

NOvA

Thomas Coan

- Intro
- Detector technology
- Physics reach
- Conclude

SMU, April 2014

Clarification

Neutrinos, NOT Nutria !!

Clarification

Neutrinos, NOT Nutria !!

Fred: Can you check at Peggy Sue's ??

TE Coan/SMU

SMU - Apr 2014

Neutrinos Mix

Solar vs

Homestake, Gallex, SAGE, Super-K, SNO, Borexino

Reactor vs

KamLAND, CHOOZ, ...

Atmospheric vs Accelerator vs

Kamiokande, Super-K

K2K, MINOS, **MiniBOONE**

Neutrinos change flavor \Rightarrow Neutrinos have mass and mix

flavor eigenstates

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

mass eigenstates

TE Coan/SMU

$$|
u_{\alpha}
angle = \sum_{i} U_{\alpha i} |
u_{i}
angle$$

 $U_{\alpha i}$ can be written w/ 3 mixing angles and 1 phase and w/ $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$

• Mixing angle θ_{13} large (sin² $2\theta_{13} = 0.090 + /- 0.009$). • CP violating phase δ unknown.

Neutrinos propagate as mass eigenstates Interact as different (i.e., weak) eigenstates ➤ Oscillations result

In absence of matter (key caveat) & to lowest order:

$$P_{vac}(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\Delta_{atm}$$
$$\Delta_{atm} \simeq 1.27 \left(\frac{\Delta m_{32}^{2}(eV^{2})L(km)}{E(GeV)}\right)$$

Additional sub-dominant terms, sensitive to CPV phase δ :

 $\Delta P_{\delta}(\nu_{\mu} \to \nu_{e}) = J \sin \Delta_{sol} \sin \Delta_{atm} (\cos \delta \cos \Delta_{atm} + \sin \delta \sin \Delta_{atm})$ $J = \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13}$ v v

... but NOvA's neutrinos travel though Earth ...

SMU - Apr 2014

 v_e – e scattering Hamiltonian modified Effective mass eigenstates & mixing angles altered

$$P_{mat}(
u_{\mu}
ightarrow
u_{e}) \simeq (1
ightarrow 2 rac{E}{E_{R}}) P_{vac}(
u_{\mu}
ightarrow
u_{e})$$

 $E_R \cong 12 \text{ GeV}$ (earth's mantle)

 $E(v) \cong 2 \text{ GeV} \Rightarrow 30\%$ enhancement/suppression

NOvA's long baseline key

L/E ~ 400 km/GeV regime:

- Measure $v_{\mu} \rightarrow v_{e}$ & $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ transitions
- Measure $v_{\mu} \rightarrow v_{\mu}$ & $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ survival probability
- Search for CP violation in neutrino sector i.e., measure/constrain δ_CP
- Resolve neutrino mass hierarchy.
- Measure $\sin^2(2\theta_{23})$ with high precision.
- Determine octant of θ_{23}
- Measure PMNS mixing angle θ_{13}
- Other (monoples, supernovae, NSI...)

2-Detector Configuration

Off-Axis Beam Technique

 $\therefore E(v)$ ~independent of parent hadron E

TE Coan/SMU

SMU - Apr 2014

NuMI Beam Upgrade

Booster \rightarrow Recycler \rightarrow MI \rightarrow target p: 8 GeV \rightarrow 120 GeV

- Recycler: $\overline{p} \rightarrow p$ storage ring
 - slip-stack batches in Recycler
 - single turn extraction into MI
 - 53 MHz RF added
- 10 μsec spill every 1.3 sec
- 4.9 \times 1013 p/pulse @120 GeV/p
- 700 kW beam power
- $6 \times 10^{20} \text{ POT/yr}$

NuMI Beam Composition

NuMI Beam Performance

Beam Power < 500 kW pending booster upgrade</p>

NOvA Far Detector Overview

- Low-Z tracking calorimeter 65% active
- Surface location
- 14 kT total mass
- 896 Detector planes
 Alternate x-y layers
 0.15 X₀/layer
 R_M = 9.8 cm (2.5 cells)
- Liquid scintillator cells 32 PEs from far end
- 1-sided readout/plane via avalanche photodiodes (APDs)

NOvA Detector "Atom"

Liquid Scintillator

Mineral oil solvent: 94.6 % (BW) Primary scintillator: 5.2% (BW) pseudocumene Waveshifters: PPO + bis-MSB

Hollow PVC cells provide granularity 15% (BW) TiO₂: high reflectivity walls Each cell: 3.6 cm x 5.7 cm x 15.5 m long

Looped Wavelength Shifting Fiber Maximizes light collection: no mirrors Diameter = 0.7mm, K-27 dye @ 300ppm

Avalanche Photodiode QE = 85% Gain = 100 T_run = -15 C

Why APDs

λ (nm)

Front-end Electronics

Far Detector Construction

2

Far Detector Status

Completion date - July 2014

Far Detector Status (2)

Last block installed 25 Feb 2014

14.3 m

4.2 m

- 0.3 kT mass
- 20k channels
- 1 km from target & 100 m underground
- Cell structure similar to far detector
- Front end & DAQ identical to far detector
- Completion ~May 2014

ν

Final State Topologies

Neutrinos !!

NOvA Preliminary

TE Coan/SMU

Performance w/ Cosmics

- 9.0 kT/14 kT instrumented.
- Lots of cosmics observed.
- Reconstruction & calibration algorithms tested on cosmics

Performance w/ Cosmics (2)

Incoming zenith angle

Incoming azimuthal angle

Planes crossed

- 1/7 detector only.
- 14k data triggers.
- Tracks must pass > 7 planes.
- MC/data agreement good.

Hit Efficiency w/ Cosmics

Far Detector: MC v Data

- Decent MC/data agreement.
- Expected to improve.

- 6×10^{20} POT/yr v's & 6×10^{20} POT/yr anti-v's
- 3 yrs v's + 3 yrs anti-v's
 - $\sin^2 2\theta_{13} = 0.095$, $\sin^2 2\theta_{23} = 0.95$ or 1.0
 - $\Delta m_{32}^2 = 2.35 \times 10^{-3} \text{ eV}^2$

v_e selected	v	anti-v	ν_{μ} selected	ν	anti-v
NC	19	10	QE signal	82	49
v. CC	5	<1	NC bkg	< 1	< 1
Poom w	0	E	Non-QE signal	168	78
Dealli v _e	0	5	NC bkg	14	6
Total bkg	32	15	Uncont. signal	233	134
Signal	68	32	NC bkg	6	3

Need to be patient !!

Mass Hierarchy Sensitivity

δ_CP Sensitivity

v_{μ} Disappearance Measurements

- Both detectors rapidly being completed.
- Far detector performing well.
- Precise measurement of $\sin^2(2\theta_{23})$ & Δm^2_{23} .
- Constrain θ_{23} octant.
- Constrain CP violating angle δ _CP.
- Information on neutrino mass hierarchy.
- Measure θ_{13} .
- NOvA detector finished summer 2014
- Expect first publication late 2014.

Backup

