

Searching for Dark Matter in a Bubble Chamber

Hugh Lippincott, Fermilab Southern Methodist University March 4, 2013

There is pretty strong consensus regarding how much stuff there is in the universe

By that same consensus, we only understand 4% of it

• Galaxy rotation curves

- Galaxy rotation curves
- Galaxy clusters

Fritz Zwicky, 1930

- Galaxy rotation curves
- Galaxy clusters

- Galaxy rotation curves
- Galaxy clusters

- Galaxy rotation curves
- Galaxy clusters
- Gravitational lensing

- Galaxy rotation curves
- Galaxy clusters
- Gravitational lensing

- Galaxy rotation curves
- Galaxy clusters
- Gravitational lensing
- Cosmic microwave background

- Galaxy rotation curves
- Galaxy clusters
- Gravitational lensing
- Cosmic microwave background

- Galaxy rotation curves
- Galaxy clusters
- Gravitational lensing
- Cosmic microwave background
- Galactic collisions

So what is it?

- We know it interacts gravitationally
- It is "dark" should not interact with light or electromagnetism
- Nearly collisionless
- Slow

Axions Champs Kaluza-Klein particles Many more WIMPS, WIMPzillas, Light WIMPS

WIMPs

- Most discussed candidate is Weakly Interacting Massive Particle
 - Produced during big bang
 - Decouples from ordinary matter as the universe expands and cools
 - Still around today with densities of about a few per liter

 Supersymmetry produces a theoretical candidate in the lightest supersymmetric partner, but others exist

How do we find it?

 Indirect - detect annihilation products from regions of high density like the sun or the center of the galaxy

Fermi bubbles, courtesy of NASA

How do we find it?

- Indirect detect annihilation products from regions of high density like the sun or the center of the galaxy
- Accelerators create a WIMP at the LHC
 - Missing ET and monojet searches

How do we find it?

- Indirect detect annihilation products from regions of high density like the sun or the center of the galaxy
- Accelerators create a WIMP at the LHC
 - Missing ET and monojet searches
- Direct detection WIMPs can scatter elastically with nuclei and the recoil can be detected

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv$$

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2\mu_\rho^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv \tag{1}$$

The differential cross section (for spin-independent interactions) per kilogram of target mass per unit recoil energy is

$$\frac{dR}{dQ} = \frac{\rho_0}{m_{\chi}} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv$$

(1)

Dark matter density component, from local and galactic observations with historically a factor of 2 uncertainty

$$\frac{dR}{dQ} = \frac{\rho_0}{m_{\chi}} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv \tag{1}$$

- Dark matter density component, from local and galactic observations with historically a factor of 2 uncertainty
- The unknown particle physics component, hopefully determined by experiment
 - Proportional to A² for most models

$$\frac{dR}{dQ} = \frac{\rho_0}{m_{\chi}} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv \qquad (1)$$

- Dark matter density component, from local and galactic observations with historically a factor of 2 uncertainty
- The unknown particle physics component, hopefully determined by experiment
 - Proportional to A² for most models
- The nuclear part, approximately given by $F^2(Q) \propto e^{-Q/Q_0}$ where $Q_0 \sim \frac{80}{A^{5/3}}$ MeV

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2\mu_p^2} \times F^2(Q) \times \int_{V_m} \frac{f(v)}{v} dv \qquad ($$

- Dark matter density component, from local and galactic observations with historically a factor of 2 uncertainty
- The unknown particle physics component, hopefully determined by experiment
 - Proportional to A² for most models
- The nuclear part, approximately given by $F^2(Q) \propto e^{-Q/Q_0}$ where $Q_0 \sim \frac{80}{A^{5/3}}$ MeV
- The velocity distribution of dark matter in the galaxy of order 30% uncertainty, and $v_m = \sqrt{Q/2m_r^2}$

The energy scale

- Energy of recoils is tens of keV
- Entirely driven by kinematics, elastic scattering of things with approximately similar masses (100 GeV) and v ~ 0.001c (270 km/s)

$$\frac{1}{2}m_N v_N^2 = \frac{1}{2} \times 100 \,\text{GeV} \times 10^{-6} = 50 \,\text{keV}$$

▶ Integrated rate above threshold, 100 GeV WIMP, $\sigma_0 = 10^{-45}$ cm²

$$I = \int_{Q_{thresh}} dQ \, dR/dQ = \int_{Q_{thresh}} dQ \frac{\rho_0}{m_\chi} \frac{\sigma_0 A^2}{2\mu_p^2} F^2(Q) \int_{V_m} \frac{f(v)}{v} dv$$

Looking for a handful of events

The canonical plot

- Limited at low mass by detector threshold
- Limited at high mass by density

So we look for WIMPs

- A few hundred just passed through us, and we might expect a handful of counts in a detector per year
- The problem is that background radioactivity is everywhere!

100 events/second/kg =
3,000,000,000,000 events/year
in a ton-scale experiment

So we look for WIMPs

- A few hundred just passed through us, and we might expect a handful of counts in a detector per year
- The problem is that background radioactivity is everywhere!

100 events/second/kg =
3,000,000,000,000 events/year
in a ton-scale experiment

Backgrounds!

• Cosmic rays are constantly streaming through

 All experiments have to go underground these days to get away from cosmic rays

• Cosmic rays are constantly streaming through

- All experiments have to go underground these days to get away from cosmic rays
- Radioactive contaminants rock, radon in air, impurities
 - Emphasis on purification and shielding

• Cosmic rays are constantly streaming through

- All experiments have to go underground these days to get away from cosmic rays
- Radioactive contaminants rock, radon in air, impurities
 - Emphasis on purification and shielding
- The detector itself steel, glass, detector components
 - Discrimination can you tell signal from background using some microscopic physics that distinguishes the two?

CDMS - Charge to heat

Xenon -Charge to light

³⁰ Argon - Pulse shape discrimination

• Cosmic rays are constantly streaming through

- All experiments have to go underground these days to get away from cosmic rays
- Radioactive contaminants rock, radon in air, impurities
 - Emphasis on purification and shielding
- The detector itself steel, glass, detector components
 - Discrimination can you tell signal from background using some microscopic physics that distinguishes the two?

Bubble Chambers!

Chicagoland Observatory for Underground Particle Physics (COUPP)

[Some debate over the pronunciation (should the Ps be silent?)]

COUPP bubble chamber

- Pressure expansion creates superheated fluid, CF₃
 - F for spin-dependent
 - | for spin-independent
 - Alternatives e.g. C₃F₈
- Particle interactions nucleate bubbles
- Cameras see bubbles
- Recompress chamber to reset

Why bubble chambers?

- To form a bubble requires two things
 - Enough energy
 - Enough energy density length scale must be comparable to the critical bubble size
- By choosing superheat parameters appropriately (temperature and pressure), bubble chambers are blind to electronic recoils

Why bubble chambers?

Why bubble chambers

- Easy to identify multiple scattering events Neutron backgrounds
- Easy DAQ and analysis chain
 - Cameras
 - Piezos
- No PMTs, no cryogenics

Why not bubble chambers?

- Threshold detectors no energy resolution
 - Harder to distinguish some backgrounds
 - Alphas were a big concern
 - Energy threshold calibrations are hard and important
- Bubble chambers are slow about 30 s of deadtime for every event
 - Overall rate must be low

About those alphas

- Discovery of acoustic discrimination against alphas by PICASSO (Aubin et al, New J. Phys 10:103017, 2008)
 - Alphas deposit energy over tens of microns
 - Nuclear recoils deposit theirs in tens of nanometers
- In COUPP bubble chambers, alphas are several times louder

The COUPP program

- COUPP4: A 2-liter chamber operating at SNOLAB since 2010
- COUPP60: Up to 40 liters, commissioning at SNOLAB now
- COUPP500:Ton scale detector, funded by NSF and DOE, at SNOLAB in 2015?

COUPP4: First run 2010-2011

- 17.4 live days at 8 keV threshold
- 21.9 live days at 11 keV threshold
- 97.3 live days at 16 keV threshold
- 79% acceptance for nuclear recoils after all cuts (including fiducial)

COUPP4: Acoustic discrimination

- Better than 99.3% rejection against alphas at 16 keV threshold
 - Limited by statistics, and backgrounds

This is what dark matter would sound like

This is what dark matter would sound like

This is what an alpha sounds like

This is what an alpha sounds like

Both together, just to hear the difference

- 20 WIMP candidates (8 at 8 keV, 6 at 11 keV, 8 at 16 keV)
 - 3 multiple bubble events imply neutrons

- 20 WIMP candidates (8 at 8 keV, 6 at 11 keV, 8 at 16 keV)
 - 3 multiple bubble events imply neutrons
 - U,Th in the piezo-acoustic sensors and the viewports

- 20 WIMP candidates (8 at 8 keV, 6 at 11 keV, 8 at 16 keV)
 - 3 multiple bubble events imply neutrons
 - U,Th in the piezo-acoustic sensors and the viewports
- Remaining excess of singles at low threshold
 - Time clustering
 - Correlated with activity at water-CF₃I interface

 Given uncertainties on backgrounds, no background subtraction: PRD 86:052001 (2012)

 Given uncertainties on backgrounds, no background subtraction: PRD 86:052001 (2012)

Removed known neutron sources and improved fluid purification

• Second run ended last November

Threshold and efficiency

 Threshold determined from Seitz, Phys. of Fluids 1, 2 (1958)

- Calibration required to validate this model
 - Complicated by three different types of recoils in CF₃

Carbon and fluorine

- Use neutron calibration sources at SNOLAB
- Compare MCNP-predicted rates of single, double, triple and quadruple bubble events with observation
- Data show a shortfall of events compared to simulation of the Seitz Model- i.e. the threshold is not a step function

What about iodine?

- Main sensitivity to spin independent dark matter from iodine
 - 85% of neutron source interactions are with C and F
 - Heavy radon nuclei are a proxy, but we'd like a direct calibration
- \bullet Why does the nucleus matter? Recall that the recoil track length L must be comparable to the bubble radius $R_{\rm C}$

- Bubble chambers are insensitive to MIPs
 - Elastic scattering of charged particles can be tracked with very high precision

Provides event by event energy information bubble chambers normally can't provide

- Test beam at Fermilab with a silicon pixel telescope
- Designed a new test tube sized bubble chamber

Beam run at Fermilab in March, 2012

- Analysis shows that iodine threshold is very close to a step function at the predicted energy
 - Limited by resolution (MCS) and statistics

- Engineering run at shallow site in 2010
 - Low backgrounds and acoustic discrimination

- Engineering run at shallow site in 2010
 - Low backgrounds and acoustic discrimination
 - Fluid darkening due to photodissociation of iodine
 - Excessive surface rate

- Engineering run at shallow site in 2010
 - Low backgrounds and acoustic discrimination
 - Fluid darkening due to photodissociation of iodine
 - Excessive surface rate
- Solutions tested in second run November, 2011
- Moving to SNOLAB since last summer

Running by end of month?

- Funded by NSF and DOE (not construction)
- Engineering well underway
- Merger with PICASSO collaboration for ton scale experiment
- Construction 2014-2015?

COUPP4 redux

- Alternate fluid C₃F₈
 - Lower threshold (down to 3 keV in test stand)
 - Improved sensitivity at low WIMP mass
 - Improved SD sensitivity
- First effort in concert with the PICASSO collaboration
- Possible use in COUPP500 chamber

Projections

Monday, March 4, 2013

Bubble chambers are fun!

Dark matte

Residuals (cpd/kg/keV)

0.02

-0.02 -0.04

-0.06 -0.08

-0.1

0

DAMA positive claim for 10 years!

Two years ago, CoGeNT saw an excess and now a possible annual modulation

Residuals (cpd/kg/keV)

0.02 0 -0.02

-0.04 -0.06 -0.08 -0.1

DAMA positive claim for 10 years!

Two years ago, CoGeNT saw an excess and now a possible annual modulation

Monday, March 4, 2013

⁸⁸YBe (γ,n) neutron source

Mono-energetic 152 keV neutron source.

TABLE 3.	Results of present measure- ments
E_{γ} (keV)	σ(<i>E</i> _γ) (mb)
1674.7	0.88±0.16
1705.2	1.33 ± 0.24
1724.9	1.10±0.20
1778.9	0.73 ± 0.13
1836.0	0.47±0.09
2167.6	0.18±0.04

M. Fujishiro et al., Can. J. Phys. **60**, 1672 (1982).

WIMP-nucleon scattering

Spin-independent

Spin-dependent

$\sigma_0 = \frac{4\mu^2}{\pi} \Big[f_\rho N_\rho + $	$f_n N_n^2 + \frac{32G_F^2 \mu^2}{\pi}$	$\frac{J+1}{J} \Big[a_p \big\langle S_p \big\rangle + a_n \big\langle S_n \big\rangle$	

Nucleus	Z	Odd Nucleon	J	$\langle S_p \rangle$	$\langle S_n \rangle$	C^p_A/C_p	C_A^n/C_n
¹⁹ F	9	р	1/2	0.477	-0.004	9.10×10^{-1}	6.40×10^{-5}
²³ Na	11	р	3/2	0.248	0.020	1.37×10^{-1}	8.89×10^{-4}
²⁷ Al	13	р	5/2	-0.343	0.030	2.20×10^{-1}	1.68×10^{-3}
²⁹ Si	14	n	1/2	-0.002	0.130	1.60×10^{-5}	6.76×10^{-2}
³⁵ Cl	17	р	3/2	-0.083	0.004	$1.53{ imes}10^{-2}$	3.56×10^{-5}
³⁹ K	19	р	3/2	-0.180	0.050	7.20×10^{-2}	5.56×10^{-3}
⁷³ Ge	32	n	9/2	0.030	0.378	1.47×10^{-3}	2.33×10^{-1}
⁹³ Nb	41	р	9/2	0.460	0.080	3.45×10^{-1}	1.04×10^{-2}
¹²⁵ Te	52	n	1/2	0.001	0.287	4.00×10^{-6}	3.29×10^{-1}
^{127}I	53	р	5/2	0.309	0.075	1.78×10^{-1}	1.05×10^{-2}
¹²⁹ Xe	54	n	1/2	0.028	0.359	3.14×10^{-3}	5.16×10^{-1}
¹³¹ Xe	54	n	3/2	-0.009	-0.227	1.80×10^{-4}	1.15×10^{-1}