

MEDIPIX: COLLABORATION AND DETECTORS

Re Ballabriga, CE Alozy, M. Campbell, M. De Gaspari, E.H.M. Heijne, X. Llopart, T. Poikela, L.Tlustos, P. Valerio, W.Wong, D.Krapohl, S. Procz, M. Fiederle, S. Pospisil, J. Jakubek, V. O'Shea, Kenway Smith, Dzmitry Maneuski, Jan Visser, A. Bulter, J. Marchal, I.Horswell, H. Graafsma, E. Hamann, Z. Vykydal, J. Visschers, S. Vahanen, N. Tartoni, C. Ponchut, R. Plackett, S. Petterson, B. Norlin, J. Jungman, T. Koenig, C. Frojdh, N. Andersson, D. Pennicard, G. Anton, P. Butler...

Outline

- A few words about CERN
- Hybrid Pixel Detectors
- Medipix Collaboration
 - Designed chips
- Applications
 - "Color" X-ray Imaging
 - Mixed Field Dosimetry

The world's largest particle physics research laboratory

An international effort of:

- 20 European Member States
- 7 Observer or Acceding States
- **28 Non-Member States involved in particular projects**

~ 2 400 staff members (75% are applied physicists, engineers and technicians)

~ 11 500 users from all over the world (mostly physicists)

Annual budget ~ USD 1 000 000 000

An aerial view of CERN and the Large Hadron Collider Accelerator Complex

The Large Hadron Collider

Two counter rotating proton beams on 27km circumference ring

Particle bunch crossings 40 M times per second

100 billion particles in each bunch

Several 1 000 particles created per bunch crossing

7 TeV on 7 TeV Collisions

Entire magnet ring cooled to 1.8K

Lead Ion Collision ALICE

Hybrid Pixel Detectors

Charge carrier simulation CdTe

By David Krapohl, Mid Sweden University

Cosmic Particles in the Alice Experiment

Can this be used for something else?

- The idea of using the single photon counting principle with hybrid pixel detectors for X-ray imaging dated back to late 80s
- The Medipix collaboration was formed to use the knowledge gained in the design and fabrication of hybrid pixel detectors to make a single photon counting system for X-ray radiography.
- Initial partners of the collaboration were CERN, the University of Freiburg (Germany), the University of Glasgow (Scotland) and the INFN of Pisa and Napoli

Figure 1.7. The Medipix1 pixel cell schematic.

Medipix 2 and 3 Collaboration

- Medipix2 collaboration member
- Medipix2 and 3 collaboration member

www.cern.ch/medipix

The Medipix2 Collaboration

Institut de Fisca d'Altes Energies, Barcelona, Spain University of Cagliari and INFN Section thereof, Italy CEA, Paris, France CERN, Geneva, Switzerland, 🕂 Universitat Freiburg, Freiburg, Germany, University of Glasgow, Scotland, UK Universita' di Napoli and INFN Section thereof, Italy NIKHEF, Amsterdam, The Netherlands University of Pisa and INFN Section thereof, Italy Laboratory of Molecular Biology, Cambridge, England, UK Mid Sweden University Sundsvall, Sweden, Czech Technical University, Prague, Czech Republic ESRF, Grenoble, France Academy of Sciences of the Czech Republic, Prague Universität Erlangen-Nurnberg, Erlangen, Germany University of California, Berkeley, USA University of Houston, Texas, USA

The Medipix3 Collaboration

University of Canterbury, Christchurch, New Zealand **CEA**, Paris, France CERN, Geneva, Switzerland, **DESY-Hamburg**, Germany Albert-Ludwigs-Universität Freiburg, Germany, University of Glasgow, Scotland, UK Leiden University, The Netherlands **NIKHEF, Amsterdam, The Netherlands** Mid Sweden University, Sundsvall, Sweden IEAP, Czech Technical University, Prague, Czech Republic **ESRF.** Grenoble. France Universität Erlangen-Nurnberg, Erlangen, Germany University of California, Berkeley, USA VTT, Information Technology, Espoo, Finland ISS, Forschungszentrum Karlsruhe, Germany **University of Houston, USA** Diamond Light Source, Oxfordshire, England, UK Universidad de los Andes, Bogota, Colombia **University of Bonn, Germany AMOLF, Amsterdan, The Netherlands ITER, Cadarache, France Technical University of Munich, Germany**

In integrating detectors, low energy photons information is masked by high energy photons. $W \propto E$

In Photon Counting with 1 threshold

$$W = 1$$

Photon counting with multiple thresholds allows to optimize the weighting function AND allows k-edge identification

In integrating detectors, low energy photons information is masked by high energy photons. $W \propto E$

 $\gamma \propto L$

In Photon Counting

W = 1

Photon counting with multiple thresholds allows to optimize the weighting function

$$W \sim E^{-3}$$

(optimal function for low contrast objects)

 μ =40 μ s (mean time constant between the arrival of two consecutive pulses) τ =1 μ s (preamplifier reset time constant)

High flux situation

 μ =4 μ s (mean time constant between the arrival of two consecutive pulses) τ =1 μ s (preamplifier reset time constant) The preamplifier output shows "pile up" degrading the performance of the

measurement

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
	Event by event charge reconstruction and allocation
Dosepix (2011)	0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25μm² ToA, ToT1 (simultaneous)/ Frame based (ZC) 23

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm ² PC / Frame based readout
Dosepix (2011)	Event by event charge reconstruction and allocation 0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm ² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25µm ² ToA, ToT1 (simultaneous)/ Frame based (ZC) 24

- Hybrid Pixel Detector
- 256x256 pixels
- 55um pixel pitch
- Single Photon Processing
 - Time-over-Threshold
 - Time of arrival
 - Photon Counting

Capable of operating in both electron and hole collection mode

Digital back-end electronics

Timepix

- Compact system 15x60mm for the USB Lite read out including sensor
- USB Connection to standard PC
- Pixelman control software allowing scripting and plugins

Usb read out

Usb lite

Timepix pixel cell schematic

X. Llopart, et al., "Timepix, a 65k programmable pixel readout chip for arrival time, energy and/ or photon counting measurements" NIM A 581 (2007) 485-494.

Timepix pixel layout

	Holes [h ⁺]	Electrons [e ⁻]
Electronic noise	99.4 ± 3.8 e ⁻ rms	104.8 ± 6 e ⁻ rms
Gain	~16.7 mV/ke ⁻	~16.3 mV/ke ⁻
Threshold DAC step gain	$24.7 \pm 0.7 e^{-1}$	$25.4 \pm 1.2 e^{-3}$
CSA linearity [0-20 ke-]	>99.9%	
TOT dynamic range	> 200 ke ⁻ (meası	ired up to ~40 ke ⁻)
$\Delta TOT/TOT$ (Qin>Thr + 1 ke-)	<.	5%
Time-walk	<5	0 ns
Threshold variation before adjustment	~240	e ⁻ rms
Threshold variation after adjustment	~35	e ⁻ rms
Minimum detectable charge	~65	50 e ⁻
TOT energy resolution after correction	1300 e	FWHM
Static pixel analog consumption	~6.	5 μ W
Static pixel digital consumption	~7 µW @ Ref	_Clk =80 MHz

Minimum Detectable Charge = $6\sqrt{Pixel_ENC^2 + Threshold_spread^2}$

Full chip minimum detectable charge [e]

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
	Event by event charge reconstruction and allocation
Dosepix (2011)	0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
	. e. eenipatiole accigit
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25μm² ToA, ToT1 (simultaneous)/ Frame based (ZC) 32

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm ² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	 0.13μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout Event by event charge reconstruction and allocation
Dosepix (2011)	0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25μm ² ToA, ToT1 (simultaneous)/ Frame based (ZC) 33

Advantages of scaling

This applies only to digital components

Motivation for the Medipix3 chip

Motivation for the Medipix3 chip

- Simulated data
- CdTe 300µm
- 110µm pixel pitch
- 40keV monochromatic beam
- The influence of fluorescence photons in the energy spectrum is seen

The algorithm for charge reconstruction and hit allocation: Charge Summing Mode

1. TH₀ is applied to the local signal

2. Arbitration circuitry identifies the pixel with largest charge and supresses the pixels with lower signal

3. In parallel, the charge has been reconstructed in the analog summing circuits

4. The pixel with highest charge checks the adjacent summing circuits to see if at least one of them exceeds TH₁

Motivation for the Medipix3 chip

Motivation for the Medipix3 chip

- Simulated data
- CdTe 300µm
- •110µm pixel pitch
- 40keV monochromatic beam
- Fluorescence photons are included in charge sum if their deposition takes place within the volume of the pixels neighbouring the initial deposition

Medipix3RX Pixel layout

Modes of operation

Fine pitch mode, Single Pixel Mode

Fine pitch mode, Charge Summing Mode

Spectroscopic mode, Single Pixel Mode

- 110µm pixel pitch
- 8 thresholds/pixel
- 8 counters

Spectroscopic mode, Charge Summing Mode

Measurements

Measurement of 109Cd energy spectrum

Measurement in HGM @ very low flux conditions Only 4 pixels masked in the matrix Raw data, No realignment in data In Charge Summing Mode each photon is counted once

Measurements (60keV, 110μm pitch, 2mm CdTe)

Energy [keV]

Count rate measurements

49

Imaging a μ SD card in CSM

μ Sd card

4x3 tiles, magnification 3.2xX-ray tube voltage: 30 kVp, Tube current: 100μ A, 1mm Al filtering, 5s acquisition

Courtesy of S. Procz (Freiburger Materialforschugszentrum FMF, Germany) 50

Medipix3RX electrical characterization: measurements obtained (chip with sensor)

	SPM	CSM	Units
Gain (SHGM)	25	55	e⁻/DAC step
ENC (SHGM)	75	150	e⁻ r.m.s.
Threshold dispersion (SHGM)	37.5	85.5	e⁻ r.m.s.
Peaking time	120	120	ns
Power consumption	0.78	1	W/chip
Dead time/channel*	0.22/4.5	2.94/0.34	μs/MHz
Count rate*	375	28	Mc/mm ² s

*Measurements with CdTe, 2mm thick at 110µm pitch (paralizable model fit)

(For more details about count rate and energy spectra measurements with CdTe see T. Koenig's talk (Detectors and simulations 2))

- Through Silicon Via is a vertical electrical connection passing through a silicon wafer
- This eliminates the need for wirebonds

(Active area)/(Total die area) with wire bond connections 88.6% (Active area)/(Total die area) TSV connections 94.3%

J. Alozy 52

Medipix3RX Modes of Operation

System Configuration	Pixel Operating Modes	# Thresholds		
	Single Pixel Mode	2		
Fine Pitch Mode \rightarrow 55 µm x 55 µm	Charge Summing Mode	1+1		
Spectrospecie Mede > 110 µm x 110 µm	Single Cluster Mode	8		
Speciroscopic mode \rightarrow 110 µm x 110 µm	Charge Summing Mode	4+4		
Front-end Gain Modes	Linearity (5% deviation)	# Thresholds		
Super High Gain Mode	~5 ke⁻			
High Gain Mode	~9 ke-	2		
Low Gain Mode	~12.5 ke ⁻	2		
Super Low Gain Mode	~18 ke ⁻]		
Pixel Counter Modes	Dynamic range	# Counters		
1-bit	1	2		
6-bit	63	2		
12-bit	4095	2		
24-bit	16777215	1		
Pixel Readout Modes	# Active Counters	Dead Time		
Sequential Count-Read (SCR)	2	Yes		
Continuous Count-Read (CCR)	1	No		

Medipix3RX electrical characterization: measurements obtained (chip with sensor)

Gain, noise and threshold dispersion measured for two different operating points after energy calibration of the assembly. Chip with sensor $300\mu m$ Si, p-on-n.

Gain Mode	Mode	Gain (e ⁻ / DAC step)	ENC (e ⁻ r.m.s.)	Threshold dispersion (e ⁻ r.m.s.)	Gain Mode	Mode	Gain (e ^{-/} DAC step)	ENC (e ⁻ r.m.s.)	Threshold dispersion (e ⁻ r.m.s.)
SHGM	SPM	37	86	55.5	SHGM	SPM	25	72	37.5
	CSM	77	203	115.5		CSM	57	148	85.5
HGM	SPM	66	95	99	HGM	SPM	45	80	67.5
	CSM	142	200	213		CSM	107	174	160.5
LGM	SPM	94	106	141	LGM	SPM	65	93	97.5
	CSM	207	219	310		CSM	155	201	232.5
SLGM	SPM	123	119	184	SLGM	SPM	87	107	130.5
	CSM	279	247	418		CSM	207	233	310.5

Ipreamp=60, Ishaper=90 (low power)

Ipreamp=250, Ishaper=200 (high power)

Other characteristics of the chip:

Peaking time ~120ns

Measurements with CdTe, 2mm thick at 110 μ m pitch show τ_{SPM} =0.22 μ s and τ_{CSM} =2.94 μ s (paralizable model fit)

(More details about count rate measurements and measurement of energy spectra with CdTe: T. Koenig talk (Detectors and simulations 2))

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Dosepix (2011)	Event by event charge reconstruction and allocation 0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25µm² ToA, ToT1 (simultaneous)/ Frame based (ZC) 55

Dosepix

- Developed in the framework of the Medipix2 collaboration
- Main application: dosimetry
- 16x16 pixel matrix, 220x220µm² pixels
- CMOS 0.13µm technology
- 15mW full chip consumption
- 1 global analog threshold
- Operation Modes:
 - Energy binning mode
 - 12 bit ToT measurement @100MHz
 - 16 digital thresholds for event-byevent energy binning
 - 16x16bit counters
 - Photon counting mode (8 bits)
 - Integral ToT (24 bits)

W.S.Wong et al., Electrical measurements of a multi-mode hybrid pixel detector ASIC for radiation detection, JINST 7, 2012. doi:10.1088/1748-0221/7/01/C01056

Pixel in Dosimetry Mode

Winnie Wong

Figure 5. Time over threshold counts vs. injected charge, measured by a single pixel programmed in energy integration mode. The data shown here is the average of 20 measurements per analogue test-pulse voltage setting. The analogue threshold was set at $\sim 1.7 \text{ ke}^-$.

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm ² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm ² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Dosepix (2011)	Event by event charge reconstruction and allocation 0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)] 0.13μm CMOS, 256x256 pixels, 55x55μm²] PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix	0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25μm² ToA, ToT1 (simultaneous)/ Frame based (ZC) 60

Smallpix

- Developed in the framework of the Medipix3 collaboration
- Applications: Particle tracking by time stamping and total deposited charge measurement (e.g. Radiation and beam monitors, dosimetry, neutron imaging)
- 512x512 pixel matrix, ~40x40 μ m² pixels
- CMOS 0.13μm technology
- Simultaneous measurement of ToA + ToT1 or PC + iToT
- Frame based readout with zero compression (on-pixel and percolumn)
- Fast OR
- Shutdown/wake-up feature for the front end
- Design compatible for Through Silicon Via technology

Smallpix architecture

Target Active area TSV connections ~100% Chip can be tiled on 4 sides

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm ² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)	0.25μm CMOS, 256x256 pixels, 55x55μm ² PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm ² PC / Frame based readout
Dosepix (2011)	Event by event charge reconstruction and allocation 0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)	0.13μm CMOS, 256x256 pixels, 55x55μm² PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix] 0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25μm² ToA, ToT1 (simultaneous)/ Frame based (ZC)

Timepix3 chip (soon to be submitted for fabrication)

- Developed in the framework of the Medipix3 collaboration (design effort between CERN, Bonn university and Nikhef)
- Applications: Particle tracking by time stamping and total deposited charge measurement (e.g. Radiation and beam monitors, dosimetry, gas detectors, HEP TPC readout)
- 256x256 pixel matrix, $55x55\mu m^2$ pixels
- CMOS 0.13µm technology
- Simultaneous measurement of ToA and ToT per event (48bits/event)
- Packet-based data-driven readout (small readout associated dead time of 375ns)
- Maximum dead time free hit rate of 40 10⁶ hits/s cm² (randomly distributed hits)
- Programmable shutdown/wake-up feature for the front end (analog domain) and/or general clock gating (digital domain)

Pixel Requirements

Pixel size	55 μm x 55 μm
Global Time stamp (bunchID)	40 MHz (25ns)
Global Time stamp range	14bits (409.6 µs)
Accurate Time stamp per pixel	4bits \rightarrow 1.56ns resolution (640 MHz)
Local Oscillator frequency640 MHz (shared by 8 pix	
On-pixel local oscillator tuning	Locked using periphery PLL
TOT range	10 bits (@ 40 MHz)

Pixel Operation Modes

Readout Operation Modes	Op_mode	
ToA & ToT	00	Fast Time (4b @ 640 MHz) ToA (14b @ 40 MHz) ToT (10b @ 40 MHz) Pixel coordinate 16b
		Double hit resolution: 375ns
Only ToA	01	Fast Time (4b @ 640 MHz) ToA (14b @ 40 MHz) pixel coordinate 16b Double hit resolution: 375ns
Event Count & Integral ToT	10	Event count 10b Integral ToT (14b @ 40 MHz) pixel coordinate 16b Shutter-controlled operation
		Non-continuous with Zero Suppression
		Full chip readout time: 1.6 ms @ 320MHz and 8 SLVS lines

Designed chips

Medipix1 (1998)	1μm SACMOS, 64x64 pixels, 170x170μm ² PC / Frame based readout
Medipix2 (2001)	0.25μm CMOS, 256x256 pixels, 55x55μm² PC / Frame based readout
Timepix (2006)] 0.25μm CMOS, 256x256 pixels, 55x55μm ²] PC, ToT, ToA / Frame based readout
Medipix3 (2009)	0.13μm CMOS, 256x256 pixels, 55x55μm ² PC / Frame based readout
Dosepix (2011)	Event by event charge reconstruction and allocation 0.13μm CMOS, 16x16 pixels, 220x220μm ² ToT, PC / Rolling shutter (programmable column readout) Event by event binning of energy spectra (16 digital thrs)
Timepix3 (2013)] 0.13μm CMOS, 256x256 pixels, 55x55μm²] PC; ToT, ToA (simultaneous)/ Data driven readout
Smallpix] 0.13μm CMOS, 512x512 pixels, 40x40μm² (TBD) PC, iToT; ToA, ToT1 (simultaneous)/ Frame based (ZC) TSV compatible design
Clicpix prototype	65nm CMOS, 64x64 pixels, 25x25µm² ToA, ToT1 (simultaneous)/ Frame based (ZC)

CLICpix prototype

Designed in collaboration with the CERN Linear Collider Detector group

ASIC in 65nm CMOS technology designed to fulfill the specifications for the future CLIC vertex detector

- 25x25 μ m² pixel, 64x64 pixel matrix
- Simultaneous 4-bit ToA and TOT measurement
 @100MHz
- Frame based with zero suppression
- Power pulsing

Preliminary characterization on the 65nm CMOS technology done

First prototype chip with full pixel functionality to be tested in coming weeks

Applications

The following slides contain measurements done with Medipix2, Medipix3 and Timepix chips

Imaging in Single Pixel Mode

Mouse paw 10x (25s acq / 15 tiles) (Entire dynamic range)

energy: 30 kVp, power: 3.0 W threshold 0: 50 (DAC value) magnification: 10x (~5µm pixel resolution)

Courtesy of S. Procz (*Freiburger* Materialforschugszentrum FMF, Germany) 71

Imaging in Single Pixel Mode

Mouse paw 10x (25s acq / 15 tiles) (High intensity part)

energy: 30 kVp, power: 3.0 W threshold 0: 50 (DAC value) magnification: 10x (~5µm pixel resolution)

Courtesy of S. Procz (*Freiburger* Materialforschugszentrum FMF, Germany)
Soft tissue imaging

X-ray image of a termite head.

Detail of termite note the phase contrast enhanced edges making visible fine structure of soft tissue inside the palpus and antenna.

First CT reconstruction with CdTe Medipix3 detector

MPX3 55µm CdTe 1mm

5x4 tiles

RA

CT scan courtesy of S. Procz (Freiburger Materialforschugszentrum FMF, Germany)

Energy selective, planar imaging MPX3 CdTe 1mm - Spectroscopic Mode 110µm

Piezo Lighter

Magnification: 1.3x Bias: -320V MPX3 CdTe 1mm Color Mode 4x11 tiles

1 acquisition, 4 thresholds

Courtesy S. Procz

Colour X-ray imaging

Classical-Xayaiyniagæg@innpixæssible to clistictgoisstopetwerentipubesohnetishoddis allow diffateeriati srepteriætisnand absorption of different thicknesses

Colour X-ray imaging

- Measured Spectra (dots) vs
- Theoretical model (lines)
 - Excellent agreement
- 2 Routes:

14

- Multispectral imaging (several thresholds, fast)
- Spectroscopic Imaging (accurate)

Spectroscopic Colour Imaging

Courtesy: A. Butler

- Mixed radiation fields poses problems for dosimetric measurements.
- An advantage of a pixelated detectors is that particles can be identified by their track shape.
- This is based on the different ways the particles interact in the sensor.

Basic Particle Identification

0	0	•	0	•	0	0	9	0	•	0		ů
a	0	•	0		a	•	9	0		0	•	•
0	0	•	0		0		•					•
a		156	215		a	•	9	87	39	116		•
0	0	153	78		0		93		•	0	•	•
a	0	•	0	•	78	46	•	0		0	•	•
0	0		0		0						•	•
0	0	•	0		0	0	•	0		0	•	•

0.5MeV Electron (⁹⁰Sr)

5.5MeV Alpha (²⁴¹Am)

60keV Photons (²⁴¹Am)

Pb ion with delta rays Erik Heijne [2]

Basic Particle Identification

L. Pinsky et al., Proc. IEEE Aerospace Conf., 2007.

Basic Particle Identification

- Possible to categorize particles using track and energy information
- Some types of particles are hard or impossible to separate
- Additional convertors and filters improve the detection specificity

 β^{-} radiation or Compton electrons?

- Neutron have no charge and are therefore not directly detectable by Coulomb interactions in the sensor.
- Thermal neutrons are detected by the production of secondary radiation by neutron capture in a convertor layer
- Ex. n + 6Li $\rightarrow \alpha$ (2.05 MeV) + 3H (2.73 MeV)
- Fast neutrons can be detected by elastic scattering in the sensor layer but for increased efficiency and specificity a hydrogen rich converter material as Poly ethylene is used.

Neutron Detection

Figure 50. a) X-ray radiogram of conversion layers above one of the ATLAS-MPX devices. Integrated response of the device set to high threshold mode to b) thermal neutrons (25 meV) and to fast neutrons of c) 252 Cf (2.1 MeV); d) 241 AmBe (4.5 MeV); e) Van de Graaff accelerator (14 MeV) and f) cyclotron (2 - 30 MeV).

Medipix2MXR with different convertors.

Work done by Z. Vykydal [1] 84

Improved Neutron Detection

- To separate heavy charged particles form neutron response test have been made with a multi layer detector.
- Interactions registered in both layers
 - Low LET signatures minimum ionizing charge particles (muons, energetic electrons,...)
 - High LET signatures highly ionizing charged particles (~10 MeV protons,...)
- Interactions registered in single layer only
 - Low LET signatures photon interactions in one of the sensitive layers
 - High LET signatures fast neutron interactions in polyethylene region or thermal neutron interactions in 6Li region

Example of particle identification using a two layer detector

ATLAS-MPX Network

- 16 Medipix2MXR detectors with neutron convertors
- Placed in the ATLAS
 experimental cavern
- Installed in 2008 before the first LHC beam
- Proposed upgrade to Timepix detectors

Figure 34. The network of ATLAS-MPX detectors in ATLAS.

Work done by Z. Vykydal [1]86

Good agreement with beam luminosity and other instruments

Work done by Z. Vykydal

Radioactive Activation

Work done by Z. Vykydal [I]

Timepix Detectors at ISS

- 5 Timepix Usb Lite detectors with 300um Si sensors are currently in operation at the ISS
- Evaluated as an option for radiation field monitors and personal dosimeters
- Mixed radiation field
- Important to get the right quality factor for heavy ions

Timepix Detectors at ISS

Heavy Ion fragment, Q factor ~ 25

Demonstration

Detection of low energy particles

Particle tracking with Micromegas

Fig. 1. (Top) Schematic view of the detector. An ionizing particle creates several free electrons that drift toward the CMOS chip and create an avalanche between the grid and the chip. (Bottom) SEM picture of an integrated device.

Compared to hybrid-assembled gaseous detectors, our microsystem shows superior alignment precision and energy resolution, and offers the capability to unambiguously reconstruct 3-D radia-

Particle tracking with GEMs

Gamma imaging

GAMPIX developed by CEA-LIST for localization of hot spots of radioactivity

CdTe for detection of 59 keV (²⁴¹Am) – 1,25 MeV (⁶⁰Co)

- Medipix (1,2,3) is a successful collaboration using technology from high energy physics for other applications
- The strength of the collaboration is the diversity of users
- The project is completely self funded
- Medipix is now finding its way back into HEP