete two-loop calculation it has been shown
[2,4,6] that the absence of the leading as/(N - 1)3 singularity of YN is the result of
a cancellation between real emission contributions and virtual corrections of non-
Sudakov type . The virtual correction of Sudakov type regularizes the soft emission
singularity 1/(1 - z) in the Altarelli-Parisi splitting function, while this non-Suda-
kov virtual correction regularizes the collinear singularity present when an addi-
tional emitted gluon becomes parallel to the incoming parton . Such a cancellation of
collinear singularities is also present in the equation which Lipatov [3] obtained long
time ago in his investigation of Regge behaviour in gauge theories . Although the
semi-hard regime is different from the Regge regime, one may try to translate the
Lipatov equation in terms of a gluon anomalous dimension ansatz and obtain
the following equation involving the Euler function (see e.g . ref. [2])

Nasl
= [2~(1) - (YN) - (1-YN)~-1

	

f(YN) .

to this ansatz, YN(as) is a function of as/(N- 1) with perturbative

a s00

	

as	a s
YN(as) = y-gj ( N-1

)~
= N-1

j=i

	

+O(( N
-llal,

which is consistent with the two-loop result in eq . (1 .3) .
(iv) According to this ansatz, the first correction to the one-loop result is of order

as and therefore one could think that the one-loop anomalous dimension could
provide a reliable approximation to the structure function for small x . However this
is not the case since expansion (1.5) generates a square-root singularity in the
moment index N for N = N* given by

N* =1+'is f(2)=1+iis 41n2 .

	

(1 .6)

The presence of this singularity at N* > 1 implies that the actual behaviour of the
structure function is much more singular than the one-loop expression : the structure
function diverges as x-N ' for x -). 0, thus yielding a violation of the Froissart
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Fig . 1 . The deep inelastic parton scattering . Here and in the following figures all solid lines indicate
gluons.

bound . In refs . [1, 5] it has been shown that such a violation could be overcome by a
consistent unitarization procedure .

(v) No real proof of the Lipatov ansatz (1 .4) still exists . A sizable step in this
direction has been made in ref . [6] in which a method is suggested to factorize and
resum higher order QCD corrections . Here a new form factor of non-Sudakov type
is introduced to regularize to all orders the real emission collinear singularities and
the Lipatov ansatz is obtained . However, in that paper there is not a real proof of
factorization, especially at the virtual level, or of exponentiation of loop corrections .
One of the aims of the present paper is to obtain such a proof .

In this paper we study the process of parton deep inelastic scattering (see fig . 1)

p+q~p'+qt+q2+ . . . +qn,

q 2=-Q 2 <0 and x=Q 2/2pq,

and p' represents the recoiling parton . Since gluons provide the most singular
contributions for x - 0, we focus our attention on deep inelastic scattering in pure
Yang-Mills theory . We consider a hard probe generated by the gauge-invariant
colour-singet source current (Ft°v)2 . However we will point out the generalization
when quarks are also included (see appendix B) .
We study this process in the phase space region

qit < Q,

	

(1 .9)

with qit the transverse momentum of gluon i . It is only within this region that the
cross section for the process (1 .7) admits a parton interpretation in terms of a single
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incoming parton structure function. Note that for x - 0 values of q; t >> Q are
allowed, since the kinematical boundary is q < QZ1x . Processes with q » QZ

correspond to the Drell-Yan emission of jets which are harder then the probe Q.

These processes have two hard scales and have to be analyzed independently . Our
analysis in the region (1.9) provides, via the factorization theorem, a complete
description of jet emission in pp collisions with E t = Q « r .

Before explaining the results of this paper we describe the method we use .
To compute the multi-gluon amplitudes in fig . 1, we follow the method of ref. [6]

which consists in generalizing to semi-hard processes the soft gluon insertion
technique which has been extensively used [2,11-13] for the study of infrared
singularities in hard processes .
The leading infrared singularities in hard processes are obtained by studying the

process of fig . 1 in the energy ordered region

Yn« * . . «Y2 «Y1 «x - 1,

	

(l .10)

where Yk is the energy fraction of the emitted gluon k . The soft gluon insertion
technique [2] consists in factorizing the emission of the softest gluon n in terms of a
soft current . In the region (1 .10) this is given by the eikonal current of all external
harder gluons

P P 1 " - 1 q,
k

	

Tp

	

+ Tp,; + Y, Te

	

(l .11)
Pqn

	

P qn

	

t=1

	

q,,q�

where the T's are the colour charges of emitting partons . Virtual corrections are
treated in a similar way [11,12] by factorizing the contributions with the softest
gluon in the loop . This technique allows one to obtain a recurrence relation which
enables one to compute the leading infrared contributions to the multi-gluon
amplitudes and to exponentiate the virtual corrections giving the proper Sudakov
form factors .
The x - 0 leading contributions of the multi-gluon amplitudes of fig. 1 are

obtained by studying the energy region

x«Yn« "'« «Y2 «Y1 -- .

	

(l .12)

The main difficulty in the study of this region is the presence of an internal line with
energy fraction x, which for x - 0 may be less energetic than the softest emitted
gluon . This implies that insertions on this internal line cannot be described by eq .
(1 .11) and one has to generalize the form of the soft current . A similar difficulty
appears in the evaluation of virtual corrections involving this less energetic internal
line. We shall show that all these complications can be overcome by appealing to the
properties of soft gluon coherence .
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Our calculations are done in the axial gauge with the gauge vector essentially
parallel to the recoiling gluon p' . We check the gauge invariance of final results to
the extent of current conservation . Let us list the results obtained in this paper .

(i) We show that, in the semi-hard regime (1.12), the emission of the softest gluon
n can be factorized in terms of the total current (see eqs . (3.4) and (3 .5))

Jto~t -1) 1gn) - Je(, k- ')(q,) + Jne(Q, , qn) ,

where the additional current J�e is a non-eikonal current which corresponds to the
soft gluon emission from the softest internal line with momentum Qn =p - ql

- - - - - q» . This factorization gives a recurrence relation (see eq . (3 .3)) which allows
us to compute the multi-gluon amplitude at tree level in the phase space region
(1 .12) .

(ii) We solve the recurrence relation and compute the leading contribution to the
multi-gluon distributions at tree level (see eq . (4.16)) . Mass singularities related to
spacelike internal lines are present in individual graphs but they are cancelled in the
final result due to a coherence effect (see eq . (4.2)) . We confirm that there are
leading collinear singularities only for 011h, 0, eg,g,

- 0 and BP , g, __' 0, where Bkk,
are the angles between parton k and k' . As a consequence one obtains that the soft
gluon emission from the incoming parton p takes place within the angular ordered
region

0PP > BPgrz >
. . . > BPV2 > BPgt

(iii) We show that the softest virtual correction to the multi-gluon amplitudes
factorizes and gives two contributions of different origin (see eq. (5.29)) . The first is
the usual one of eikonal type and the second one is of non-eikonal type and related
to the non-eikonal current in eq . (1.13), (see eq . (3.5)) . This factorization provides a
way to exponentiate both types of virtual corrections (see eq . (5 .2)) . The complete
form factor is given by the usual Sudakov one (see eq . (5.3)) and by a non-Sudakov
form factor (see eq . (5 .4)) which is similar to the one suggested in ref . [6] . This last
one is relevant only for x - 0.

(iv) We write a recurrence relation for the complete multi-gluon amplitudes (see
eqs . (5 .2) and (5.5)) . By solving this recurrence relation (see eq . (6.14)) and
integrating over final state emission we compute the initial state multi-gluon
distribution (see eq. (6.25)) . This distribution takes into account only the contribu-
tions with collinear singularities for 9,g, 0 and includes the corresponding virtual
corrections . The structure function is obtained by integrating this initial state
distribution (see eq . (6.26)) .

(v) If we extrapolate the multi-gluon distributions, computed for x - 0, into the
complementary region x - 1 we find that, apart from contributions which are
subleading, they match with those already known in the latter region (see ref . [2]) .
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Therefore we can assume the distribution (6 .25) to be valid for any values of x . In
this way we neglect only subleading singularities for finite x which contribute in the
intermediate regions y; << x << y and give the finite terms for z - 0,1 of the
Altarelli-Parisi splitting functions .

(vi) For x - 0 we obtain an equation for the structure function at fixed total
transverse momentum similar to the one in refs . [2,61 (see eq. (7.28)) . This can be
solved by the diagonalization of the energy N moments (see eq . (7.31)) . We confirm
the Lipatov ansatz (1.4) for the N - 1 anomalous dimension .

(vii) We cast the initial state multi-gluon distribution in terms of a spacelike
branching process and give the branching distribution (see eqs . (7.54) and (7 .55)) .
The branching takes place within the angular ordered region (1.14), and the
branching probability contains two form factors : the usual Sudakov one (see eq .
(7.48)) and a non-Sudakov form factor (see eq . (7.17)) . The last form factor is
relevant only when the emitted gluon is fast and therefore it is important only in
presence of the 1/z term in the Altarelli-Parisi splitting function .
The paper is organized as follows . In sect . 2 we set the notations and recall some

of the general results on the soft gluon insertion techniques which are needed in the
following . In sect . 3 we analyze the factorization of softest gluon emission for x - 0
and we give the general recurrence relation at tree level for the multi-gluon
amplitudes . In sect . 4 we solve the previous recurrence relation and compute the
general multi-gluon distributions at tree level . We discuss also the structure of soft
gluon interference (coherence) . In sect . 5 we perform a detailed analysis of virtual
corrections at the same level of accuracy as in the calculation of real emission and
we prove the exponentiation of these virtual corrections . We deduce also the
recurrence relation for the multi-gluon amplitude including the appropriate form
factor . In sect . 6 we solve the above relation and compute the initial state multi-gluon
distributions . In sect . 7 we discuss the coherence of multi-gluon emission, we
compute the anomalous dimension for N - 1 and we deduce the branching struc-
ture of initial state emission . The paper is completed by two appendices . In
appendix A the two-gluon emission amplitude is evaluated in a general axial gauge
and we check the gauge invariance of the total soft gluon emission current . In
appendix B we discuss deep inelastic scattering with incoming quarks . By using
coherent state techniques we extend the results obtained in the pure Yang-Mills
theory .

2. General features

For the kinematics of the process in fig . 1 we introduce two lightlike vectors

p=E(1,0,0,1), p=E(1,0,0,-1), 2pp=4E2 . (2.1)



The other momenta in eq . (1.7) can be written as

Q2 Pq =- xp +--
x

	

2pp
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where 2pq i = q /yi for qi massless and x = QZ/2pq . For large QZ we have

x=xn-(1-Y,- . . . - ya ),

	

P,-p,

where y i is essentially the energy fraction of qi and -- stands for almost parallel . In
the deep inelastic process of fig. 1 the kinematical boundary for the total squared
transverse momentum Qnt=(E"-lgit)2 is of order 2pp' and for small x we have
Qnt <

Q2/x.As already mentioned, in this paper we limit our analysis to simple
deep inelastic process in which the only hard scale is Q and we consider the phase
space region QI « Q.
As mentioned in the introduction, since only gluons are relevant for x - 0, we

focus our attention on deep inelastic scattering in Yang-Mills theory. The case with
a quark in the initial state will be discussed in appendix B . For the hard probe we
take the simple gauge invariant current (F,,", ) 2 . To first order it gives rise to the
two-gluon vertex

V"'(P, P') = - gtiw(PP) + (P"'P" ' ),

with [t and ,u' the Lorentz indices of gluons p and p' respectively. In addition to
this we have a contribution of order gs with three-gluon vertex . The four-gluon
coupling can be neglected in our approximation .

For x - 0 the dominant part of the multi-gluon amplitude is obtained by
studying the process of fig. 1 in the phase space with strongly ordered energies . For
the emitted gluons which are softer than x the soft emission factorization works as
in the case of x - 1 . We then focus our attention on the phase space in which x is
softer than the emitted gluons

x«y� «Y� -1« . . . «y1-1 .

2.1 . GAUGE FRAME AND STRUCTURE OF LEADING DIAGRAMS

We work in axial gauge and introduce the polarization projection vector

qi =yP+(Pqi)P +qit,

	

(2 .2)
PP

(2 .3)

(2 .4)

(2.5)

(2 .6)
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so that

and the gluon polarization sum is

We choose the gauge

k'E(~)(q)=0- kg 1l
x

,

	

E
(X
)(q)gx=q'E(X)(q)=0,

	

(2 .7)
q ,q

du°(q) = -EpX)(q)E(a)°(q),

	

n"dl,v(q) =0 .

	

(2 .8)

in which the gauge vector rl is essentially parallel to the recoiling momentum p' .
The topological and Lorentz structure of the dominant Feynman diagrams for
x - 0 greatly simplify in this gauge . Let us list the main simplifications :

(i) First we can neglect the Feynman diagrams in which the gluons qt,..., q� are
emitted by the recoiling parton p' . This is due to the fact that in the phase space
(2.5) soft gluon emission from p' can be approximated by the eikonal vertex
2pw --- 2pw which is orthogonal to the polarization vector in our gauge rl =p.

In our gauge we need to consider only the contributions of the hard current (Fw,) 2

coming from the two-gluon coupling in eq . (2 .4) . This is due to the same reason
described above . The contribution from this current with three-gluon coupling gives
rise to two terms . The first is of order ytpa with respect to the one corresponding to
eq. (2 .4) and gives a nonleading infrared contribution . The second is proportional to

p, - ptl and does not contribute in our gauge . As a result we limit our analysis to the
diagrams with the structure in fig . 2 . For the analysis in a general gauge we refer to
appendix A.

9

,1=P-p',

	

(2 .9)

Fig. 2. Structure of diagrams for the leading infrared contribution in the gauge (2 .9). The full circle
corresponds to the effective vertex in eq . (2 .11) .



S. Catani et al. / Perturbative QCD

	

27

(ii) A further important simplification comes from the structure of the following
effective hard vertex

1

	

( V ",(Q", P') ) 1 )
Ve(fpt(Q, P')

	

d~v(Qrr)
n

	

P'L~l

	

n

where V "(Qn , p') is given by eq . (2.4) and corresponds to the vertex Q n + q -> p' in
fig . 2 . Eq. (2.10) can be rewritten as

Ve(f é,) (Qn , P') - rcxl (Qn, P')

	

pQrr (

d(QQ) . P
)(Q,r'

((X,
)(P')),

	

(2 .11)
n

where

	

X) (Qn , P') - (1/Q2) dw(Qn)E~x)(P') .

	

(2 .12)

In our gauge q - p', the second term can be neglected and the effective hard vertex
is just given by F(Q � , p') which for x = x � - 0 is essentially parallel to the gauge
vector 71

1

	

r
it',,)(Qn,P')-

	

Qz~

p

~P(Qn-x
� P),E(x,)(P')-x � /E (~)(P')-

p~P .EW)(p')J~x n

	

rn

	

PP

2(Qr,- x,P)*E(X' ) (P') p
l~ 1 .

The neglected term of order xn is a purely transverse vector .
(iii) The fact that for x - 0 the effective hard vertex

	

Veff (Q, , p') becomes
proportional to the gauge vector P provides a further simplification in the relevant
Lorentz index flow in the Feynman diagrams . Let us illustrate this for the case of
fig . 3 in which we represent the three polarization flow contributions to the

(2 .10)

(2 .13)

Fig. 3 . The three polarization flow contributions in the three-gluon vertex . In our gauge, the leading
contribution is given only by the diagram (a).
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three-gluon vertex I'(-p, q 1 , Qj as

E(À)(P)E,(,~1)(Rl)rvvlp(-P, Rl , Q1) = E (À) (P) * E(~1)(gl)(2P -QI) p

(2k - Qn) '
d(Qn)
Q 1 z

	

Ve(fé')(Qn> P')
n

1
-

	

2 (2k - Qn) ' Vefé
'
) (Qn> P')

+ ( P - 2q1) - E ( ~' ) ( P)E(~")P(g1)

- (2P-gl)'E(~')(ql)E( ~')p(P), (2 .l4)

where p is the Lorentz index of the virtual gluon Q1 . Since the dominant contribu-
tion to the effective hard vertex in eq . (2.13) is proportional to the gauge vector,
only the first term in eq . (2.14) (fig. 3a) contributes to the dominant part of the
amplitude (rt - E(p) = ,q - E(q,) = 0) and one finds (x _ x1 - 0)

Mj(PP'g1, NX'X 1 , aeb l ) = (E(")( P) . E(x`)(gl))(2P - Q1) - V,~f,)(Q, P ')igjaeb1

= (E(a)( P) ' E(~')(R1))
2(Ql - x, p) ' E(~/)(P')

1SsÎacb l ,

	

(2 .15)

with p . (2 p - Q1)=2pp for xl =I-y1 -0.
Such a feature of our gauge frame can be generalized . The leading contributions

come from diagrams in which the Lorentz index of the recoiling gluon p' is
saturated by the index of a three-gluon vertex within the diagram and not with the
Lorentz index of any of the other external gluons pql . . . qn .

(iv) In general, the leading contributions in region (2.5) come from diagrams with
the topological and polarization structure of fig. 4 in which the Lorentz index of the
recoiling gluon p' is saturated before the emission of any soft gluon ; thus the hard
vertex factorizes giving

(2k- Qj - Vecé") (Qn , p') -

	

(2k ~Qn)

	

(Q, -x P
Q �E(~'

~(P') .

	

(2.l6)

To show the dominance of the diagrams in fig. 4, consider for instance fig . 5 in
which a gluon qj is emitted before the saturation of the Lorentz index of p' . In our
gauge, the effective vertex gives

_ [ (2k - Qn)-n

	

_1

	

(Q~'- (xn +yj)P) . E (X,)(P')

	

(2.17)
7%P

	

] Qn

	

Qnz ( xn + yj)
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qa2

qa2

Fig . 4 . Structure of diagrams giving, in our gauge, the dominant contribution in the region (2 .5) . The
polarization flow is also indicated .

Fig . 5 . Emission of soft gluon q, gives a subleading contribution in the region (2 .5) .

with Q' = Qn + q. . The 1/x � singularity in eq . (2.16) is replaced in eq . (2.17) by
1/(x � + yj ) . The singularity is then screened by yj and one obtains a nonleading
contribution .

The n-gluon emission amplitude M� for process (1 .7) is a function of the external
momenta p, p', q . . . . . . q n , the corresponding Lorentz indices X, X', X1, . . . , a � and
the colour indices a, c, b l , . . . , b� (see fig . 2) . For each process with a given number
of emitted gluons we introduce a space of colour indices (I acb l . . . b� )) and write
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the amplitude as a representative state in this space

M� _(acbl . . .b� lMn(PP'gi . . .gn ;AX'A1 . . .Q) . (2 .18)

As shown in a previous analysis [13] of the infrared structure of deep inelastic
scattering for x - 1 or of final state emission processes as e + e- annihilation, this
notation not only simplifies the Feynman diagram calculations but also helps in
grasping the consequences of colour conservation and the physical properties of
coherence of QCD radiation .

In the colour space for n emitted gluons we introduce SU(N) colour charge
matrices Tp , T, Tl , . . . , T� for each external gluon p, p', ql , . . . , qn acting as follows

2 .3 . SOFT GLUON EMISSION FOR x -> I

This condition is satisfied by Mo and Ml (see eq . (2.15)) .

Before analyzing the x -> 0 case we recall here the results of soft gluon factoriza-
tion in the case x - 1 . This will help in describing the general method and in
understanding the physical differences between x - 1 and x -> 0 cases.

For x - 1 the leading infrared structure of M� is obtained by studying the
process of fig . 1 in the strongly ordered energy region for the emitted gluons

Y� «Yn-1« . . . «Y,«x-1 .

	

(2.21)

As well known [2], the emission of the softest gluon qn can be factorized in terms
of the eikonal current and, in the colour notations of the previous subsections, one
has

(acbl . . . b� IMn) - (acbl . . .b�-1IJe(
ik
-1)b

"(gj IM,,(2.22)

P Pf n-1 gt
where

	

J;"-1)(q) = - Tp- + Tp ,; + Y, T,- ,

	

(2 .23)
Pg

	

p'q

	

t=1

	

grg

is the classical current for the emission of the soft gluon by the other harder charges .
This current is conserved due to the vanishing of the total charge (see eq. (2.20)) .

T,61acbl =. . . b�) ifbb,b, l acbl . . . b, . . . b�) , (2 .19)

and similarly for TP and Tn , . The charge conservation condition is

-Tp +T',+ T,) l m�)=0 . (2 .20)
l=1
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The fact that, after the factorization of qn emission, one is able to reconstruct the
amplitude Mn - I , is crucial in order to provide a recurrence relation which allows
one to construct the dominant part of Mn in the phase space (2.21) .

3 . Factorization of soft emission current for x ---> 0

For x - 0 the dominant part of Mn is obtained by studying the process of fig . 1
in the phase space region (2 .5) . In this section we extend the method of soft gluon
factorization extensively used [2] in the region x - 1 . We prove that this factoriza-
tion is possible in general and we construct the corresponding soft current . We are
able to obtain a recurrence relation which allows one to evaluate the leading x - 0
contributions to all amplitudes Mn at tree level .
Due to the form (2.13) of the effective hard vertex Veff(Q,, p') in our gauge, we

factorize in all M� the following subamplitude

2(Q,, - xnp) - E (À' ) (p')M� -

	

2

	

(acb l . . . bn1hn(pp'g1 . . . qni,

	

(3 .1)xQn

where h� corresponds to the diagram in fig . 4 in which the hard vertex Qn + q -p'
is replaced by gl2 rlp (see eq . (2.13)) . We have already found this structure in the
case of n = 1 (see eq . (2.15)) in which the subamplitude h l is

(acbljhI(pp'g1)) = ' (A) (p) - E (~' )(g1)Igsfaeb, *

	

(3 .2)

In the following we show that the soft gluon factorization and the corresponding
recurrence relation hold not for the full amplitude Mn but for the subamplitude hn
in the form

(acbl . . .bnjhn(pp'qj . . .qn) ) = gs(acbl . . .bn-IlJtoi -1>b"(gn)Ihn-1(Pp'gj . . .qn 1)i

We show also that the soft emission current Jc(,t-')(q.) is given by the following two
contributions

with Q�_1-Q,,+q, xn-I-xn+Yn'

Jt("-I)(q,,) = Jeik- ')(qn) + Jne(Qn, qn) ,

where Jerk-1)(q.) is the eikonal current in eq . (2.22) and Jne(Q � , qn) is a non-eikonal
current given by

__ 2(Qn- , - xn-IP)' E (gn)
Jne(Qn~gn)

Q
2

	

rP',

n-1

(3 .3)

(3 .4)

(3 .5)



3 2

	

S. Catani et al. / Perturbatiue QCD

This result is obtained as follows . The emission of the softest gluon n from the
harder external and internal lines can be factorized as usual [2] and is described by
the eikonal part of the current . In the phase space (2.5) only the internal line Qn is
softer than the emitted gluon . In this case the emission of the softest gluon n from

Qn cannot be evaluated by the eikonal approximation . However we are able to
factorize also this contribution by taking into account the property of coherence of
the radiation and obtain the non-eikonal current Je .

This additional non-eikonal contribution to the total soft current for x - 0 has
been introduced also in ref . [6] in a one-loop calculation . In this section we present
the generalization to all loops.
We shall present in subsect . 3 .3 the general proof by induction of eqs . (3 .3) and

(3.4) . To this purpose we first analyze in detail the case with n = 2 and some general
features of the case n = 3 .

3 .1 . SOFT EMISSION FOR n = 2

The leading contributions to M2 in the phase space

come, in our gauge, from the diagrams in fig . 6 (see sect . 2) .
Consider first the two diagrams (figs . 6a, b) which correspond to the usual eikonal

emission of the softest gluon q2 from the hard external gluons p and qt . In these
two diagrams the soft emission can be factorized giving the usual result [2]

with

	

J;"(q2) _ ( -
P

	

Tp+

	

ql

	

Tl) . E(q2)

	

(3 .8)
Pq2 glq2

x«y2 «y 1 =1,

	

(3 .6)

4z '" L
-~-

	

uz_
p

	

~
Q

	

p

	

Q2 Qi

	

P

Fig . 6 . Diagrams for n = 2 giving the leading contribution in (3 .6) .

(acblb2 j h( a +b)) g s(acb j jJ~,1 (g2)jhl) , (3 .7)



We consider now the last graph of fig . 6 and show that also in this case the soft
gluon q2 can be factorized . Notice that in diagram of fig . 6c, the gluon q2 is emitted
with the same effective vertex r(Qj, q2 ) we have introduced in the previous section
(eq . (2.13))

1

	

2(Ql__

	

x1P) . E ( ~ 2) (g2)

	

qwTtX z ) (Q1, qz) - Qi
-d (Q,) ' E~~ 2) (gz) -

	x1Qi

	

2qP

(acblb2 ~h2`))=gs q . (2Q1-Q2) [(2p_Qi)'r(~ Z) (Qi,9z) ] ~ acb1 1 TP? ihi)
2qP

= gs(acbl~
2(Q1 - x1 P ) 'E (

À
Z) (gz )l

T,21h1)
QI

	

P

3.2 . CASE n = 3 AND THE STRUCTURE OF GENERAL SOFT INSERTIONS

(3 .12)

We have neglected a contribution regular as x = xl = 1 -yl -> 0 and purely trans-
verse .
As in the case of the hard vertex, in this gauge the saturation of the Lorentz index

with external gluon polarizations gives only a nonleading contribution of order xl .
By using the approximation in eq. (2 .13), the diagram of fig . 6c gives

= gs(acb1 1 JeX2) (Q2, gAhl) ,

	

(3 .13)

where the factor (2Q1 - Q2) (q/2qp) = xl - zx2 = xl has canceled the 1/xl sin-
gular factor in the effective vertex r(Q,, q2).

The features of the calculations for n = 2 can be generalized to higher n . However
the generalization requires some new features which we want to illustrate by

S. Catani et al. / Perturbatioe QCD

Since in this gauge q - p' we have

33

_P P~ qi qi
.
E (q2) -

_P _
E( q2)

=

_ _P~
(3 .9)

Pq2 Pq2 P'q2 glq2 glg2 P'qz

and the hard probe is a colour singlet

(- Tp + TI + Tp , )I hl) = 0, (3 .10)

and the eikonal current can be written as follows

Je(i k)(g2 )
P ql

= Tp+
pi

Tp,+ Tl . (3.11)
-Pq2 P'q2 gigz
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qs q3 q2

analyzing the case n = 3 in the region

q2 qs qr

Fig . 7 . Example of diagrams for n = 3 . (a) Diagram with a leading contribution . (b) Diagram with a
nonleading contribution .

X«y3«y2«yl=1 .

	

(3 .14)

In our gauge the subamplitude h 3 can be obtained by considering all possible
insertions of the softest gluon q3 on the diagrams of fig. 6 . These insertions can be
divided into four general categories :
(i) non-eikonal insertion on the softest internal line Q2,
(ii) non-eikonal insertion on harder lines,
(iii) eikonal insertion on harder lines emitted from eikonal vertices,
(iv) eikonal insertion on harder lines emitted from non-eikonal vertices

(1) Non-eikonal insertion on the softest internal line Qz .

	

This gives a new vertex
Qz --* Q3 + q3, with the Lorentz index structure of fig . 4 . For example, in the case of
fig . 6a this type of insertion gives the diagram of fig . 7a . For all diagrams of fig. 6
this will contribute to the subamplitude h 3 with the momentum factor

2(Q2 - X 2 P ) . E (N3, (g3 ) 71P
21P ' (2Q2 - Q3) rw~3) (Qz, q3) =

	

Qz
z

	

2,qP
(3 .15)

where we have replaced the effective hard vertex V,,(fX)(Q3,P') by q/2qp and
approximated the effective vertex rO31(Qz, q3) for the emission of q3 according to
eq. (2.13) .
From eq . (3.15) we have the following factorized contribution to the soft gluon

emission

2(Qz - X2P)'E03)(g3)
(acb 1b2 b3 1h 3) =gs(acblb2l

	

Q2

	

Tp%~h2) + . . . .

	

(3 .16)

(ii) Non-eikonal insertion on hard lines . An example is given in fig . 7b . All
insertions of this type give nonleading contributions.

(iii) Eikonal insertion on harder lines emitted from eikonal vertices .

	

This refers to
the insertions into figs . 6a, b in which qz is emitted from an eikonal vertex . Let us



consider for instance the diagram of fig. 6a, in which this type of insertion can be
factored out and gives the following soft emission current (k 2 =p - q2, k2 = k2 - q3)

j(a)
(g3) ---
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kgl
2 P gzTl + 2 -

	

Tp
+

	

T2
glg3 k2 P93 g2g3

2

+

I

1-
k2 z )kg3 (-Tp+T2) E(q3)* (3 .17)

The first term is the eikonal emission from ql . The second term with the brackets
corresponds to the emission from external gluons p, qz and the factor k2 k2z is
needed in order to reconstruct the original subamplitude h~) in fig . 6a . The third
term corresponds to insertion of q3 on the internal line k 2 which, according to
charge conservation, has the colour charge Tkz = - Tp + T2 . As shown in ref. [13], at
the leading collinear level, the last two contributions can be replaced just by the sum
of the eikonal currents for the emission of q3 from external gluons p and q2 with no
resealing of internal momenta . We have then

j(a)
(g2) = Je(i k)(g3)

qzP -4- q,
Tl +

pq3 p glg3

	

g2g3
- E(q3)* (3 .18)

The reason for the above approximation is a coherent effect . When q3 is parallel to
k2 we have k2z = kz since q3 is the softest gluon . In this case the last term in eq .
(3.17) can be neglected, the factor of momentum resealing in the second term is 1
and we obtain eq . (3.18) . In the opposite case p and q2 can be considered nearly
parallel at the leading collinear level and we have l k2z 1 >> I k2 1 = 0. It follows that
the second term in eq . (3.17) can be neglected and the last one becomes

k2
( -Tp+T2)=~-

P
Tp+

	

gz T2 ~

	

(3 .19)
k2g3

	

pq3 g2g3

thus leading again to eq . (3.18) . A similar result holds also for fig . 6b .
(iv) Eikonal insertions on harder lines emitted from non-eikonal vertices .

	

This
refers to insertions on fig . 6c in which q2 is emitted from non-eikonal vertex .
Considering the soft emission of q3 from all harder lines in fig . 6c we can factorize
the following expression (Qi = Ql - q3)

d(Ql) - E(g2)

z
+

	

Q12

	

_p
Tp+

	

il,
Tl

.E(q3)
Ql [ M

	

M3 ]

	

,

+~(1

- Q1
z
) Q1

.
Q1'73 )

(-Tp + T1)~

d(Q1)'E(g2)

d(Q1)'E(gz) (3 .20)
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Qh�,

	

Qh,,._i

	

qhl

3.3 . GENERAL LEADING AMPLITUDES

Fig . 8 . Structure of diagrams giving the leading contributions to the general amplitude .

The first term corresponds to the emission from qZ ; the second one to the emission
from p and q, and the last one corresponds to the emission from the internal hard
line Q, with colour charge TQ, = - Tp + T, . The expression in eq . (3 .20) is similar to
the one in eq . (3.17) . We can apply the same analysis and by coherence we obtain

F(c) = Jeik
) (g3)d(Qi) ' E(qz) ,

	

(3 .21)

where the quantity d(Q,) - E(q2) is needed to reconstruct the original subamplitude
h2(c) of fig . 6c .
Combining all these contributions we obtain the soft emission formulae (3.3) and

(3.4) for the n = 3 case .

Here we give the general proof by iteration of eqs . (3.3) and (3.4) . First we show
that in the phase space region (2.5) the leading diagrams have the structure in fig . 8 .
In this figure we denote by q,, the hardest gluon emitted within the subgraph Aj .
Other specific features are the following :
(i) As indicated, the Lorentz index of qt, is saturated by the Lorentz index of p .
(ii) The Lorentz index of the gluon q,, . is saturated within the vertex pf , -~ p/ +
kj _, .
(iii) The soft emission from the various subamplitudes Ao . . . A m is of eikonal type
only .
The above helicity structure can be proved by an iterative method. We suppose

that this structure holds for a graph with a given number (n - 1) of emitted gluons
and then we analyze all possible insertions of a softer gluon qn (xn << yn << y,) .
Due to the simplifications discussed in the n = 2,3 cases, we have to consider only

the following categories of insertions :
(i) Non-eikonal insertions on the softest internal line Q n _, .

	

In this case we can
follow the calculation for n = 3 in eq. (3 .15) and reconstruct the original subampli-
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tude h n , by factorizing the soft current contribution of non-eikonal type Jne(Q,, q� )
given in eq . (3 .5) .
(ii) Non-eikonal insertions on harder lines .

	

These are of the type of fig . 7b and can
be neglected in general .
(iii) Eikonal insertion on harder lines .

	

Consider first the eikonal insertions of the
softest gluon n on the last subgraph A m . It is known [13] that all these insertions
can be factorized in terms of eikonal current emission

_ _ gi (gn)J~An>>(gn) Jeik (qn) - L

	

T.

	

(3 .22)
iEA �, giqn

Consider now the sum of the insertions on the line p, pm

	

k,,,

	

and on the
next eikonal subgraph A m - 1 . For insertions on Am _ 1 and km - 1 we can use the
approximations in the previous subsection . As in eq. (3.20) we can factorize
the expression

F

	

-

	

I 1

	

P;n2 )

	

-

	

TPm j ( d l Pm ) ' E l gh,� ) )
Pm 1q �

X(d(Pm)'E(ghm)),

where Tpm_ , and Tpm are the colour charges of lines p._i
Pm-i = pm-i - qn . Using colour conservation we have

F (A,, 1)-(d(Pm)'E(gh~))

Pm-l' E(gn)
TP~, -, - Jeik ",

-1) (gn )
Pm- lgn

Tpm-1 = Tpm +

	

Y"

	

T, .
iEA~-1

(3 .23)

and pm , and p;� = p n - qn,

(3 .24)

The factors ph,/Pn,2 and (1 - pn/pm2), etc. are set in order to reconstruct the full
subamplitude h._1 (apart from the factor d(pm) E(qh,) which is included in eq .
(3.23)) .
Eq . (3.23) has the same structure of eq . (3 .20) and as in the previous case, we have

Pm-i Pm-l'El gn)
J(ikm-1~(9n) -

I
1 -

	

,2

	

TP-1}

	

(3 .25)
PM

) P»'-lgn

where the factor d(p.) - E (qh-) allows one to complete the reconstruction of the full



3 8

	

S. Catani et al. / Perturbative QCD

original subamplitude hn - 1 . The current J,;km-t)(qn) contributes to the eikonal part
of the total current . The remaining soft current contribution,

Pm
z
-1

	

Pm-1 " E(gn)

1I

	

Pm 1 )

	

Pn,-lqn

	

r°-'

can be added to the insertion of gluon n on p,n _z, km _z and Am-2 to obtain
PA-2) given by eq . (3 .25) with m - m - 1 . Continuing this procedure down the
ladder of fig . 8 we always reconstruct the original amplitude hn - 1 and factor out the
eikonal emission current Jé~')(gn) from all eikonal subgraphs Am, Ao'
The remaining term in eq. (3.26) for m = 0 is now the contribution from the
insertion of gluon n on the incoming gluon p .
In conclusion from the iterative analysis of all these insertions we have shown

that (i) the structure of the dominant diagrams (in our gauge) is given in fig . 8, (u)
the factorization of soft emission gives the recurrence relation (3 .3), (iii) the soft
current has the form (3 .4) .
As shown in ref . [13] one can explicitly check that, in our approximation, charge

and current are conserved .

4 . Soft gluon coherence for x -> 0 : tree level distributions

In this section we solve the recurrence relation as in eqs . (3 .1) and (3 .3) and
compute the leading contribution of I Mn`ree) I z, the spin and colour average square
amplitude at tree level . We then analyze the structure of coherence of soft gluon
radiation emitted in initial jets for small x and compute the gluon structure
function at tree level .
Let us recall the main differences between the two cases x - 0 and x - 1. First

we have that in the case x - 0 the total soft current (3.4) contains an additional
contribution of non-eikonal type . The second difference is in the recurrence rela-
tion : for x - 1, it holds directly for the full amplitude Mn (see eq . (2.22)) ; while for
x -> 0 it holds for the subamplitude h n (see (3.3)) . This subamplitude is obtained by
factorizing the effective hard vertex in eq . (2.10) and therefore the multi-gluon
distribution for x -> 0 is given by

1 4

	

r

	

\IMhi tree)I2=

Xz Qn~h"~PP~gl " ' . qn)Ih n\PP/gl " . . qn)/

2

x
z Q z \ h n-ll`Jtot -1) ( gn))Z l hn

n

(3 .26)



We shall show that the role of these differences is the following :
(i) The factor 1/x 2 from the hard vertex gives rise to the contribution in the
Altarelli-Parisi splitting function which becomes singular as a fast gluon is emitted .
( 11) The non-eikonal term in the total soft current has the role of compensating the
singular factor 1/Q,' from the effective vertex . In general we find that there are no
leading mass singularities in spacelike momenta . This fact, as pointed out in ref .
[2,61 from a one-loop analysis, is an important consequence of coherence in the
region x - 0 . As we shall see, this cancellation is based on the remarkable result

valid in the energy ordered region (2.5) .
By iterating eq . (4.2), all mass singularities of spacelike legs Qk = p - ql - - - -

- qk , k >_ 2 are cancelled and the recurrence relation for the squared amplitudes
(4.1) involves only the eikonal currents . Therefore we find the important result that,
to leading order, the structure of coherence in initial jets for the two regions x - 0
and x - 1 is similar . In particular, as we shall explicitly show, the soft gluon
emission takes place in the angular ordered region

where Bpv ; is the angle between p and q i .
The disappearance of all 1/Qj (j >_ 2) pole contributions in

	

Mn
z has been

observed [15] in the exact calculations up to n = 3 . Beside extending this feature for
any values of n to leading order, our analysis provides an insight into the physical
origin of this cancellation : soft gluon coherence .

4 .1 . SQUARED AMPLITUDES

Because of eq. (4 .2), the multi-gluon distribution for the x - 0 case can be
computed by the same techniques used for the x - 1 case .
We start by proving eq . (4.2) . The total soft current in eq . (3 .4) can be written as

with
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z
(n-1)

	

\ 2

	

Qn

	

(n_1)

	

2
(Jtot

	

(gnl) -
Qn-1

(Jeik

	

(gn)) ,

Op q, >> . . .

	

> Bpq2 >> 0pgt '

	

(4 .3)

(4 .2)

n-1
Jtôi-1'(qn) _ - (jp(gn) -jQJgn))TP + Y (jl(gn) -jQ�(gn))T1, (4 .4)

l=1

jp (qn)
P gl= = =

P,, jl(gn)
, jp, (gn) , (4 .5)

pqn glgn p gn

1
JQJ gn)

r
-

z +
Qn-1 p'gn

(Qn 2pgnxn-1) + 2(Qn-1 xn-lp) (4.6)
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The current jQ,r(q � ) is obtained from

with Qn = Qn-1 - qn, xn = xn-1 - Yn and we used the charge conservation in eq .
(2.20) .
Eq. (4.2) can be obtained by using the following two results :

(i) In the semi-hard phase space region (2.5), the first term of the quantity

(jt(gn)-jQ�(q,,))2

1 2
- -

	

2

	

{YtQn + 2Yngt (Qn-1 - xn-1P) + 2Pgnxn-IYI - 2 gtgnYn } ,
Q»-1 Y,,gtgn

dominates and we obtain

Jne(Qn , qn) +jp'(gn) rp' _jQn(gn) Tp' I

(j1 -jQn ) 2= -
Qn 2 Yt Qn

	

2
2

	

2

	

( il

	

jp')

	

,
Qn-1 Yngtgn

	

Qn-1

where, in the currents, the qn dependence is understood .
(ii) Moreover for x ~ 0 we have

(jt - jQn)(jt' -jQn) = 1 {(jt - jQ
n) 2

+(jt' - jQn) 2- (jt - jt') 2 }

(4.7)

(4 .8)

(4.9)

(4 .10)

This is due to the fact that in the region (2.5) the coefficient of the Qn -> 0
singularity vanishes for qn --P or qn -- qr and one has Qn - Qn-1.
By using eqs . (4.9) and (4.10) we get

- (`GQn-1)(jt jp')(jt'

	

jp') .

	

(4.11)V

At this point we insert eqs . (4.9), (4.10) and (4.11) into the square of J,(r-')(q,)
given in eq . (4.4) and obtain the result in eq . (4.2) .

In view of the discussion in sect. 6 it is useful to recall here the main points
needed to obtain the multi-gluon distributions and to prove the coherence property
leading to eq . (4.3) . We follow the method of ref . [13] . In general the colour
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amplitudes can be written as follows (see also ref . [15])

(acbl . . . bnlhni =

	

Y, hn( Pgl( , . . . gt~)2Tr(A°Àblo . . . Xb'") ,

	

(4.12)

where the sum is over permutations 10 , . . . ' I n with q0 = p', bo = c. By performing the
colour algebra one has (uo = (N2 - 1))

with the initial condition

The

(h,,Ihn % =ao(
2A)n

~. Ih,,(Pglo . . .qtn ) I 2 ,

	

CA=Ne .

	

(4.13)
+1

Here we have neglected terms which are doubly suppressed (see ref. [13]) since they
are nonleading collinear and nonplanar (suppressed by 1/N,2 ) . These terms are
absent up to n = 3 . One uses eqs . (3 .3) and (4.2) to obtain a recurrence relation for
the colour component in eq. (4.12)

1

	

z gs
-_ Ihn( . . .glq,,gl- .)(

	

=- ~ 2

	

Ihn-1( . . .glgl' .
n

	

`Ln-1

1

	

z_ 1

	

z g_	z
Qi

Ih1(PP'g1)I

	

Qi
Ih1(Pg1P')

	

= 4 (Jp(gl)-Jp,(g1))

	

(4.15)

solution of this equation is obtained in ref. [13] . We find

n
(tree) 2 _

	

(gs CA
I Mn - QO x 2 Wn(Pgl o . . . gt

n ~n+t

where W� is the multi-eikonal distribution

)12(
Jl(gn) -Jr(gn))2 (4 .14)

(4.16)

(PP~)2
Wn(Pglo . . .glR ) =

(Pglo) . . .(qhP)'

	

(4.17)

introduced in ref. [2].
The multi-gluon distribution (4.16) although computed for x - 0, can be assumed

to be valid also for x - 1 . As previously mentioned, this is due to the observation
that if we extrapolate (4.16) into the region x - 1, the resulting distributions match
the ones obtained here (see ref. [2]) . We then assume eq . (4.16) to be valid for any
value of x . In the resulting multi-gluon distributions we do not take into account in
a reliable way the intermediate regions y; << x << y; 1 which, however, are nonlead-
ing both for x - 0 and x - 1 .
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The expression in eq . (4.16) has been obtained in the y-ordered region yi << yi_ 1 .

Notice however that jM� "ee> 12 is symmetric with respect to the emitted gluons .
Therefore, eq . (4.16) is valid in any y-ordered region and, as in the x - 1 case, the
spacelike branching takes place in the ordered angular region (4.3) . To show this
one has to discuss the structure of collinear singularities of M� tree) 2 . The collinear
singularities in op ' gk = 0 and Bgk9k , = 0 are relevant for the analysis of final state
branching . Since we are interested in the initial state branching, we limit our
following analysis to the BPgk = 0 singular terms.

It is convenient to express the multi-eikonal distribution in the following form

Wn(P11 . . . 1kP'1k+l* . .ln) = WPP,

where WPQ (q!,) is the usual eikonal distribution for the emission of q!' from the two
charges p and ql

By introducing the angular variables

we can write

WPq,(gl') = (Pgl)l(Pql')(ql'ql) .

giqj

	

_ 12

wiwj

	

i i'

pqj

	

(1 - cos 0P9r ) = 2
102
P9;

	

q2_

	

_

	

2w2

	

~ 4.20i

	

'

	

it =

	

i iEw i

1

	

1
ca1,WP9,(q!') -

t 1

	

+

	

(4 .21)

where the last expression is obtained by performing the azimuthal integrations (see
refs . [8,101) . The initial state singularities are then given by

-
(

n

	

1
Wn(P 11 . . . 1kp'1k+1' . . 1n)

1

where W are angular ordering theta-functions

k-1

	

n

(glk)WPP , (qlk +,) Fl WP9t; +t (ql;) H WP9r;_1(q!;),i=1

	

i=k+2

k-1

eIk . . . = M 194l;+, - ti;) ~
1

(4.18)

(4.19)

19i . . .r~k+t . . .l � + . .

	

(4.22)

(4.23)



and the dots in eq . (4.22) correspond to collinear singular terms for Bp,q, - 0 and
0q,q - 0 .

Finally, summing over all permutations in eq . (4.16), we obtain the initial state
radiation distribution

4 .2 . THE STRUCTURE FUNCTION (TREE LEVEL)
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2 \2ôsCA)n n 1
M(tree)

	

- 00 -n

	

2

	

Y_ 1_1

	

2

	

0
t � . . .ll

+

	

. . .

	

.
xn ,_ 1 W%

We compute here the contributions to the structure function obtained from eq .
(4.24) . For a given distribution IMn 12 we have

n

ao F(Q,x) = QO8(I-x)+r 1, f II(dgi)0(Q - git)IMnI2s(1-
x

)> (4.25)
n n . i=1

	

xn

where

	

(dq,) =

	

d 3 q'

	

3 ,

	

(4 .26)
2co;(27)

and, as discussed in the introduction, we integrate over the region qi t < Q only .
Taking into account only the initial state collinear singularities in eq . (4.24), we have

we obtain

F 00(tree)tQ,x)
- S(1-x)+ Y, f

	

d e dYi
al

	

s
»=1 i=1 ~i Yi

x0(Q-git)xns(1-
nlOn. . . .,2,i>

where ii, = Ca,,/7T and x � = 1 - yl - - - - - yn . Introducing the energy fractions

xj = ZIZ2 . . . zj ,

	

xn = ZI Z 2 . . . Z n

	

Yi = xi-i(1 - zi) ,

	

(4 .28)

F(tree)(Q x ) = 8(1 _ x) + E
oc

	

ilf FI di dz;
a,

P(zi)O(Q - qit)
n=1 1=1 ei 27

(4.24)

(4.27)

x8(x-zl . . .zn)0n_ .,2,i,

	

(4.29)

2C, 1 1
where

	

P(Z) =

	

=2C, ( - +

	

) ,

	

(4 .30)z(1-z) z 1-z

is the sum of the two singular contributions for z -> 0,1 of the Altarelli-Parisi
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splitting function for gluon emission

1 1
P,(z) = 2C,,(+-

z 1-z

The finite terms in Pg , i .e . -2 + z(1 - z), are not obtained in our analysis . As noted
before this is due to the fact that we do not take reliably into account the subleading
energy regions with y; « x «y.
The tree approximation (4.29) of the structure function contains infrared singular-

ities for z - 1 which should be regularized by appropriate virtual corrections
corresponding to the Sudakov form factor . Moreover, as recalled in the introduc-
tion, the anomalous dimension for N -> 1 computed from this tree expression shows
leading singularities of the type as/(N-1)Z"-1 which should be cancelled by
virtual corrections . The virtual contributions are computed in the next section.

5 . Virtual contributions and form factors

-2+z(1-z)) . (4 .31)

In the present section we show that, as in the soft emission current for x - 0, in
the virtual corrections there are two types of contributions as well, the eikonal and
the non-eikonal one . The eikonal one leads to the Sudakov form factor which, as
usual, regularizes the soft gluon emission singularities. The non-eikonal one leads to
a non-Sudakov form factor which regularizes the collinear singularities when a
relatively fast gluon is emitted parallel to the incoming parton .
We compute virtual corrections by using the method of refs . [11,12] . In each

virtual loop one of the integrals is evaluated by the residue theorem, i .e . by putting
on-shell a gluon in the loop . The complex plane contours can be selected in such a
way that the on-shell gluon corresponds to the soft momentum in the loop . This
method is equivalent to compute the virtual corrections by considering all possible
diagrams in which an on-shell soft gluon is emitted and absorbed. In this way the
virtual corrections are evaluated by a technique which is very similar to the one
previously used to compute the real emission diagrams. We have the advantage that
the approximations we use in the evaluation of real and virtual contributions are the
same.

Before entering into technical details, it may be useful to summarize here the
main points of the method and the main results. We consider the virtual corrections
to the multi-gluon amplitude M.1tree) obtained in sect . 3 in the semi-hard y-ordered
region relevant for the x -> 0 analysis

x«yn «yn 1 « --- «yi -1 .

	

(5 .1)

We divide the phase space of momenta q of the on-shell virtual gluons in two
regions, of which (i) q is softer (0 < y « y,) or (ii) q is harder (y, « y) than the
softest external gluon n . We consider separately these regions .



(1) On-shell virtual gluons softer than all external gluons .

	

We show that all these
corrections factorize and they can be summed by exponentiation as follows

where h n is the subamplitude with all virtual corrections included to leading order.
In the subamplitude hn we include all virtual corrections which are in region (ii) .
The two form factors are obtained from eikonal and non-eikonal virtual contribu-
tions .
The Sudakov form factor S(jk ) ( yn,0) is given by the following y-ordered colour

matrix function

This form factor is well known from the analysis of the region x - 1 (see for
instance refs . [11,12]) : it sums all virtual corrections in which gluons q" are emitted
and absorbed from harder external and internal lines with eikonal vertices . The
y-range of integration implies that this form factor sums any number of virtual
on-shell gluons in region (i) .
The non-Sudakov form factor Sne(yn , xn > Qnt) sums all virtual corrections in

which the on-shell gluons q" are emitted from the internal line Qn which is softer
than q for x n < y. This contribution is analogous to the non-eikonal real emission
described by the soft current Jne . Actually we find that this virtual correction can be
expressed in terms of a product of Jne(Q., 4) (emission from Qn) and Je;k'(4)
(emission from harder external partons) . Also these corrections factorize and can be
summed by exponentiation . By using colour conservation we show that the corre-
sponding non-Sudakov form factor is diagonal in colour and given by

Sne(Yn, xn, Qnt) = CXp

S. Catani et al. / Perturbative QCD

	

45

I hni = S~k'(Yn, 0)Sne(Yn , xn , Qnt)Ihn% 1

	

(5 .2)

(

	

v
SZ(Yn,0) =Py(exp 2 s

	

(dq) ( Jé

	

2
;

0

=1+ Zgsfy( d9)
(
JU'(4))zs~k'(Y,0)-

	

(s.3)

/' vrt dy dq~I
n

	

y

	

qI

	

O(qt - Qnt)
a'C'

(5 .4)

where Qnt is the total transverse momentum of emitted gluons .
(ii) On-shell virtual gluons harder than the softest external gluon .

	

Since qn is the
softest momentum, before computing the virtual corrections to the subamplitude hn
in eq . (5.2), we evaluate the contribution from the emission of the external gluon n.
This is achieved by factorizing the total emission current Jc(.i-1)(qn) as in sect . 3 .
After the emission of gluon n the virtual corrections due to gluons q with y << yn _ i
can be computed as in the previous region (i) and one obtains the following
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recurrence relation

(acb1 . . . b� 1h n )

- S,(acbl . . . bn_1lJtôt-1)b- (gn)`Seik-1) ( .yn-1
,
yn)Sne( .yn-1~ .yn 5 Qn-lt)Ihn-1)

(5 .5)

where by definition 4, = hit...) as given in eq. (3.2) . The Sudakov and non-Sudakov
form factors in eq. (5 .5) are defined as in eqs . (5 .3) and (5.4) .

Before proving the general results in eqs . (5 .2) and (5.5) we describe the main
features of the virtual corrections for n = 1, 2 .

5.1 . VIRTUAL CORRECTIONS IN h1

We evaluate here the leading order virtual corrections to h 1 by starting with a
detailed discussion of the one-loop contribution . Then the resummation of the
virtual corrections for all loops will be performed by showing their exponentiation .

5.1 .1 . One-loop corrections .

	

As previously discussed, the order as virtual correc-
tions to the diagram in fig. 3a are given by the insertion of an on-shell soft gluon of
momentum q, with y = (qp)/(pp) and qi = 2pqy . The leading contribution is
obtained for q soft (0 <y << y1 -- 1) and we have to consider the diagrams of fig . 9 .
We divide them into two groups : diagrams in which the soft gluon q is emitted and
absorbed from two eikonal vertices (figs . 9a-f) and diagrams with one eikonal and
one non-eikonal vertex (figs . 9g-h) . Notice that the non-eikonal soft energy diagram
of fig . 91 is nonleading . Let us discuss them separately .

(a) Eikonal-eikonal contributions . The diagrams of figs . 9a-c, in which only
harder lines are involved, give leading contributions in the full region 0 <y << y1 = 1 .
The corresponding corrections to the tree subamplitude h (tree) can be computed as
in sect . 3 and they factorize in the form

d 3

Ihi1) )eik =

	

zgsfout(dq) ~J~k)(q)) Z1 lhitree) (1>> tll)> >

	

(dq) ° 2w(2?t)3 '

	

(5 .6)

where J(jk)(q) is the eikonal current in eq . (3.8) for the emission of the soft gluon q
from p and q,

Eikonal diagrams of fig . 9d-f, in which the soft gluon is emitted from the internal
line Q1 , give a nonleading collinear contribution . This is due to coherence : as
Qi ~ 0 the external gluons p and q l become parallel and eikonal insertions on p
and ql become the same as the insertion on Q1 .

(b) Non-eikonal-eikonal contributions .

	

The diagrams of figs . 9g-h, in which q is
emitted from the internal line Ql with non-eikonal vertex, give leading contribu-
tions only in the region xl << y << y1 - 1 . The virtual corrections to the subampli-
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1
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q1
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Qß-1 ~_,-)4 P

	

Q1

	

P

(d)

	

(e)

	

(.f)

qt

	

qt

f

	

~1(2q+ Qi)
~hill )ne = ~ gsJ , ' (dq~

x,

	

2 ,1p

Q1

qt

Fig . 9 . Diagrams of one-loop virtual corrections to the diagram in fig. 3a. The gluon Q in the virtual
loop is on-shell and soft . See discussion in the text and in refs . [11,12] .

tude h (tree) from figs . 9g, h can be computed as in sect . 3 . They factorize in the form

X

	

2
Qi
Qt

)d(Qi)d ( q)I
Pq

Tb

+ qt4 Ti
b
J

	

T''~Ihl
tree> ~

	

(5 .7)

where Qi = Ql - q and we have substituted the effective hard vertex with n/(2,1p) .
In order to find the way to generalize this result it is useful to notice that this

expression can be written in terms of the effective vertex T(Qi, q), hence in terms of
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the soft non-eikonal current introduced in sect. 3 . This is obtained by writing the
gluon polarization d(q) as in eq . (2 .8) and by taking the leading term of F(Qi, q)

(see eq . (2.13)) . We have then

where

is

	

the non-eikonal soft current we have introduced in sect .

	

3 (Qi = Q i - q,

xi = xl - Y) .
To evaluate eq . (5 .8), notice that for xl << y << yl -- 1 we have

Finally

where qt is the transverse momentum of q with respect to p, and q' is the transverse
momentum of q with respect to q l

qt'- qt - yqu ,

	

qi = 2 pgy ,,

	

q12
= 2 giqy

Y~

	

Yi

Q12 = (Qt+q)2 =- (Q
I
t+qt)2+q2 -- (QIt-q')2+qt2 . (5 .12)

We find therefore that the two contributions of figs . 9g, h give approximately the
same functions of q t and q' respectively . We get

a s

	

vt_

	

dy

	

d 2gt

	

(Qit - qt) - qt 1 (T+T1 )

	

Tp'
fxt

	

Y

	

f7Tq~

	

( Qlc - q,) 2 _
qt

	

p

d 2gt

	

(Qic - qt) - qt

	

1

	

dqt o(qt - Qj t )
f 7Tgi

	

( Q1t - qt) 2 - qi

	

- 2 f q t

2

Ihil)ine= zis

	

v, dY

	

dqt
p(qt - Qjc)Ih (tree) if- 1 Yfgt

a s =
a,CA

I h (tree) \ .

	

(5 .13)

By using the colour singlet condition Tp = Ti - Tp, this contribution is diagonal in
colour (p2 = CA) . Performing the angular integration we obtain

(5 .14)

1 p _
-

QI77,2
--(2p QI~) d(Qi' )d(q)

pq

4 ( Qit + qt) - qt

qi (Qlt
,

+ qt)
2
- qt

1
Qi2(2p-Qi)d(Qi)d(q)giq

_ql _ 4 ( Qlc + 9i) - qi_
qt 2 (Qit+qi) 2- q 12, (5 .10)

I a
1 =ne

g
s f

yt (dq)(Jne (Q1 , q)J (jeikl)(q))}Ih (tree)\
1 , (5 .8)l

xt

2(Qi - xip)E(q)
Jne(Q1, q) = Q,2 Tp , ,

i
(5 .9)



In conclusion the complete one-loop virtual correction to leading order is

5.1.2 Exponentiation . In order to compute virtual corrections to order as we
have to consider the diagram of fig . 3a in which n on shell virtual gluons, 4142 . . . 4,
are emitted-absorbed in all possible ways . To evaluate the leading contributions of
these we study the following strongly ordered integration region in the virtual loops

q1

q1
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s fl
1
t(dq)\Jik)(~11)2+2asJ_

	

Ytdy
J

	

qqt
O(qt-Qlt)

0

	

xt

Yn«Yn-1« - . . «Y1«YI-I,
-2where

	

(4;p)/(pp) and 4t = 2(4;p)yj . Note that for the case of h l , all virtual
on-shell gluons are in region (i) previously introduced . In the ordered region (5 .17)
we can recursively apply the soft gluon technique [2,13] to obtain the exponentia-
tion of (5 .16) . We start from the softest gluon 4. and consider all possible diagrams
in which 4,, can be emitted and absorbed. As in the previous subsection, the leading
diagrams can be divided into two groups : (a) Eikonal-eikonal diagrams in which 4n
is emitted and absorbed with eikonal vertices only (see figs . 9a-f and 10a, b), (b)
Non-eikonal-eikonal diagrams in which 4,, is emitted from Q1 with non-eikonal
vertex and absorbed from harder lines with eikonal vertices (see figs . 9g-,.' and fig .
10c) .

41

0

O___w- i .

Q1 +
~Î2 P C

q1

I h (tree)) .

	

(516)

qt

(5 .17)

Fig . 10 . Examples of two-loop virtual corrections to the diagram in fig . 3a . The on-shell gluons in the
virtual loops are ordered in energy .
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By using the soft gluon technique of sect . 3, we obtain that both virtual
corrections factorize and, as in eqs . (5.6) and (5.8), we find

z

	

l
5
fw~~- ' (dqn) (Jeik) (~ln)) 2 + zas.f in-1

dY f qqt
0 (qc - Qit) t1hin-1)i .

(5 .18)

This equation has a recurrence structure which allows us to sum all leading virtual
corrections by exponentiation of the one-loop result [11,12] . The complete leading
virtual contributions to h l are then given by

I hi) - aS (1) (Yi, O)Sae(Yi , xv Qlt) Ihh
ltree)

eik

	

\ . (5 .19)

Here Se is the non-Sudakov form factor in eq . (5.4), which is obtained by
exponentiation of one-loop correction in eq . (5 .15) and S (yi, 0) is Sudakov form1

factor given by the y-ordering colour matrix function in eq . (5 .3) .
At the end of this section we explicitly evaluate the full amplitude h l by

diagonalizing the eikonal form factor .

5.2 . VIRTUAL CORRECTIONS TO h z

In order to develop the method to compute the complete leading virtual correc-
tion to the general amplitude h � we analyze here the case of h 2 which, in the
ordered region

X«Y2«y1=1,

	

(5 .20)

is given, at tree level, by the diagrams in fig. 6 .
As in the previous subsection we consider on-shell virtual gluons emitted and

absorbed in all possible ways . In order to apply the soft gluon techniques for each
virtual gluon q, we have to consider the following two regions

R(2) :

	

y «y 2 ,

	

R(l ) : Y2«Y«yl=1, (5.21)

with y=(gP)l(PP) and q2 = 2(Pq)Y .
5.2.1 . Region R( 2 ) . Let us consider first the one-loop corrections in which the

on-shell virtual gluon q is softer than q2 . As before, we have diagrams with
eikonal-eikonal or non-eikonal-eikonal types of vertices . Both contributions factor-
ize giving

Ih21)~ - {zg5f v (dq)(J,ii) (q)) 2 +gsf
Y2
(dq)(Jek(q)Jne(QZ>q))

11h2`ree) ) .
0

	

XZ

(5 .22)
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The first term corresponds to the eikonal emission of soft gluon q from the harder
external lines p, ql and q2 . The second term corresponds to the non-eikonal
emission from the internal leg Q2 and takes contribution only for x2 <Y' It can be
explicitly evaluated by using the approximation in eq . (5 .11) and gives

S gs f (dq) (Je(i k) (q)Jne(Q2, q)) }jh2ree))
x

	

1llz

- ~«s
f

t'zdy fd2gt ~ (Q2t+gt)'gt

)

	

z
(Tn_Tl_Tz)'Tp,77

	

sY

	

77qz

	

t

	

(Q2t + qt

	

- qt ]

where Q2t - - 91 t - qzt . As in the case of h l , the eikonal emission of q from the
external legs p, ql and q2 gives, after integration, the same momentum factor . By
using the colour singlet condition Tp = Tp , + Ti + T2 , (5 .23) is diagonal in colour .
The final one-loop result for the virtual correction in the region R( 2 ) is

-	d

	

d z
~h21))

	

~gsf1z(dq)(Jeizk(q))z+ ZâsfVZ

	

Yf
qt

~(qt-Qzt)0

	

xz Y

	

qt

Consider now the contributions with n on-shell virtual gluons ql . . . qn all in the
region R(2) (yi «Y2). The leading terms can be summed by exponentiating the
one-loop result in eq. (5 .24) and the complete virtual corrections in region R(2) are
given by

jh2) - `S
e(2) (Y2 ,0)Sne(Y2, x2, Q2t)1hz) ,

1h (tree))

	

(5 .23)

Ih (
2
tree)) .

	

(5 .24)

(5 .25)

The form factors are given in eqs . (5 .3) and (5.4) . In eq . (5 .25) the subamplitude h z
involves virtual corrections only in the harder region of phase space Rcl) we are now
going to compute .
5.2.2 . Region Rcl) .

	

In order to evaluate the virtual corrections to h2 we consider
the case in which the on-shell virtual gluons ql . . . q""� are all in region RM, i .e.
Y2 << Y`; << yi , In this case the emitted gluon q2 is the softest one and has to be
factorized before computing the harder virtual corrections . This can be achieved by
using the recurrence relation of sect . 3 which at tree level is

(acblb21h (
2
ttee) (Pglq2)) - gs( acbllJtoli~Z (gz)Ihltree)(Pql))

	

(5 .26)

The virtual corrections in the region y2 << Y`; << yl affect only the subamplitudehlt"e) and are given by eq . (5.19) . In conclusion the complete virtual corrections in
the region R(1) are given by the recurrence relation

(acblb2 1 hz) = gs< acbl
1 Jt(I )bz (g2)Sik)(Y>, Yz)Sne(Yl, Yz> Qlt) j h ( tree) (P, ql)) >

(5 .27)
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where Qlt is the transverse momentum of Q 1 = p - q, Notice the arguments of the
matrix eikonal form factor which implies that virtual corrections here take place
only in the region y2 << yl << yl . This form factor is then given by eq . (5 .3) with y
restricted to the interval (y l , y2) .

5 .3 . VIRTUAL CORRECTIONS TO THE GENERAL AMPLITUDE

By generalizing the analysis of the case h2, one can develop a method to compute
the leading virtual corrections for the general case . The strategy is the one antici-
pated at the beginning of this section . We consider the multi-gluon amplitude hn in
the energy ordered region (5.1) . As in the case n = 2 we consider the various phase
space regions for on-shell gluons q in the virtual loops

R(n) :

	

0<y«yn ,

R(i): yj +1 «y« yJ ,

	

j=1,2, . . .,n-1 .

	

(5 .28)

Let us start from the one-loop virtual correction . When q E R(n ) all external gluons
are harder than gluon q . The eikonal and non-eikonal contributions factorize as in
the cases n = 1,2 and one obtains

Ih i7 ) i - l2 s
fv
~~(dq)(Jk

2
+gs f

y'(d9)(Jeik ) (q)Jne(Qn>q)lll hntree) ) .
J0

	

x �

As before the non-eikonal contribution can be written in the

h(~)

	

as y,dy

	

d2_	qt

	

(Qnt+qt) - qt
n

	

ne

	

I n

	

y

	

qt

	

2

	

2

	

Tp - Tl_

	

l

	

- .
-

	

Ir x

	

~

	

I (Qnt + qt) -qt I\

2la

	

y"dy

	

dqt
0(qt-Qnt)'Ihntree>2

	

)
slxn y qt

form

. . _Tn) ' Tp " Ihn(tree)

77

(5 .29)

(5 .30)

where Qnt is the transverse momentum of the spacelike gluon Qn . Again the
non-eikonal term is diagonal in colour due to charge conservation .
We then consider the contribution from any number of on-shell virtual gluons in

region R(n ) . All these contributions exponentiate as in the n = 1, 2 cases and we
obtain the general expression (5 .2) .
The virtual corrections to h n involve only on-shell virtual gluons which are harder

than qn . Therefore the real emission of gluon n can be factorized as in sect . 3 in
terms of the total soft current Jtot-1)(qn) in eq. (5 .2) .



The virtual corrections to h � are then obtained iteratively . We consider the
on-shell virtual gluons in region R(" -1 ) . These contributions can be factorized and
we find the general recurrence relation in eq . (5 .5) which involves hn 1 . To compute
the virtual corrections in the subamplitude 4.- 1 we iterate the previous procedure.
This iteration stops at ßh 1) =

Ihitree)) .

In conclusion eqs. (5.2) and (5.5) are the recurrence relations for the complete
multi-gluon amplitudes . Virtual corrections and real emission are computed at the
same level of infrared and collinear accuracy . In the next section we perform the
colour algebra and we evaluate the general multi-gluon distributions .
We conclude this section by explicitly evaluating the complete subamplitude h1 .

This requires the diagonalization of the colour matrix eikonal form factor .

5 .4 . COLOUR DIAGONALIZATION OF h 1

By using the fact that the hard probe is a colour singlet we can diagonalize the
matrix Silk) (y, 0) .

Let us start from the one-loop eikonal contribution in eq . (5.6) . By introducing

All virtual corrections to hltree) are diagonal and obtained by exponentiating (5.32) .
To evaluate this more explicitly we introduce the usual angular variables of sect . 4 :
1

---
SPgi,

e --
SPq,

e' -
5gtq

and --_ APP , . Neglecting contributions from collinear
singularities when the soft gluon becomes parallel to the recoiling gluon p', we
obtain

Ih
1
a))eik -

Je(il)(q) = -JP(q)TP +J1(q)Ti+JP, (q)TP, , Jk(q) = klkq, (5 .31)

and by using the colour singlet condition (T. - T1 - TP ,) I hl("")) = 0 we find

I h(1)
-

1 )eik -
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gs
4A f"'(dq)[(J'P(q)-.î1(q))2+ ( .î1(q) -jP-(q))z

+(JP'(q) IP(q))2]

CA

	

2 1

	

1

	

1 1
s
4

f (dq)W2 [_o(e1 -

	

) + -O( 1 -

	

') + ~ +

	

,

Ihitree)) . (5 .32)

I h (tree) )
1

(5 .33)

where we have taken into account that, after taking the average in the azimuthal
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direction we have

For the one-loop virtual corrections we then have

z9s?~t~
'
(dq)(Jéj1) (q)) Z~Ihi

tree)
)

where 0 + indicates the infrared and collinear cutoff .
In conclusion the full virtual correction to h(tree) is given by

Ih() = Seik(Y(> 4) Seik(Y( , e()Sae(Y(, x, Q(t)Ih (tree) (P,
q())

	

(5 .36)

where the eikonal form factors are now diagonal in colour and obtained by
exponentiating the result in eq . (5.35)

0(~(-0+ ' 19(~i - ~)

(	dy' t de'
Seik(y ,

	

) = exp{ - 2

	

f

	

y,

	

f

	

, ~ .

	

(5 .37)

The two form factors Seik(Y(, ~) and Seik(Y(, ~() in eq . (5.36) are the Sudakov form
factors for the incoming and outgoing gluons p and q( respectively . The Sudakov
form factor for gluon q( is integrated with ~ < ~( -_ pgl , This constraint is due to
coherence of QCD radiation and corresponds to the fact that the emission from
gluon q( is bounded into a cone centered around q( with aperture given by ~ < ~( .

6. The initial state radiation distribution

Ih(( tree) )

(5 .34)

(5 .35)

In this section, extending the calculation of sect . 4, we solve the recursive relations
for I M� 1 2 given in eqs . (5.2) and (5.5) . The main new complication is that the
eikonal form factors S(jk) are nondiagonal in colour . However, the colour algebra of
virtual corrections can be performed by the same technique used for the real
emission . We focus our attention on the initial state radiation distributions which
are obtained when one inclusively sums over final state emission . In this way the
singularities for eq,q - 0 and 0,, q - 0 cancel with the corresponding Sudakov form
factors. Therefore we are left only with the singular contributions for Bpq __" 0
together with the corresponding Sudakov and non-Sudakov form factors .
The Sudakov form factors are obtained by recurrent diagonalization of the

various colour matrix eikonal form factors S,k ), k = 1, 2, . . ., n . We will show that
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their contribution to the initial state radiation distribution is very simple and given
by

z l

	

r

	

1 dy_

	

'P de

	

_

	

CAas
Seik\ 1, 4) = expl - asf

	

y

	

J

	

T

	

1

	

as =

	

,

	

(6 .1)

where t corresponds to the maximum available phase space (t- 1) . In the next
section we will show that this form factor regularizes the infrared singularities of the
various emitted gluons .

The non-Sudakov form factors Sne are already diagonal in colour . They depend
on the particular energy ordered region . In the energy ordered region

the full non-eikonal form factor is

x«yn « yn_ 1 « . . . «y 1 -1,

	

(6.2)

_

	

n

Sne(12 . . .n)= Il S,(yi> .yi+1>Qit), y"+1-x,
i=1

6 .1 . THE SOLUTION OF THE RECURRENCE RELATION FOR THE AMPLITUDE

(6.3)

with Qit the transverse momentum of Qi =p- q1 - - - - - qi .
The complete result for the initial state radiation distribution in the phase space

(6.2), is presented in eq. (6.25) . Integrating these distributions, we obtain the
structure function (see eq. (6 .26)).

In contrast with the tree level case, the distribution in eq . (6.25) is not symmetric
under the exchange of emitted gluons . The analysis of coherence of radiation, i.e.
the angular ordering structure, is then more complex than in the tree approximation .
This analysis is performed in the next section .
We refer to appendix B for the case of a quark in the initial state .

As for the tree amplitude in sect . 4 we introduce the following ansatz for the
colour decomposition of the partial subamplitude h � defined in eq. (5.2)

(acb1 . . . bjhn) = Y_ hn( p, 10 . . . 1� )2Tr(XaÀbto . . . Xb'°) ,

	

(6 .4)
+t

with the notation of sect . 4 (q o = p',

	

bo = c) . This ansatz can be proved by
induction .
We want to show that, to leading collinear order, this decomposition diagonalizes

the colour matrix eikonal form factors . The key feature is that, to leading collinear
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and 1/N,2 order, one has (ao = N2 - 1, CA = Ne)

where

n

< hn I (Jélk ) (R))2
,
hn%=ao(

2A)

	

Ihn (P,lo . . .l n )I 2In (P,lo . . .l n ),

	

(6.5)
+1

z

In (P, lo . . . ln) = 2CA{(Jp(R) -Jt o(R))

	

+

_P

	

_Rt

	

_ P
JP (R) =

PR

	

JI(R) =
R1R '

	

JP'

	

p'q
.

projection of the colour matrix eikonal form factor and is given by

. . +( j,n (R) -Jp(R))21 ,

	

(6 .6)

\ ( n

	

2
Ch nl hn/ - a0`2CA)

	

(hn(P, lo . . . ln) I Sne Yn , xn> Qnt)

(6 .7)

The proof of eq . (6 .5) is just the same as that of eq . (4 .14) in sect . 4 and corresponds
to the fact (see ref. [13]) that nonplanar corrections are also nonleading collinear.
From eq . (5 .2) we then obtain

x ~S;k)(Yn,0, P, lo - ln)
]
2 ,

	

(6.8)

where Soe is the non-eikonal form factor already diagonal in colour and S k~ is the

S k)(Yn~o
; P"o . . . ln ) = exp

1
Zg,fvn(dq) In(PJO . . . ln)J .

	

(6.9)

From eq. (6 .8) and from the recurrence relation for h n in eq. (5 .5), we obtain now
the corresponding relation for the colour components h n(p, to . . . ln) . From eq . (5 .5)
we have

\ hnl hrt/ -9SSe(Yn-1, Yn, Q(n-l ) t) ( hn-1 I [S~k-1 )(Yn-1, Y")~tJtôi-1 ) (Rn)

XJtôi -1) (Rn)L`ik -1 ) (Yn- 1 , Yn)~ lhn-~%

	

(6 .10)

To evaluate this we recall that, in eq . (6 .2), the total emission current Jt(Y -1)(qn) is
proportional to Je(ik -1)(qn) (cf . eq . (4 .2)) . The colour matrix in eq. (6.10) is then a
functional only of Jerk-1)(qn) . We can repeatedly use eq . (6 .5) to obtain the final
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recurrence relation for the colour components (cf. eq . (4.14) to tree level)

2

	

2

hn( . . .lnl' . . .)1 --
~n

ôs1hn-1( . . .11' . . .)12( .%/(qn)
.%/'(q,) )2

Qn-1

where

Y"-,
Seik -1) (Yn-1,Yn ; . . . Il ' . . . ) = expl2Ssf (dq)In-1( . . .ll' . . .)l . (6 .12)

By ( . . . ll' . . .) we represent the ordered set of momenta obtained from the original
set ( . . . lnl' . . .) by removing the softest momentum qn . The function In - 1 ( . . . ll' . . . )
is obtained from In ( . . . lnl' . . .) in eq. (6 .6) by the replacement

(jl(q) ->� (q))2 + (jn(q) -il'(q))2-.> (jl(q) - Jl'(q)) 2 .

The resealing factor Q21Qn_1 in eq. (6.11) is due to the replacement of Jtot -1) with
Jeik-1) (cf . eq. (4.2)) .
By using the solution of the recurrence relation at tree level in sect . 4 we can solve

(6.11) and obtain the full amplitude (yn+1 -- x)

hn(P ,1 0 . . .ln) = h /7tree) (p ,1 0 . . . ln)IISne(Y/,Y/ +1,Qtt )séi Lot)k (Yn--Yl ;P,10 . . .ln) .
1

The total eikonal form factor is given by

Sr~k`)(Yn, . . . . Yl ; P, lo . . . In)

_ Sek)=expzgslfv,(dq)In+

XSne(Yn-1,Yn,Q(n-1)t)[Seik-1)(Yn-1,Yn> . . .11' . . .), 2,

	

(6 .11)

(6 .13)

(6 .14)

(dq) In-1 + . . . +
f

,
(dq)Ii ,

	

(6 .l5)
Yz J

where Ik is a function of the hardest k + 2 momenta p, p', ql, . . . , q k which is
obtained from In in eq . (6 .6) by successively removing the softest gluons
qn, q n -1, . . ., qk+1 according to eq . (6.13) .
The total eikonal form factor can be further simplified by using the identity

f",
(dq) In ( p, 10 . . . I n ) + . . . + fv' (dq) h(P91P') _

	

J f vk(dq) Ik ,

	

(6.l6)
0

	

Yz

	

k-1 0
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where 10' = 0 and Ik = Ik - Ik_ 1 . We have then that Ik involves only the soft
emission currents of the three gluons qk, q1k and q,k, where q,k (q,k) is the next
gluon harder than q k to the right (left) of q k in the considered permutation . We
have then h= h and for k >, 2

6 .2 . DISTRIBUTIONS

Ik -
2A l (Jtk -Jk

)
2 + (Jk-Jtk)2 _ (Jrk _Jrk)

2
}

Introducing the angular variable ~ of sect . 4 we have

igsf vk(dq)Ik = - '2asf_

	

vkdY
f
-

{19\Sktk-

	

+0(~k,k_

	

~ - 0 (~ikik -	~~
0

	

0+ Y 0+

	

,

and we recover the result of subsect . 5 .4 .

(6 .17)

The calculation at tree level in sect . 4 can now be extended to obtain the complete
distributions. From eq. (6 .14), in the energy ordered region (6.2), we obtain

IM. I 2 =
Cr0(gsCAJn

x2

	

YL Wn(P, I 0 . . . In )
n

n

	

(

	

2
X IlSé(Yk , Yk+r, Qkt) L`Sé t) (Yn> . . ., Yi

;
P, 1 0 . . . l n )~

	

(6.21)

where W,(P, 1 0 . . . 1 n ) is the multi-eikonal distribution in eq . (4.17) .
To analyze the initial state branching and to compute the structure function we

integrate over the final state evolution and we are left only with the singularities for

engk~0, k=1,2, . . .,n .
Recall that in each multi-eikonal distribution W,(p, 10 . . .1 n ) in eq. (4.17) the

initial branching angular variables Bpgk are ordered (cf . eq . (4 .3)) . In each one of

(6.18)

where - =Sk,l = 1 cos B9kgk , etc. For the case k 1 we have instead

1i =I1=2A {(Jp -Ji) z + (Ji -Jp-)
2 + (JP._

Jn)2} (6 .19)

By integration we obtain

zgsfvl(dq)I, = - z«sfvldy f - t19(~,-0+1 }, (6 .20)
0 0+ Y 0+
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these ordered regions the generic term in eq . (6 .16) becomes (k > 2)

_

	

fvk d y

	

~k de
zgs

	

(dd) Ik - - z«SJO ,
y

	

f
0

	

+

This is due to the fact that since gtk(gtk ) are to the right (left) of qk in the
permutation one has either the ordering ep% << op

q'

< Bp9 , k or the opposite one . In
the first case one has Sktk =

	

tktk = t- 1 . Similarly for the other case .
From eqs . (6.20) and (6.22) we have that in each angular ordered region the total

eikonal form factor assumes the symmetric form

_

	

_ n
Sék t) (Yn~ . . .

	

.yl> p, 10 . . . In) = Seik(Y1,

	

) ~Seik(Yk , ek) >
1

where Seik(Y, e) is given by

Finally the gluon structure function is

_

	

(~v dy'

	

e de'
Seik(Y,

	

) - exp~- 2CYsJ
+

y'
J +

ek = 1 - COS BP9k .

	

(6 .22)

(6 .23)

(6 .24)

The various eikonal form factor in eq . (6 .23) have a simple interpretation : the first
one is the Sudakov form factor which will regularize the infrared singularities for the
soft gluon emission of the incoming gluon p (yl - 1) . The form factor Seik(Yk, Sk)
instead regularizes the final state soft emission from gluon qk . Because of coherence
this emission takes place within a cone centered around qk with aperture e < ek . In
the study of initial state branching, we integrate over the successive branching of
emitted gluons k = 1, . . . , n . In this way all the Sudakov form factors Seik(Yk , ek) are
cancelled by the final state singularities for ekj = 0 . In the energy ordered phase
space region (6.2) the distribution of initial state radiation is given by

- ao(2g,CA),

	

n

	

1
z

	

Y-Oi . . .t, 11 z

	

Sne(12 . . . n)S?k (1, ~) +

	

(6 .25)x �

	

Wn

	

1 co kek

" d, d,

	

1
F(Q ,x)=

	

00

Y a5

	

~(
y.

	

)Oz . . ."EOi . . .tzt1HO(Q-qit)-s(xn-x)
� =1 1 Yr r

	

1

	

x

x Seik(1 , ~)Sné(12 . . . n),

	

(6 .26)

where Oiz . .,n is the energy ordering theta-function corresponding to the region (6.2)
and W is the angular ordering theta-function in the region

>> etrt >> . . . >> e ll
,

	

(6 .27)
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where

	

is the maximum available phase space value

	

- 1 . As discussed in the
introduction we define the structure function by integrating qit up to Q, where qit is
the transverse momentum of gluon i and is given by

q =2(EYi)z~i

	

(6 .28)it

	

*

Recall that in the total cross section of deep inelastic process, the kinematical
boundary for qit is given by q< < Q Z1x. In defining the structure function we do
not include the region of qit in the range (Q z, QZ/x), which corresponds to a
Drell-Yan emission of hard jets with transverse momentum larger than the probe
Q. Such processes with two different hard scales have to be analyzed in an
independent way . Notice that, from the factorization theorem, the structure func-
tion here defined, i .e . with the transverse momenta restricted to qit < ET, provides a
complete description of high ET jet emission in pp collisions .

7 . The structure function and initial state branching

In this section we analyze the initial state radiation distribution (6.25) given in
sect . 6 by stressing the following points .

(i) The coherence structure of the initial state emission .

	

We generalize the analysis
done in sect . 4 at tree level and find that the soft gluon emission takes place within
an angular ordered region . As we shall discuss, although the distributions in eq .
(6.25) have been computed in the semi-hard region x - 0, they can be assumed to
be valid in any region of x. This is due to the fact that extrapolating (6.25) into the
region x ---> 1, the resulting distributions match the ones in this latter region (see ref.
[2]) . By assuming the distributions in eq . (6.25) to be valid in any region of x, we
have under control all the singular terms for z ---> 0,1 in the Altarelli-Parisi distribu-
tion .

(ii) The spacelike gluon anomalous dimension for N -4 1 .

	

This is obtained by
following the method of refs . [2,61, i .e . from the multi-gluon distribution for x - 0
we deduce an equation for the structure function with fixed total transverse
momentum of emitted gluons . By diagonalizing such equation we obtain an anoma-
lous dimension which for N - 1 coincides with the Lipatov ansatz discussed in the
sect . 1 . As suggested in refs . [2,6], this is a consequence of a cancellation of collinear
singularities due to coherence .

(iii) The initial state branching structure .

	

From the multi-gluon distributions in
eq. (6.25) we find the probability for the emission of soft and fast gluons . At
inclusive level, the infrared singularities in the soft gluon emission are properly
regularized by the appropriate Sudakov form factor . In the case of a fast emitted
gluon we identify a non-Sudakov form factor to be responsible for the cancellation
of too singular contributions in the anomalous dimension .



7 .1 . ANGULAR ORDERED DISTRIBUTION AND COHERENCE

In order to see more clearly and exploit the structure of coherence of initial state
radiation we consider the integral structure function in eq . (6.26) and we exchange
the sum over ~-ordering permutation with the sum over y-ordering permutation. In
the integrand of eq. (6.26), we make the substitution

19iz . . . ., Y 0
i, . . .t2t,Se(12 . . . n) -> en . . .21EO;t2 . . .trtSé( 1112 . . .1n),

~n

	

7n

so that n gluons are now emitted in the ~-ordered phase space

where

	

is the maximum available value fixed by coherence (

	

1). The non-eikonal
form factor in eq . (6 .3) is not symmetric under permutation and this exchange is
quite laborious . Given the permutation corresponding to the energy ordered region

we want now to obtain a simple expression for Se(11 1 2 . . . ln ) . We first identify the
set of m harder gluons qh, , qh 2 , . . . , qh,� and (m + 1) clusters C,, C2, ., ., Cn, +' of
relatively softer gluons as indicated in fig . 11 . In this kinematical configuration, all
emitted gluons are ordered according to increasing angles moving from right to left .
We have then h, < h 2 < . . . < h, n corresponding to

Each gluon h k is harder than the gluons within the cluster C k . A gluon 1 belongs to
cluster Ck when the following property is satisfied
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>> ~n >>
~n-1

>> . . . >>
~2

>> ~1

	

(7 .2)

Yt, «Y,,-, « . . . «Y/, «Y/, -1,

>>~hm » . . . »~h2»
~

hl .

(7.3)

(7 .4)

%

	

Xn3

	

22

	

X1

	

X0 = 1

Fig. 11 . Kinematical configurations for initial state emission . The angles between the emitted gluons and
the incoming one increase from right to left. The energy of emitted gluons are specified in eqs. (7 .3) and

(7 .5) . Note that this is not a Feynman diagram .

1 E Ck if Yt <Yhk , ~hk < <1 ~t ~h, ,

1 E C"+1 if y/ < x , eh- < et < e , (7 .5)

qh � , qh z qh,
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where Sh, = 0 . We have then h k _ 1 < 1 < hk , for 1 E Ck, and the m harder gluons are
ordered also in energies

Yh�, <<Yh �,_t« . . . «yh2«yht-1 .

Notice that in the phase space (7 .5) we have

1ECk qrt << ghkt,

1ECn,+1 qrt<<Q .

In the kinematical configuration of fig . 11 we can greatly simplify the non-eikonal
form factor S;(1112 . . . 1n) . Due to the fact that Se(yt , yt+l, Qrt) = 1 when gluon 1 is
soft, we have that only fast gluons h1 , h 2 , . ._ h n, contribute significatively to

Sné( 11 1 2 " . . 1n)

m

`sne1 1 1 12 " . . ln) = ~Se(Yhk, Yhk+t' Qhkt)
1

(7 .6)

(7 .7)

(7 .8)

The total transverse momentum Qhkt is given by the sum of the transverse momenta
of all gluons which are harder than h k (see sect . 5) . However, due to eq . (7.7), we
can neglect the contributions of all gluons within the soft clusters . Hence we can
approximate

Qhkt-ghtt+gh2t+
. . .

+ghkt* (7 .9)

We are now ready to express the structure function in eq . (6.26) as an integral over
the angular ordered region in (7.2) as follows

F(Q2, x) =
n~ I_((('''

	

dYh k dehk

	

2

	

_
as

I

J

	

t

	

Sne(Yh k1 Yhk+1' Qh k t) 0 (Q

	

ghk t) J~h, . . .h2hl

ni=l 1 Yhk Sh k

ni+1 oo nk

k on,
~ dyi d~ i

x Sc~k( 1 > t ) ~

	

. . .21
1C-1 n k =~

	

Ck 1

	

Yt

	

i )

The transverse momentum qjt of the emitted gluon j is given by eq . (6.28) and the
phase space integration over the cluster Ck is defined in eq . (7.5)

~ dy dei

	

_fCk l l(
Yi

	

e` ) 19nek . . .21

(7.10)

nk

	

nk
rekk

	

d
J enk . . .21f hk1

1

d.vj .

	

(7 .l1)
en k- 1 j

	

0+ 1 Yj



S . Catani et al . / Perturbatioe QCD

	

63

Notice that, since gluons within the soft clusters have transverse momenta smaller
than the ones of fast gluons (see eq . (7.7)), in the phase space we have included the
transverse momentum limitation only for the m fast gluons .
From the integrand of eq . (7 .10) we obtain the structure of initial state radiation .

Before discussing in details the structure of this emission, we first perform all
integrations in eq . (7.10) and compute the behaviour of F(Q 2 , x) for x - 0 .

7 .2 . THE STRUCTURE FUNCTION FOR x - 0

For x - 0, essentially all the energy is taken by emitted hard gluons h . . . . . . h k so
that we can approximate x � = 1 -Yh, - -Yhk . In this case there are no energy
constraints in the range of integration within the soft clusters and we can perform
the corresponding integrals . Summing over any number of gluons in Ck, we have

k

~ âs'k
J

	

~

	

dYi d `	O

	

21 = expl â,
J

k'"'

d

	

J
" hk dY

	

.

	

(7 .l2)
Ck 1

	

Y~

	

~;

	

k .

	

~ti

	

~ o~

	

Y

In this real emission contributions, the infrared singularities for y - 0 are regular-
ized by the Sudakov form factor Sék(l, 0. Combining all soft cluster emission in eq .
(7.12) with the Sudakov form factor, we have

r

	

( d Y

	

f~,

	

d

	

dY tn~+1

	

nt

Sék (l, 0

	

exPl ayJ

	

-J

	

` -~ _

	

exPl
-«_s r .

	

f

	

>

	

(7 .13)
1

	

01 Y

	

1

	

!ha Y Sli k

which is infrared finite .
In the energy ordering (7.6) we introduce the energy fraction

Zhk
related to the

emission of the harder gluons

Y/~k _1 = zhkyhk ,	Yh,
- 1,

We obtain the following result for x - 0

x =Z11
zhz . . .

ix,nt .de(
F(Q 2, X) =S(1 - X) +

	

fn [dZr

	

s rQne(Zr, Qrt , grt) O lQ

	

qrt)~
n,=1 1

	

Zr er

(7 .14)

XOni . . .21s(X - z1 . . .zm),

	

(7 .15)

where the index r stands for h k . We have introduced a new non-eikonal form factor
4 ne(Z rI Qrt , q,.t) which is obtained by combining Sé with the part of the eikonal
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form factor which remains after the soft cluster integration in (7 .13)

v, dY ~d~
ane( Z r , Qrt+ grt) _ Ste(Yr , Yr+1 , Qrt)exp~ -a s .f

	

- fV,11 Y

where we have introduced k' = 2E 2y2~ and q2 is defined in eq . (6.28) . Notice the
cancellation of the dependence on the phase space boundary ~ < t and k< < 2(yE)2~ .
By rescaling Yr+1 = ZrY, we obtain

Sf1

dz

	

(Qr

	

d42 I .dne(Zr+ QrW grt) = eXp -CY

	

~

	

(7 .17)
°r Z (zgrt) 2 qt

This form factor is analogous to the one introduced in ref . [6] .
Before performing the calculation of the anomalous dimension we consider some

terms of the perturbative expansion in as of the structure function in eq. (6.26) and
its energy moments

_ V, d y dk2
eXp asf

	

-~k2 O(kt-Qrt)
V1t Y

	

t

2
xexp -as

//''~ `, dY

	

dkt
O kt-grty

	

(7 .16)
"_Y,+t Y

	

kt

	

Yr )

FN(Q 2
)

= fldxXN-1F(Q2, x) = [Q211,2]
YN

	

(7 .18)

where [t is the factorization scale and yN is the anomalous dimension . The term of
order ay in the expansion of eq. (7.15), is given by

F(1)
( Q2 x) -

âs f,)2dqt = âs

	

Q
x

	

wz

	

q 22

	

x
lx1(

7 ~

,

.
FN1)

(
QZ)

s Q=

	

1
In 2

N-

The order a2 contribution is

F(2)(Q2, x) = as
f

1
dz1 fQ2dgi f fQ2

	

dgzt - f gi,

	

dg2t
z 2 zx

	

x

	

zl

	

Wz

	

q1t

	

(ztgtc)Z

	

g2t

	

(ztgit)z

	

g2t

1 âslnx

	

Qr

	

~
i
2)

J

l 2
[In

2 x
F()(Q 2 ) =

	

S
I

In
2 NIX 1

(7 .19)

Qz I12,
(7 .20)

F~



F( Q 2 ^ X)

	

1
x f d2Qt F(Qt, X)
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which is just the exponentiation of FNI)(Q2) . Therefore the N ---> 1 anomalous
dimension is

a s
YN= N-1

+O(is),

	

(7 .21)

which agrees with the exact result [14] .
The first term in the integrand of eq . (7.20) is the contribution from two gluon

emission . We have introduced the transverse momenta qtt and q2t defined by eq .
(6 .28) . The angular ordering S2 > ~ t gives q2t > zlglt . The negative term in the
integrand comes from the order as virtual correction to the emission of gluon ql .

Notice that the real and virtual contributions in eq . (7.20) are individually more
singular than the final expression . In the two contributions the q2t integration
diverges for zl - 0 and then give terms of order as 1n2 (x)/x . Summing the real
emission and the virtual corrections, the q2t --* 0 singularities cancel and one obtains
the less singular result in eq . (7.20) . This cancellation has been already noticed [2,6] .
In the following we shall see its generalization to all orders .
We now explicitly evaluate the structure function and the anomalous dimension

for N - l. This is obtained by transforming eq . (7.15) in the form of a recurrence
relation . Following the method of ref . [2,6], we introduce the total transverse
momentum distribution F(Q,, x) and the unintegrated distribution 5w- (x, Q, z, q t )
defined by

= S(1 -x)+ x f d2Qt fQZ d~gt fl-~(x, Qt, z, qt) .

	

(7 .22)
wz ~gt x z

In these unintegrated distributions the dependence on y and Q is understood . The
distribution .f(x, Qt, z, qt) is obtained from eq . (7.15) by setting Qt = Q, z = zn,

and qt = qi»t . Hence Qt is the total transverse momentum of the emitted gluons,
(1 - z) and qt are the energy fraction and transverse momentum of the last harder
emitted gluon . Note that Qt and qt are constrained* by the kinematical boundary
QM < zQ~,_t, which essentially gives

Q 2 2
t > zqt

* We are grateful to Marcello Ciafaloni for drawing our attention on this boundary .

(7.23)
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From eq . (7.15) we deduce the following integral equation

( x, Qt, z, qt) = 0(Qt - zgt) l ass 2 ( Qc + qt) s (1 - Z),3.,(x, Qt l qt)

1

	

dz'

	

2d2gi x
+as f

	

,f2

	

12 0 (gt - z'gt') I .,(z,Q,gt) `~( Z ,Qt+qt , z~,gi)J,

	

(7.24)
al~ z IL ~qt

where the transverse momentum constraint z'q' < qt is obtained from angular
ordering .
We now transform eq . (7.24) into a differential equation : first we integrate eq .

(7.24) over z and q t and then we differentiate over x . We can write

where

A, (Q" x) = -

f2 (Qt, x)

X_
x

[ F(Qt, x) - s(1 - x)s 2 (Qt)] = Fi (Qt, x) + FZ (Q" X),

	

(7 .25)

as

	

j dz

	

Q2 dq2
Z8(1-x)+ii, f

	

f,2 2
~Qt

	

x z w` qt

d2
qt'Q_

	

z o(q' - zqt)~ (x, Qt, z, qt)f2

	

qTgt

_

	

Q , dq
= as

fQt gzt

(Q_

	

1d2g2~(qt-zgt)~(x,Qt+9i>z,gt)j , (7.26)
-f' '7Tgt

x
F(Qt + qt , x) - F( Qt + qt, -~ZO

t2
Z O = Qc .

	

(7 .27)

The contribution f2 embodies the constraints from the kinematical boundaries
z = 1 and z = zp in eq . (7.23) . We shall show that F2 gives a nonleading contribu-
tion to the structure function for N - 1 .
The two terms in Fi come by differentiating the virtual and real emission

contributions in eq . (7.24) . We explicitly see that the singularity in q t" for z - 0 is
cancelled . This is the generalization to all order of the cancellation of collinear
singularities in the two-loop case (see (7 .20)) . We can neglect in eq . (7.26) the bound
from the angular ordering qt > zq t which corresponds to neglect terms of order z . In



this way we can perform the integration over z and q, and obtain

Fi (Qt , x) =

By integrating eq. (7.25) we obtain

,dz
F(Qt, x) - S(1 - x) s 2 (Qt) - f

	

(Fi(Qt, z) + Fz (Qt, z » ,

	

(7 .29)
x z

with f, and F2' given in eqs . (7.27) and (7.28) . This equation for the structure
function at fixed Q, is equivalent, at the leading order level, to the equation
obtained by Ciafaloni [6] from his analysis mainly done at the one-loop level .
We can now diagonalize (7.29) by introducing the energy moment distribution FN

defined by

FN(Q
2
, It

2) = f d 2Qt FN (Qt, [1),

where the Q-dependence is understood . We obtain

and eq . (7.31) becomes

S. Catani et al. / Perturhatiue QCD

	

67

QA2,7

	

`

	

z d2gc
f

	

zF(Qt,z) - fv zF(Q,+q�
z)I

	

(7 .28)
wz ~gt

	

wz ~gt

â5 rQz d2gt
FN(Qt,l

t
) =

8 2 (Qt) + N_1 ~J~2

	

~gi
FN(Qt+qt,l-~)

Qz
d2

as

	

1 _ ZN_i

fQ~ 7g~
FN(Qt+qt,ft )(

	

N~1	~,

~ frt~ ` 7gt
FN (Qt,[L) 19 (Qt - qt)

(7 .30)

(7 .31)

where the last term, coming from eq . (7 .27) can be neglected since it is less singular
for N- 1 than the first term . In terms of anomalous dimension, we have

Q t

	

YN

FN(Qt,

	

SZ (QJ + Qr ( ~ 2
1

	

'

	

(7 .32)

il,,

	

YN -1 -	- YN -

1 =
Nas

1

	

el-

	

+ f l d q

	

1 -

	

1 1 + f 1 d q ~_1 1 -

	

1 ~~ + 0(âç) , (7 .33)
~ YN

	

Et

	

r1

	

'2

	

'n
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with E1 =,u2/Q2, e 2 = Q2/Q2. For 0 < Y,, < 1 we can take the asymptotic limit
et 0 and e 2 - 0 and obtain a relation for the anomalous dimension. The O(as)
contribution in eq. (7.33) comes from kinematical constraints in eq . (7 .23) and gives
a non-leading contribution for N- 1. The anomalous dimension YN is given by the
Lipatov ansatz discussed in the introduction

which gives

N - 1= asf21G( 1) - ~(YN) - ~(1- YN)] = asf(YN), (7 .34)

00

YN=
N-S1

~1+2 Y_ «3+2k)YN+ zk ~,

	

(7 .35)
ti=o

where ~(j) are the Riemann zeta-functions . By expanding we have*

YN (as) =

	

E9i(Nas 1 ) J ,

	

as =

	

7T	,

	

(7 .36)
=1

and the first few coefficients are

91 = I, 92 =0 > 93 =0 ,

94 = 2~(3) = 2 .401736 . . . ,

	

95 =0 ,

	

96 =2~(5) = 2 .073853 . . . ,

97 =12 2(3) = 17.305004 . . . ,

	

98 = 2~(7) = 2 .016698 . . . ,

g9 = 32~(5)~(3) = 39 .846771 . . . ,

glo = 2f48~ 3 (3) + ~(9) } = 168 .252213 . . . ,

911= 2{20~(7)~(3) + lg2(5)} = 69.940094 . . . ,

912 = 2{220~(5)~2(3) + x(11)} = 659.948242 . . . ,

913 = 2{440 4(3) + 24~(9)~(3) + 24~(7)~(5)) = 1937 .998169 . . .,

914= 2{312(7)~ 2(3) + 312 2 (5)x(3) + x(13)} = 1715 .077881 . . . .

	

(7.37)

As mentioned in the introduction, the fact that the two- and three-loop corrections
gives zero contribution, does not imply that the one-loop result (YN = ix,/(N - 1))
gives a good approximation to the structure function for x --> 0. As indicated by the

*We are grateful to Enrico Onofri for discussing the most efficient way to obtain these coefficients .



growth of the coefficients in eq . (7.37), yN has a singularity for N above 1 . To see
this, notice [2, 3] that f(y,) in eq . (7.34) is symmetric for YN ___' 1 - 1'N and has a
minimum at 'YN = 12, As a result yN has a square root singularity at N = N* given by
N* = 1 + &J;), and the structure function grows as F(Q, x) - x-N'.

7.3 . INITIAL STATE BRANCHING

The initial state branching is described by the integrand of the structure function
in eq. (7.10) . We introduce the spacelike momenta Qi with the relative energy
fractions (xj = (PQj)l(pp))

Qi=p- q, - . . . -qj ,

and the energy fraction (1 - zj) for the emitted gluons (xo = 1)

contributions in eq. (7.10) in the form
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xi
=1-Y1- . . . -Yi (7.38)

Yi = (1 - zj )xj-1,

	

xi = xozlz2 . . . zj .

	

(7 .39)

In eq. (7 .10) one sums over all possible ordering in the energy of the emitted gluons .
This is obtained by considering all kinematical configurations of fig . 11 . Here one
identifies the fast gluons h l , h2,...,h�, corresponding to (r = hk)

Zr «1,

	

Y. = (1-Zr)xr-l -xr-1,

	

(7 .40)

and the soft gluons emitted within clusters C1 , C2 , . . . , Cm+1 corresponding to

1-z,«1,

	

y,=(1-zr)xl-1« x,- 1 .

	

(7 .41)

In this kinematical configuration one has

x n =z1Z 2 . . . zn = zh zhz . . . Zh �~ .

	

(7 .42)

From the analysis in the previous subsection we find useful to write the virtual

m

Seik( l,

	

)~Se(Yhk ' Yhk+1' Qhkt)
1

_

	

~

	

e_ de xh,_ , dY
- ~a ne( Zhk , Qhk t , ghkt)111 eXpl -aSI

	

Y

	

I'

	

(7 .43)
eh, 1

where we have introduced the non-Sudakov form factor A n, defined in eq . (7 .17) .
The remaining form factors, as shown in the previous subsection, regularize the
infrared divergences of soft gluons within Cl , . . ., C, 1 . By using eq . (7.43) and the
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previous variables, the structure function in eq . (7.10) can be cast in the form

x

F(Q 2 , x) _
m=1

m
(M+1)
soft

1

a d hs k

	

kdZ hk Zhk

	

Shk
A ne( Zhk , Qhkt~ gh kt)~sof

)
t

m

X 19 h�' . . .h 2ht 11 19 (Q	gh k t) 8(-X-ZIZ2 . . . Zn),

	

(7 .44)
1

where _qset corresponds to the emission of soft gluons in cluster Ck and is given by

r

	

~de �_ ('	x'dy

	

~

	

n

	

n
«t

	

., nk
dyl

co t --- expl -as f ,

	

~~

	

-]

	

as kf, On k . . .211 1-f

	

H

	

,

	

(7.45)
o+ Y �4=0

	

1 t o+ 1 Yl

where xhk =

	

, 'hk- _ ' and xhk-1 =x' . This part of the branching includes the
appropriate virtual corrections which cancel the infrared singularities for y-0'

(see previous subsection) .
Since we want to study the initial state radiation at the (partially) exclusive level,

we need to regularize these infrared divergences . As usual we assume a lower cutoff
in the transverse momenta of the emitted gluons . From eqs . (6.28) and (7.39) we set

and the cluster emission -5ôi becomes

(1-Z/)>Ei-QOI
( Ex, 1 Zl),

0,0

	

~~k

	

det(k)

	

r

	

r

	

n_

	

, 1-,,
dz,

soft = 3 eik(x ,

	

>

	

)

	

askf,Onk . . .21 Il ,
nk=0

	

~

	

l=1

	

~t

	

0

	

1 - Z,

where we have introduced the Sudakov form factor

t t

	

r _ OV 1 ,-_E dz l

V,
0

nk

	

l

'~' eik(x ', ~,0 - ~ eik(x% ~, ~nk) ~H aeik(x '+ Sl, 51-1)

)]k

- deik\xnk , ~, ~,7k)~1 1 ~eik(xl-1I 5l, Sl-1)~ .
J1

(7.46)

(7 .47)

E" = Qo/( Ex ~" ) .

	

(7 .48)

The cluster .2sét contribution can be written as a branching process for the soft
gluon emission . Taking into account that for the soft emission within the cluster Ck
we have x, = x' = xhk-t, we obtain Q0 = ~')

(7 .49)



The cluster emission can be written as

(k) -_

	

~yyy-~~~soft

	

Y_

	

f ~elk(x,,4,, ~,

	

,,4
nk =0
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Ji

	

l

X

	

"119 (

	

r-

	

t-1)dzt 1
a,s

	

0(1- Et - Zt) aeik(xt-1, ~t , ~t-1) t

	

(7 .50)
t=t

	

~t

	

- zt

The quantity in the braces can be interpreted as probability distribution [7] for the
soft gluon emission . Note that deik(xt-1, fit, ~t-1) has the correct relation with the
real emission distribution function and the phase space in eq. (7.50) .

If we insert eq. (7.50) in (7.44) we obtain the general branching process with two
types of probabilities : the fast and the soft one given respectively by Mast and _Opsof,

The soft one is obtained from eq . (7.50)

d~soft( 1 ) = Ztt0(et-Zt-1) dzt 1 aszt 0(1 -.EI- zt) aeik(xt-1, Zt , el-1) *

	

(7 .51)

The branching distribution for fast gluons h k is given by (hk = r)

'r

	

a s
d~9fast(r)

	

~r
0(Q

	

grt)0 (er - er-1) dZr
Zr

4 ne( Zr , Qrt , qrt)

Xa eik( xr-1 , ~r , ~r-1)'

It corresponds to the contributions of gluon hk in the integrand of eq . (7 .44) and
includes the form factor '~leik in the left-hand side of eq. (7 .50) .
In terms of these two quantities, the structure function has the simple form

F(QZ,x)= Y- f aeik(xn,4,Zn)rld°2(i)s(x-Z1zz . . .z � ),

	

(7 .53)
n=1

	

1

with

	

d-q(i) = dgfast( i ) + dg~soft(i) .

	

(7 .54)

The two distributions in eq. (7.54) can be combined more systematically. Observe
that the non-Sudakov form factor dne(z, Qt, qt) -~ 1 for z -> 1 . Therefore, to double
logarithmic accuracy, we can multiply d9soft by the non-Sudakov form factor and
we obtain

'o(Q-git)0( i- ; i-)dzia P(Z)0(I
- Ei -Zi)

X ane(Zi , Qit , qit) aeik(xi-1 , ~ i , ~i-1),

(7 .52)

(7 .55)
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where
1 1

P(z) = 2C,(+-
z 1-z

is the singular part for z -> 1,0 of the Altarelli-Parisi gluon distribution P,(z) in eq.
(4.31) . The finite terms -2 + z(1 + z) in Pg are not obtained from our analysis at
the leading infrared accuracy .
From eqs . (7.52) and (7.51) or (7.55) we can define a Markov process for the

initial state branching . Due to the fact that the non-Sudakov form factor for the
emission of gluon i depends on Qit, we have that the Markov process involves
the variables qit, zi, Qit and xi . From the distribution (7.54) or (7.55) one obtains
qi+1t and zi+1 while Q(i+1)t and xi+1 are determined by momentum conservation .

It is a pleasure to acknowledge many helpful discussions over some years on the
topics of this paper with Marcello Ciafaloni . Discussions with Al Mueller and Bryan
Webber are also acknowledged .

Appendix A

(7 .56)

In this appendix we outline the calculation of the two-gluon emission amplitude
in a general axial gauge . Our purpose is to explicitly check the gauge invariance of
the results in subsect. 3 .1 . We consider the amplitude for the process

p+q --* p'+q1+q2>

	

(A.1)

where q is the hard spacelike momentum carried by the gauge invariant current
(Fu,)

2 and p, p', q 1 , q 2 , are incoming and outgoing gluon momenta . The generaliza-
tion to incoming quark, which is straightforward, will not be considered in the
following . We refer to sect . 2 for our notational conventions .
We use a general axial gauge 11 - A = 0 and evaluate the amplitude (A.1) at tree

level . By performing a graph by graph calculation, spurious gauge poles of type
(rl - Q1) -1 and (71 * Q 2 ) -1 will appear in intermediate results . We may introduce a
relevant simplification by using Feynman polarization tensors g" for internal gluon
lines . This follows from the fact that external gluons are on mass shell and have
physical polarization ; then Ward identities automatically guarantee that, at tree
level, only transverse polarizations propagates in internal legs .

Since external gluons are physical ones, the use of the eikonal approximation for
soft gluon emission by external lines is still allowed . Therefore, in the strongly
ordered region

x=1-v1-v2«v2«v1--1, (A .2)

we limit ourselves to evaluate the leading x - 0 diagrams in fig . 12, with the
incoming gluon helicity conserved along the line p, q1 .
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P

Fig . 12 . Feynman diagrams for n = 2 amplitude in a general axial gauge .

As usual, the first two diagrams figs . 12a, b can be evaluated in terms of eikonal
emission of the softest gluon q 2 from the harder external ones p and ql . The
amplitude MZa+b) has the factorized form

M(a+b) - 2(Q2
-xz2Qâ E(X'

) (P ' )
(acblb2 j hza+b>)

	

(A.3)

where

	

(acb lb2 lh(a+b ) ) -
g s(acbl j - TI,

P
+ Tl

qi
Ih,) .

	

(A.4)
Pq2 giq2

Eq. (A .4) is normalized according to eq . (3 .3) and hl is the analogue of eq. (3.2)
with e(X)(P), et~>>(g l ) replaced by the polarization vectors in our axial gauge.
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We come now to the diagram in fig . 12f . The corresponding amplitude MzO is

given by

where VIV(Q,, p') denotes the hard vertex in eq . (2 .4) .
Since we have introduced eikonal vertices for the emission of Ql and q2 , eq . (A.5)

is valid up to terms of relative order x l, y2 . Expression (A.5) can be simplified with
the following approximations . Firstly we replace p' by p and secondly, by using the
conservation property

we have

2p
M2f

	

x(pP')Qi ~ V(Q1I P') E`X')(P')gs(acbjI TP,
P~

jh j ),p'q2

Qiv"(Q" P) = 0,

	

(A.6)

2(Qi - x1P )
2 p - V(Q, p)-E`~~'(p') =-

	

1 _ y1

	

'(P')

= -2Pp(Qi - xip) -

By inserting eq . (A.7) into eq . (A .5) we get

2(x,P - Qjl~

1 -Y,

(A.5)

(A.7)

Mz0- - 2(Q1 - x,P)Z E`~")(P')
gs(acb1

1 TP, P j hl) .

	

(A .8)
XQ1

	

Pq2

Let us consider now the diagrams in figs . 12c-e . It is simple to check that, for the
subprocess Ql + q - p' + q2 in these graphs, the current Ql is conserved apart from
contributions of relative order Y2 . Therefore, analogously to eqs . (A.6) and (A.7) we
can approximate the eikonal vertex 2pß` for the Ql emission with

(A.9)

By introducing this approximation in individual diagrams and using eikonal vertices
for soft gluon emission, we see that the diagram in fig . 12d vanishes in the leading
infrared order whilst that of fig . 12e gives a contribution

M2(e)- 2(Ql -x1p)zE`À~)(p') gs(acbl1Tp,

	

p

	

lh l ) .

	

(A.10)
XQ1

	

(1 -y,) PP

Since for x - 0 we have pq2 = Y2PP = (1 - YOPP, the contribution in eq . (A.10)
completely cancels the contribution in eq. (A.8) .



The evaluation of the diagram in fig. 12c is less simple because in the vertex
Qi --> q2 + Q2 the gluon q2 is not the softest one and we cannot use the eikonal
approximation . In particular we can check that the eikonal contribution is infrared
subleading and the dominant terms are the remaining ones. We get

M2(C)A2 -
2(Ql - x1P)"
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XPP(1- Yl)Q2Q2 `gf`2(P

	

gi+q2)P+(P-

X VPV(Q2 , P)E,(~" ,(Y/)OS(acbll (Tp- T, ) Ihl)

2(Ql - XiP) "

XPP(1_Y1)QiQ2[g~22(1

	

Yi)PP+(P - g, -

qi - 2g2)wgA2 I

2q2)"P A2 1

X (QZ - X2P) - E( ~")(PZ)gs(acblj (Tp - Tj )jhi) ,

	

(A.11)

where the two contributions in the square brackets come respectively from the terms
with helicity conservation along the lines (Ql , q 2 ) and (Qz, q2 ) . Performing the
Lorentz algebra in eq . (A.11) we obtain

where

M2(c)-
2(Q2 - X2P)Z E(')(PZ) (acblb2 1 h2e)),

	

(A.12)
XQ2

(acb b ~h~`~)

	

2(Qi - XiP)

	

2(Qi - XiP) ' q2

	

P

	

+

	

1 +y

	

P
i 2

	

2

	

-

	

_
1

	

Qi

	

Qi

	

(1 - y') pp

	

2(1 - Yi) PP

X g s(acb1 j Tp, jh 1 ) .

	

(A.13 )

Here we have used the colour conservation (see eq . (3.10)) . Recalling the approxima-
tions

we can identify eq . (A.13) with

1+y1-2, ( 1- YI)PP - Y2PP, PZ- P,

(acb162 l h(c))=gs(acbl jjne(Q2 ,g 2 )+Tp" P;g2 jh1), (A .14)

where J,, e is given in eq . (3 .5) . The sum of eqs . (A.3) and (A.14) reproduces the
factorized result in eq . (3.1) and (3.3) thus showing explicitly its gauge indepen-
dence .
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The gauge invariant analysis we have performed in this appendix for the n = 2
emission amplitude is quite complicated and makes clear the difficulties one meets
in trying to generalize to higher values of n . In particular, the computation of the
diagram in fig . 12c shows the complication related to the evaluation of the
contributions with gluon emission by soft internal lines . In this case the usual
eikonal coupling is infrared subleading and both the other two helicity flows have to
take into account . Let us stress once more the important simplification due to the
choice of the axial gauge with 11 =P. In this latter case, as discussed in subsect . 2.1,
the introduction of the effective hard vertex (2.11) automatically selects a single
leading helicity flow .

Appendix B

The deep inelastic scattering process involving the hard current (F,",)2 is exam-
ined in this appendix by including quark contributions . Since, as discussed in the
introduction, only exchanged and radiated gluons give the leading behaviour for
x - 0, we limit ourselves in considering the case with a quark in the initial state . By
referring to the notations in eq. (1 .7) (see fig. 1), p and ql will denote respectively
the momenta of the incoming and outgoing quarks and p', q2, . . . . qn are gluon
momenta.
We introduce an amplitude Mn4)( pp'g lg2 . . . qn ; SX'sl~2 . . . � n) and a space of

colour vectors { I acalb2 . . . bn)) . Here s and sl are the helicity indices for the quarks
p and ql with colours a, al and A', X i denote the polarizations of the gluons p', qr
with colours c, b; . The analogous of eq . (2 .18) is now

Mn 9) _ (aca,b2 . . . bnI M;,g)(PP,91R2

	

. . qn ; s'~ 'S1'~ 2 . . . ~n))

The gluons charges T,. (i >_ 2) act on the colour space as in eq . (2 .19), whilst for the
quark charges t l and tp we have

ti I acalb2 . . . b,,) = tßl « I acßlb2 . . . bn) ,

	

(B.2a)

tP I acalb2 . . . bn) = tbß I ßcßlb2 . . . bn) ,

	

(B .2b)

where t«ß are SU(N) generators in the fundamental representation (Vt' = CF) .

Note the transposition of the colour indices in eqs. (B.2a) and (B.2b) due to the fact
that ql and p are outgoing and incoming quarks respectively .
The analysis of the x - 0 leading diagrams contributing in the energy ordered

region
x«yn «yn 1« . . . «y2«y1--1 (B.3)

goes along the same lines of sects . 2-4. The reason for this fact is that soft gluon
emission by the fast quarks p and ql can be again evaluated by using the eikonal
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approximation . Therefore the soft gluon factorization theorems in sects . 3 and 4 are
still valid . The only differences arise from the underlying spin and colour index
space on which soft gluon factorization takes place . For the present case we have to
introduce the subamplitude h,R)(tree) given by

(acal I h,R)(tree) ( PP / ql)) = u(s't)
(ql) u (S) (P)gsta ,

where it, u are quark spinors . The amplitude Mn(q) for the emission of n - 1 gluons
including virtual corrections is given by the recurrence relations (3.1), (5 .2), (5.5)
which we rewrite for sake of completeness

I h
(nR) > = Se(i n)

	

o)sne(Yn> Xn> Qnt)I hn4) ) ,

(acat . . . b� I
hn(R) )

(B.4)

= 2(Qn-XnP)'E( XI)(P ' )
Mn(')

	

(acalb2 . . . bnI h R) (PP'g1qz

	

. . qniz

	

n

	

(B .5)
XQn

(B .6)

- gc_(aca1 . . . bn IJtot

	

n(n-1)b"(q )S(eilcn-1) (Yn-11 Yn)Sne(Yn-11 Yn~ Qn-lt

	

n)Ih(R)-1 -1~

(B .7)

In eq . (B.7), the current Jtot and the form factors Se;k , Sne are given respectively by
eqs . (3.4), (5 .3) and (5.4) and the initial condition is hi q) = hiq)(tree) as given in eq.
(B.4) .
As in the pure Yang-Mills case, the coherence property (4.2) for the square of the

total soft insertion current Jtot allows us to express I MR) I
z� in terms of eikonal

currents . Starting from eqs. (B.5), (B.6) and (B .7) we get

4 2 n-1

Mn(')
12 __

	

g
2Q2 )

[ FI
Sne(Yi, Yi+l, Qit) l Z(hn9 )R IhnR)R)

	

(B.8)
X l i=1

where we have defined the reduced subamplitude hnq)R as follows (note that colour
indices are understood)

Ih(4)R>=S(n)( o) J(n-1) (q)Stn -1)(Y ) . . .J(1) ( )S(1)( Y )Ih(R)(tree)
>

.n

	

eilt

	

Yn

	

tot

	

n

	

eilt

	

n-1> Yn

	

tot q2

	

eilt Yl

	

2

	

1

(B .9)

Eqs . (B.8) and (B.9) are formally equivalent to those for the pure Yang-Mills case.
With respect to this latter case the only differences arise in computing the colour
algebra for (hn9)R Ihn9)R i since in eq . (B.9) colour charges in both the adjoint and
fundamental representations are present . This fact prevents us in using the tech-
niques of ref . [13] to evaluate the multi-gluon squared amplitudes IMnR)I

z .
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In order to explain more clearly colour charge effects, let us consider the case
with n = 1, 2 at tree level . For n = 1 we get (aô = Ne)

where the eikonal distribution WPP ,(gl) is defined in eq. (4.19) .
Eq . (13.10) coincides with (4.16) for the pure Yang-Mills case apart for the

obvious replacements ao - aô and CA --> CF respectively due to the sum over the
final state colours and to the different colour charge of the incoming parton.
However it is important to note that eq. (13.10) cannot be extrapolated in the x - 1
region . All the amplitudes Mnq)(tree) vanish in the leading order for this latter region
since soft quark radiation is not infrared singular . It follows that the constraint
x << yl -- 1 cannot be released for the incoming quark case .

Performing the azimuthal integration of eq. (13.10) as in eq . (4.21) and by taking
into account only the initial state collinear singularity we obtain the quark structure
function contribution

For n = 2 we have

M(q)(tree) 1 2 =

	

1 9sx2C
z
F

l
a
o WPP (gl),

F(1)(tree)(Q2 x) - I

	

11
dyl

CFas
12 8(1 - i ~ 0(Q-ql,)q

	

7r x

	

x

Eq. (13.11) differs from eq . (4.27) for the absence of the factor 1/y,. This is due to
the constraint y l - 1 which, by introducing the energy fraction zl = xl = I - yl
leads to the appearance in eq . (13.11) of the Altarelli-Parisi probability splitting
function Pgq for the process quark - gluon

4CFM(q)(tree) 12 =

	

gs
2

	

aoi
x2

WPP ' (ql )

(B .10)

fdZl

	

CFas 1
= J

	

l
dz,
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zl
S(x-zl)O(Q-qlt) .

	

(B .11)

Pgq (z) = 2CF/z .

	

(B.12)

X {2CFWPgc (q 2) + CA [ WP 'ql (g2) + WP,P (g2) - WPgi(q2)]) > (B.13)

which correctly reduces itself to (4.16) for aô - co and CF -). CA . Performing
azimuthal averages of the eikonal distributions [13] or equivalently by introducing
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strong ordering in angles [11], eq . (B.13) gives

2 2 ) 2C 2 12(q)(tree 2 =

	

, ~ gs

	

FM

	

)

	

Qo

	

2

	

fi 2e [CFOi2 + CAOil] + . . .
x

	

i-1 col

where the ellipses stands for contributions with final state or subleading initial state
collinear singularities .
We stress the presence in eq . (B.14) of the colour factor CA associated with the

angular ordering s2 > S1 . When S2 > ~1 the q2 gluon is radiated coherently by the
incoming and outgoing quarks p and ql so that its radiation pattern measures their
total colour charge (-tp + t 1)2= CA . This coherent effect is similar [8-10] to the
celebrated string effect for final state radiation .

It is important to note that expression (B.14) is a leading collinear one . For the
incoming quark case this statement is very different from "leading in the number of
colours Ne " . In this latter approximation eq . (B.13) should lead to a different
radiation pattern .

In recovering from eq . (B .14) the structure function we must remember the
constraint w l - E (e.g. yl - 1) . Moreover we can release the constraint x << y2 since
eq . (B.14) coincides with I M(q)(tree)I 2 evaluated in the complementary region y2 « x
[11,12] . We obtain the result

F(2)(tree)(Q2 X) -
J
~

Id 77

?r
dy,O(Q-git)J(

	

s)2
q

	

t=1 ~i

which, by referring to a single overall angular ordering OZl and introducing the
corresponding energy fractions (4.28), gives

where

Fq(2)(tree)(Q2 x)- f ~ [dSj dz i O(Q -
git)l( ~ 12i=1 Si ,,

X
Y2

(CFOi2+CAOz1)x2s( 1- 2),

	

(B .15)

CF CFCA X
2(X> Z1> Z2) -	(1- Zl)Z2 + ZIZ2(1 - Z2))

S 1 -
Z1Z2

(B .14)

(X, Zl, Z2)021, (B.16)

- [pq(Zl)pgq(Z2)+p8q(Zl)p(Z2)] 8(1

	

x~,

	

(B .17)
Z1Z2
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and we have introduced the z - 1 Altarelli-Parisi probability splitting function
P9(z) for the process quark - quark

� (q)R> = OY . . .

	

;

	

. . .	(q)(tree)~U(P,)(E ; z, o )I ht )
gs

	

(b2 . . . bIh �

	

t2n(g2 . . . qnb2bn

	

Pi

(B .19)

where p, = p, q l , p', and U (P) is the QCD coherent state operator defined by the
recurrence relation

U(P)(E ; ~, ~0) = P� exp

P,(z) = 2CF/(1 -Z)'

	

(B.18)

Eq. (B.16) admits a simple interpretation in terms of an angular ordered branching
process with probabilities given by the Altarelli-Parisi splitting functions .

Obviously, in the leading infrared order we are working, the quark splitting
probabilities (B.12) and (B .18) we obtain, contain only the z - 1,0 singular part of
the full Altarelli-Parisi distributions .

After this detailed discussion of the n = 1, 2 cases at tree level, we come back to
the general multi-gluon distribution (B.8) . The colour algebra complications encoun-
tered in performing the evaluation of eq. (B.8) for n = 1, 2 can be overcome by
noting the close resemblance between eq . (B.9) and matrix elements obtained within
the QCD coherent state framework [11,12] . Actually, eq. (B.9) can be expressed in
the following way

gs f(dg) O(E -Wq) O ( ~ - SPq) 19 \~Pq -W

w
X (A'(q) +Awt(q))

[ e(q)(Wq; Z, Z0)1 abfv pg )'

	

(B.20)

where Gh is the analogue of U, but in the adjoint representation of the colour group
A0, Aot are annihilation and creation operators for the gluon free field and
ßq2 . . . qn ; b 2 . . . b�) is a vector in the colour and Fock space of the gluon field .
By substituting eq . (B.19) into eq . (B.8), the multi-gluon distribution I Mn(q) 2

turns out to be equivalent to that for the region x -- 1 [111 apart from the factors Sne
which however are infrared subleading in this latter region . As for the pure
Yang-Mills case, we can therefore assume eq . (B.8) to be valid for any x value. We
shall see that this approximation is equivalent to neglect nonsingular terms for
z - 0,1 in the Altarelli-Parisi splitting functions .
Eq . (B.19) allows to evaluate the reduced subamplitude lh ;,q)R ) in the leading

infrared and collinear order by using the techniques presented in ref. [111 to which
we refer for further details .
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We start by introducing two angular cones with maximum aperture Smax - ~

around the directions of the incoming and outgoing parton p and p'. Gluon
radiation takes place in the leading collinear order within such cones . Then in the
leading collinear approximation, the energy ordered coherent state (B.20) can be
replaced by an angular ordered coherent state [11] . The recurrence relation satisfied
by this latter is similar to eq. (B.20) with Py replaced by fit . At this point angular
ordering is implemented .
The coherent state operator o&(P')(E ; ~,~o ), takes into account collinear singulari-

ties for ~P,r
--> 0 and gives rise to the contributions known [2,13] from the analysis of

final state soft radiation . As done for the pure Yang-Mills case in sects . 4,6 and 7,
we neglect these standard contributions and analyze the initial state collinear
singularities .

Large and small angle initial state radiation with respect to ~i can be factorized in
operator form by using (p i = p, q l )

U(P;)(E ; ~, ~o) = U(P,)(E ; t, ~1)U(Pi)(E ;
~1, ~o) .

	

(B.21)

By inserting eq . (B.21) into (B.19) and collecting large angle coherent state operators
on the right (we recall that the coherent state operators (B.21) commute each other
in the Fock space), we get

gs -1(b2, . . b� l h
(
aq)R ) _ Oiz_ . . n(q2 . . . qn ; b2 . . . b� l [rI U(P,)(E ; e,, eo)

J

X [Il U(Pi)(E ; 4, e 1 )llhiq)(tree)% + . . . ,

	

(B.22)
P

	

,
I

l

where the dots correspond to terms with collinear singularities for
~P,7

- 0 . Eq.
(B.22) shows that large angle radiation is described by the coherent state operator

U(P;)(E ; ~, ~i) =Pt exp( gsJ (dq) O(E-Wq)o(t-~)0(~-0
Pr -P " q

	

1,

X(A;l(q)+A~~(q))[°h(q)(wq ; , o~~unjnit(q)}, (B .23)

w

	

r'
X'(q) _ -t p + tl

q~ _

	

(B.24)P
pq

	

qiq

Since in the large angle region i; >> ~1, p and q l can be considered essentially
parallel, we can replace q l by p in eq . (B.24) and then use the colour charge
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conservation (- tP + tl + TP, ) I h (q)(tree)
%
- 0 in eq . (B.22) to obtain

fj U(P , )(E ; ~ e11lh1g)(vee)) =
au(P)(E ; t, Sl ) Ihiq)(Vee)) .

P;

The appearance of the coherent state operator Gh in the adjoint representation
clearly shows the coherent effect of the large angle gluon emission : the combined
radiating action of the incoming and outgoing quarks simulates radiation by a
gluon.

Inserting eq . (B.25) into eq. (B.22) one obtains
Rgs-1(b2-bnlhnq) =012 . . .n( g2 " . .qn ;b2 . . .bnl

X U(P)(E ; 1,

	

0)Gh(P)(E ;

	

>
tl )lhigxtree)\

	

(B .26)

where we have again neglected the terms with final state collinear singularities

eli -> 0, due to the coherent state operator U(q,)( E; el, ~0).
We are now ready to compute the multi-gluon distribution (B.8) . Let us start for

notational simplicity from the tree level distribution . In this case the form factors
Sne in eq . (B.8) reduce themselves to unity and the matrix element on the right-hand
side in eq. (B.26) is completely symmetric with respect to q2,, . . , qn . It follows that
by summing over all permutations {2, . . ., n ), the constraint 012 . . . n can be released .
The square of the matrix element in eq . (B.26) can be simply evaluated as in ref. [11]
because, due to the angular ordering, interference terms are automatically sup-
pressed . The initial state contribution to the multi-gluon distribution which we
obtain, is the following

M(q)(tree) 12
- aàn

(B .25)

to be compared with eq . (4.22) after summing over all permutations . We recall that
the constraint W 1 = E is understood into (B.27) . The two terms i >_ k + 1 and j < k

in (B.27) are due respectively to coherent large angle emission and incoherent small
angle radiation .
Eq . (B.27) gives the following contribution to the structure function

~-,oc
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CAas de i d_yi CFas de,
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fi

	

- dy,F(tree)(~2, X) -
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Q>qn[i=k l

	

ei
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e1
(~

	

k

	

CFas dej d y~

	

1

	

X
X

	

t

	

On, . . .,k+1 ~k+l,l,k~k, . . .,1Z S

	

1 -
~J =2 77 Sl yJ

	

Xn ~ Xrn

(B .28)

(2 gsZ
) n
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2

n
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(B .27)
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where the absence of the 1/y, factor is due to the constraint yl - 1 for IMn
q) 2 .

Introducing into eq . (B.28) energy fractions defined with respect to the angular
ordering as follows

x i=ZIz2 . . . zi ,

	

(i >_ k + 1),

x; +Y, = z2z3 . . .

P(zi)~ Pgq(Z1)I l l
k l1i= +

	

=2

(J < k), (B .29)

OG JJ k
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d z O
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(Q
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J7=2k=2_ [ù 2~ St

	

t (Q gtt)I 9 n, . . .,k+1 k+1,1,k k, . . . .1

x

	

Pq (z j)I8(x-z 1 . . .z n ) I (B.30)

where the splitting functions P(z), Pgq(z) and Pq(z) are defined in eqs . (4.30),
(B .12) and (B.18) and turn out to coincide with the z --->0,1 limit of the
Altarelli-Parisi splitting probabilities. Note that the absence of the singular factor
1/yl in eq . (B.28) has led to the appearance of Pgq and Pq into eq . (B.30).
We now come back to include virtual corrections . For this case the nonsymmetric

non-eikonal form factor

JJ
`Sne(1,2, . .,n)= H Sne(Yi , yi+1 , Qit) ,	yn+1-x,

i=1
(B.31)

appearing in eq . (B.8) does not allow to eliminate the energy ordering Oi 2, . . .,n by
summing over the permutations . In order to proceed, we divide the gluons
q2, q31' . ., q� in two subsets according to whether their emission angle ei is larger or
smaller than e1 . In this configuration we have qit << qlt for every gluon qi such that
ei < e1 . It follows that the non-eikonal form factor (B.31) which turns out, does not
depend on the kinematical variables of the gluons qi emitted at small angles . The
sum over the permutations allows therefore to eliminate the energy ordering
between the gluons emitted at large and small angles . We obtain

(9) 2

	

4
2M(q)

	

-	2Q2Y_ §,12,(1, k+ 1, . . , n) Oi,k+1_ .,nOY.2, ._k
x ~1 k=1

x I((qk+1 . . . qnI
OZ/(P)(E ; t, S1/

t l

	

2
®~q2 . . . qk I U(P)(E ; el, eo)llhlq)(tree)% I

	

+ . . . . (B .32)

At this point the virtual corrections in eq . (B.32) can be evaluated in the leading
order as in ref. [111 . The small angle coherent state U(P) gives rise to a form factor
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Sék) (1, e1) similar to Seik in eq. (6.24) apart from the replacement ii, = (CAas)/7r

(CFas)/7r . The large angle coherent state °u(p) yields the form factor
Seik(1, S1)Seik(1, 0. In order to replace energy ordering with angular ordering we
proceed as in subsect . 7 .1 and we arrive to the final result

k

I Mn(q) IZ - a0

	

IM(e>t~)I2 (2gs) CF
et

n-k

	

2

	

1, k
r 60 k=1

	

(01 1

Okt.2 [Sefk) (1 ~ e1), 2 . (B .33)

In eq . (B.33) IM�tkt1)1 2 is the multi-gluon amplitude we have computed in sect. 7
for the pure Yang-Mills case . The superscript (e > e1) mean that the angular
variables e for both real and virtual emission in Mn - k are constrained by e > e1 .

Starting from eq . (B .33), the evaluation of the quark structure function for x - 0
is straightforward . It amounts to note that the integration over the soft gluon
radiation incoherently emitted at small angles e < e1 completely cancels the eikonal
form factor Sé,k)(1, ~1) in eq . (B.33). As a result of this cancellation, only coherent
soft gluon radiation for angles larger than e1 is left . This contribution is exactly the
same computed in subsect . 7.2 for the pure Yang-Mills case and we obtain

FgN(Q Z ) = CF
[
FN

( Q 2 ) - 1l ,	(B .34)
A

where FN is the gluon structure function whose anomalous dimension are given by
the Lipatov ansatz.
We conclude this appendix by discussing the structure of the initial state branch-

ing with incoming quark. A simple analysis of the multi-gluon distribution (B.33)
along the lines of subsect . 7 .3 yields the following branching distributions

de t

	

dz . a
d~gg (i) _

	

(r O(Q - qit) ~( i - Si-1) Zif 2 ,ff

X pgg(Zi) A.e(zi , Qit> qit) Aegk(xi-1> ei , Si-1

deitdzi as
d .9g (i) =

	

! O(Q-19(Q 0(ei-Si-1) zr -

(B .35)

Xpq( Zi) Ane( Z i , Qit , qit) ,A(9k(xi-1 , ~ i, Si-1) O(I - Ei - Zi) ,

	

(B.36)

respectively for the quark - gluon and quark - quark splitting . In eqs . (B.35) and
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(B.36) we have used the same notations as for (7.55) and
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(B.37)

is the Sudakov form factor for the quark .
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