Shining Some Light on Dark Matter: The MiniCLEAN Direct Detection Experiment Kimberly Palladino

MIT Laboratory for Nuclear Science

SMU February 11, 2013

Dark Matter Evidence and ΛCDM WIMPs **Direct Detection Overview** Liquid Noble Detection • MiniCLEAN Design Backgrounds

Construction Pictures

K.J. Palladino SMU February 11, 2013

CLEVELAND IS A WARM, FUZZY PLACE

a child's storybook guide to Cleveland

by Dave Cockley

\$1.9

Dark Matter Evidence and ΛCDM WIMPs **Direct Detection Overview** Liquid Noble Detection • MiniCLEAN Design Backgrounds

Construction Pictures

Dark Matter Evidence and ΛCDM WIMPs **Direct Detection Overview** Liquid Noble Detection • MiniCLEAN Design Backgrounds

Construction Pictures

Dark Matter Evidence and ΛCDM WIMPs **Direct Detection Overview** Liquid Noble Detection • MiniCLEAN Design Backgrounds **Construction Pictures**

Early Evidence

Fritz Zwicky studied galaxy velocities in clusters in the 1930s, Vera Rubin measured star velocities in galaxies in the 1960s

$$M_{r} = \frac{r v^{2}}{G}$$

There is more mass than we expect from the luminous matter we see.

predictions

Non-Baryonic

- Indications of the non-baryonic nature of dark matter from:
 - Big Bang nucleosynthesis
 - Cosmic Microwave Background Spectrum
 - Cluster lensing and X-ray data

Structure Formation

 Simulations of galaxy and cluster formation match observation when cold dark matter is included: and it dominates! 2dF Galaxy Redshift Survey

Concordance

Isotropy, homogeneity, flat universe, dark energy, cold dark matter, big bang, inflation

• Local Dark Matter density: 0.3 GeV/cm³

WIMP Miracle

Particles with masses of ~100 GeV and interactions at the weak scale would give current dark matter density of .3 GeV/cm³

Cold Thermal Relics

WIMPs fit naturally with SuSY: lightest neutralino, the LSP

K.J. Palladino SMU February 11, 2013

Kolb

Direct Detection Needs

Ability to see low energy WIMP induced recoils

- Radiogenically pure
- Low threshold (< 100 keV)
- Ability to distinguish nuclear recoils

- Difference between electronic recoils & nuclear recoils
- Difference between alphas and nuclear recoils
- Position reconstruction and fiducialization

Shielding from radiogenic and cosmogenic backgrounds

Direct Detection

Techniques

Direct Detection

Techniques

Direct Detection

Techniques

Direct Detectors

Signals?

Angloher et al. arXiv:1109.0702

Annual Modulation and excesses at low energy Indicate 5-10 GeV WIMP?

hotons and Electrons

scatter from the

Courtesy Michael Attisha

WIMPs and Neutrons scatter from the After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Table 3: Scintillation parameters for I	liquia ne	on, argon,	and xenor
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \ \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

Courtesy Michael Attisha

scatter from the

WIMPs and Neutrons scatter from the After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Xe: Most Light

Table 3: Scintillation parameters for	liquia ne	on, argon,	and xenoi
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \ \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

Courtesy Michael Attisha

scatter from the

WIMPs and Neutrons scatter from the After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Xe: UV Light, visible to PMTs

Table 3: Scintillation parameters for	liquia ne	on, argon,	and xenor
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

hotons and Electrons

scatter from the

Courtesy Michael Attisha

WIMPs and Neutrons scatter from the After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Ar, Ne: EUV Light, wavelength shifting needed

Table 3: Scintillation parameters for	liquia ne	eon, argon,	and xenor
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \ \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

hotons and Electrons

scatter from the

Courtesy Michael Attisha

WIMPs and Neutrons scatter from the After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Ar, Ne: Orders of Magnitude time constant differences

Table 3: Scintillation pa	rameters for	liquia ne	on, argon,	and xenoi
Parameter		Ne	Ar	Xe
Yield (×10 ⁴ photon	ıs/MeV)	15	4.0	4.2
prompt time constan	nt τ_1 (ns)	2.2	6	2.2
late time constant τ_i	3	$15\mu{ m s}$	$1.59 \ \mu$ s	21 ns
I_1/I_3 for electrons		0.12	0.3	0.3
I_1/I_3 for nuclear re	coils	0.56	3	1.6
λ (peak) (nm)		77	128	174
Rayleigh scattering	length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

hotons and Electrons

scatter from the

Courtesy Michael Attisha

WIMPs and Neutrons

After a recoil liquid noble atoms ionize, and form dimers, recombine with and then de-excite and create scintillation, the molecules may be in singlet or triplet states with different lifetimes

Ar: Differential populating of singlet and triplet states

Table 3: Scintillation parameters for	liquia ne	eon, argon,	and xenor
Parameter	Ne	Ar	Xe
Yield (×10 ⁴ photons/MeV)	1.5	4.0	4.2
prompt time constant τ_1 (ns)	2.2	6	2.2
late time constant τ_3	$15\mu{ m s}$	$1.59 \mu s$	21 ns
I_1/I_3 for electrons	0.12	0.3	0.3
I_1/I_3 for nuclear recoils	0.56	3	1.6
λ (peak) (nm)	77	128	174
Rayleigh scattering length (cm)	60	90	30

Lippincott et al Phys Rev C78; 035801 (2008)

Quenching Factor

J. Collar IDM 2012

ی 0.5 ل WARP Mean 0.25 ±0.02 +0.01 0.3 0. 150 50 100 200 Energy (keVr)

micro-CLEAN

FIG. 8: (Color online) Scintillation efficiency as a function of energy from 10 to 250 keVr. The weighted mean (red line) is generated from the data above 20 keVr and puts the mean scintillation efficiency at 0.25. The value measured by WARP is 0.28 at 65 keVr [3].

Energy difference between nuclear and electronic recoils Much less controversial than Leff in LXe Mean of 0.25 above 20 keVr MiniCLEAN expected threshold of 12.5 keVee = 50 keVrK.J. Palladino SMU

Double vs Single Phase

- Ionized and excited states
- Primary Scintillation (S1) with some recombination and de-excitation in the liquid
- Ions drift in TPC electric field
- Amplification region in gas creates proportional light (S2)
- •S2/S1 provides particle ID
- Events are hundreds of microseconds (set by electron drift velocity)
- Strong position reconstruction

- Ionized and excited states
- Scintillation with recombination and deexcitation in the liquid
- Pulse shape discrimination provides particle ID
- Events are tens of microseconds (set by triplet lifetime)
- Position reconstruction with charge distribution, t.o.f. with larger detectors
- K.J. Palladino SMU February 11, 2013

Xenon 100

2 events on background of 1.0 +/- 0.2

Likely to be due to gamma backgrounds in regions inaccessible to charge amplification coincident with other gammas (informally from the Xenon 100 collaboration)

Melgarejo IDM 2012

Current Limits

Melgarejo IDM 2012 arXiv: 1207.5988 K.J. Palladino SMU February 11, 2013

MiniCLEAN

AREA OF RESEARCH: Direct detection of dark matter and low-energy neutrinos

TECHNOLOGY: Single-phase liquid argon detector

FUN FACT: CLEAN can operate with interchangeable targets of liquid argon and liquid neon

INSTITUTIONS:

Boston University; Los Alamos National Laboratory; MIT; National Institute of Standards and Technology; Royal Holloway University of London; SNOLAB; Syracuse University; University of New Mexico; University of North Carolina, Chapel Hill; University of Pennsylvania; University of South Dakota; Yale University

TARGET: LAr, LNe

Mass: 500 kg target, 150 kg fiducial Light collection:

92 8" Hamamatsu R5912-02 MOD PMTs

Vessel: stainless steel, with modular optical cassettes inserted

Shielding: 10 cm acrylic & 20 cm Ar, in ~8m water shield

Sensitivity: SI cross section 2 x10⁻⁴⁵cm²

http://www.symmetrymagazine.org/article/november-2012/voyage-to-snolab

MiniCLEAN Design

A WIMP Event

A WIMP, X,

has a coherent elastic scatter with an argon nucleus

The nuclear recoil then causes EUV scintillation, I28 nm

TPB Re-emission

TPB

The UV light is absorbed by the TPB wavelength shifter, an evaporative coating on the acrylic face, which re-emits visible light

TPB Coating done at International Vacuum

otal Efficiency 1.4

1.6

TPB Emission Efficiency

TPB Re-emission spectrum Gehman et al. NIM A654 (2011) 116-121

Lightguide

Light then travels through transparent acrylic. UV absorbing acrylic was surprisingly found by our DEAP colleagues to be best, absorption lengths of ~few meters at 420 nm.

Acrylic plug sides will be silver coated, reflectivity >95%

Lightguide covered with 3M DESR foil reflector.

PMTs and Bases

PMTs are 8" Hamamatsu R5912-02MOD 14 dynodes, Pt underlay, frosting

From whole optics chain we expect 6 p.e./keV

Bases: single layer kapton with conformal coating low mass Gore HV cable

Pulse Shape Discrimination

In LAr, $t_{singlet} = 6 \text{ ns}, t_{triplet} = 1.6 \text{ us}$ Fprompt ~ .3 for electron recoils, .7-.8 for nuclear How well can discrimination work? DEAP-1 has demonstrated (stat. Limited) < 6 x 10⁻⁸ 43<E< 86 keV_{ee} Necessary in LAr because of ³⁹Ar

Boulay and Hime, Astropart. Phys. 25, 179 (2006) K.J. Palladino SMU February 11, 2013

³⁹Ar Spike

MiniCLEAN will dope with ³⁹Ar to establish PSD for larger detectors (rejection of 10⁻¹⁰) plan to increase event rate 3-10 x

Side View Top View

KCl target from TRIUMF proton beam, other LANL groups want Si and Al isotopes, we will obtain
 ~1.7 μCi of ³⁹Ar to spike our natural argon

Background Simulations

³⁹Ar beta-decay

Gamma Rays

Surface Alphas

Cosmogenic Neutrons

0

Alpha-n Neutrons

Background: Electronic

I Bq/kg ³⁹Ar___ Requires I x 10⁻⁹ discrimination

³⁹Ar beta-decay
Gamma Rays

Surface Alphas

Cosmogenic Neutrons

Alpha-n Neutrons

U/Th Gammas from PMTs: ~7x10⁹/yr high energy, large radius, fail Fprompt cut Results from DEAP-1 at SNOLab (C. Jillings CAP'11): Rejection < 3 x10⁻⁸ 120-240 p.e.

Likelihood ratio, Lrecoil, computed using the p.e. arrival times increases the separation between nuclear and electronic recoils.

Threshold of 12.5 keV_{ee} $< 1^{39}$ Ar background /yr.

MiniCLEAN collaborators are looking at DEAP-1 data to study L_{recoil} near threshold.

K.J. Palladino SMU February 11, 2013

 P_{leak} 10^{-2} -microCLEAN PSD + DEAP1 PSD 10^{-10} Boulay, et al., 10^{-4} arXiv:0904.2930 10^{-5} 10^{-6} 10-7 10^{-8} 10^{-9} 50 100 150 200 250 300 Energy (keVr) PRFI IMINARY 10⁻⁸ Simulation Differential Leakage 10⁻⁹ Fprompt L_{recoil} 10⁻¹⁰ 10⁻¹¹ 150 200 50 250 100 # photoelectrons (pe)

Background: Alphas

Rn daughters plating out on TPB

 ³⁹Ar beta-decay
 Gamma Rays
 Surface Alphas
 Cosmogenic Neutrons
 Alpha-n Neutrons

can be a dangerous background Acrylic 2 µm TPB waveshifter α 206Ph LAr X 1/3000 from Fiducialization 10⁻¹ X 1/10 from Energy RO 10⁻² 10³ < I event/yr after energy and</p> fiducial volume cuts 300 200 250 350 reconstructed radius (mm) K.J. Palladino SMU February 11, 2013

Improved discrimination:

Background: Neutrons

³⁹Ar beta-decay
Gamma Rays
Surface Alphas

Cosmogenic Neutrons

Alpha-n Neutrons

Neutron Verification

Checked low energy neutron physics in Geant4 (Neutron_HP, using cross sections from G4NDL3.13)

> Interference between s-wave and hard-sphere scattering gives deep resonant dip in the elastic cross-section

Background: Neutrons

³⁹Ar beta-decay
 Gamma Rays
 Surface Alphas
 Cosmogenic

Neutrons

Alpha-n Neutrons

Simulation of Mei & Hime neutron distribution <<I event/yr

Background: Neutrons

³⁹Ar beta-decay
Gamma Rays
Surface Alphas

Cosmogenic
 Neutrons

Alpha-n Neutrons

U/Th decay chain alphas in PMT glass produce neutrons (primarily off Boron)

Neutrons will have multiple scatters - and >90% scatter inelastically

~few events/yr prior to Lrecoil and multi-scatter cuts

Background Simulations

Making It So

K.J. Palladino SMU February 11, 2013

Ħ

42

SNOLab Cube Hall

43

Construction: Veto Tank

Veto String Test Assembly at Bates Lab, MIT

Construction: Outer Vessel

Outer Vessel Transport

Outer Vessel Transported Underground 2 Weeks Ago

Construction: Inner Vessel

IV Pressure and Vacuum Test

Assembly, Pressure test and Vacuum test completed at Winchester Precision Technologies, in NH, in September 2012

Inner Vessel Transport

Inner Vessel Transported Underground December 9th, 2012

IV Underground

ruary 11, 2013

Program Goals

0

0

0

WIMP sensitivity to 2 x 10⁻⁴⁵ cm² from two year run

Show Position/energy/Particle ID reconstruction

 PSD is the primary goal of MiniCLEAN in 2013: Achieved with ³⁹Ar spike

Measure background rates in-situ

Constrain systematics with calibration

CLEAN

45T CLEAN detector proposed in G2

Simple cylindrical design

15T fiducial volume, capable of seeing ~15 events a year if a 10⁻⁴⁶ cm² cross section

Conclusion

0

MiniCLEAN @SNOLAB Dark Matter MiniCLEAN will be running summer 2013

³⁹Ar spike in MiniCLEAN Fall 2013

 Liquid Noble detectors in single and dual phase are scalable

Next generation dark matter detectors will probe far in the WIMP phase space

Backup Slides

Dark Matter Parameter

Space

56

Spin-dependent

Spin dependence for unpaired nucleons: don't see A² enhancement, do see xs ~ J(J+1)

Spin-dependent may indicate that dark matter is it's own antiparticle

Latest results from Xenon100 arXiv:1301.6620

Event Rates

Axions

Axions are light pseudoscalars that enforce strong CP conservation

Dark matter mass window: 10⁻⁶ ev < m < 10⁻² eV

axion-γγ coupling has
few parameters and
little model dependence:
good place to look

L. Rosenberg, IDM 2012

Light shining through walls, and solar experiments probe higher couplings & masses

Microwave cavity experiments have greatest reach in the Dark Matter region, ADMX is the leading program, which will have statements soon about axion cold dark matter K.J. Palladino SMU February 11, 2013

Dark Forces

Indirect detections (positron excess, lack of antiproton excess, WMAP haze) could be explained by a dark sector with "heavy photon" new boson A', and mA' < 1 GeV

Can also explain muon g-2

Fixed target experiments can look for A' production and decay

A' & Backgrounds

0

Standard QED processes look the same as A' production and decay

Backgrounds are 10⁴ times more likely

Signals will be a narrow resonance on a smooth background, excellent mass resolution is needed

B.Wojtsekhowski, PANIC 2011

A' Experiments

HPS (Heavy Photon Search): forward spectrometer behind CLAS, 200-500 nA beams at 2.2 and 6.6 GeV with a tungsten target

APEX (A Prime Experiment) : using the HRS in Hall A, 80 uA at 4 energies from 1.1 to 4.5 GeV with tantalum and tungsten targets

DarkLight (Detecting A Resonance Kinematically with eLectrons Incident on a Gaseous Hydrogen Target): compact solenoidal detector surrounding the target, using the J-Lab FEL, 10 mA current at 100 MeV with a hydrogen target

