

In collaboration with: Adam Falkowski, Roni Harnik, Ian Low, Joe Lykken, Daniel Stolarski and experimentalists Yi Chen, Emanuele DiMarco, Maria Spiropulu, Si Xie

Many studies of $h \rightarrow 4\ell$ and $h \rightarrow 2\ell\gamma$ decays before and after discovery...

R. M. Godbole, D. Miller, M. Muhlleitner: 0708.0458 Q. Cao, C. Jackson, W.Y. Keung, I. Low: 0911.3398 Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et. al: 1001.3396 A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu: 1001.5300 J. Gainer, K. Kumar, I. Low, RVM: 1108.2274 S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, et. al: 1208.4018 R. Boughezal, T. LeCompte, F. Petriello: 1208.4311 Avery, Bourilkov, Chen, Cheng, Drozdetskiy, et. al: 1210.0896 J.M. Cambell, W.T. Giele, C. Williams: 1205.3434 J.M. Cambell, W.T. Giele, C. Williams: 1204.4424 J. Gainer, J. Lykken, et. al.: 1304.4936 P. Artoisenet, P. de Aquino, F. Demartin, F. Maltoni, et. al: 1306.6464 Sun, Yi and Wang, Xian-Fu and Gao, Dao-Neng: 1309.4171 Anderson, S. Bolognesi, F. Caola, Y. Gao, A. V. Gritsan, et al.: 1309.4819 T. Chen, J. Gainer, et. al.: 1310.1397 Gonzales-Alonso, Isidori: 1403.2648 J. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, M. Park: 1403.4951 M. Beneke, D. Boito, Y. Wang: 1406.1361 M. Gonzalez-Alonso, A. Greljo, G. Isidori, D. Marzocca1412.6038 M. Gonzalez-Alonso, A. Greljo, G. Isidori, and D. Marzocca: 1504.04018 M. Bordone, A. Greljo, G. Isidori, D. Marzocca, A. Pattori: 1507.02555 + many others as well as various ATLAS and CMS studies

Physics Possibilities in $h \rightarrow 4\ell$ and $h \rightarrow 2\ell\gamma$

- Hypothesis testing and multi-parameter extraction at LHC
- Establishing CP properties \Rightarrow searching for CP violation (CPV)
- Measuring/constraining 'anomalous' hVV Couplings
- Testing $SU(2)_L \otimes U(1)_Y$ gauge invariance and EFT
- Probing top Yukawa CP properties
- Testing Custodial symmetry
- Exotic Higgs decays

ID-ing the Higgs with Kinematic Distributions

- Sensitivity to Higgs couplings and underlying loop effects comes from the many kinematic differential distributions and their correlations
- They contain information about CP properties and tensor structure of Higgs couplings

Constructing a MEM Likelihood Analysis

A likelihood can be formed out of probability density functions (*pdfs*) using some set of observables as follows

$$L(\vec{A}) = \prod_{\mathcal{O}}^{N} \mathcal{P}(\mathcal{O}|\vec{A})$$

(where O is set of observables and \vec{A} a set of undetermined parameters)

- ► For $pp \to h \to 4\ell$ we construct the pdf from the differential cxn: $P(\vec{p}_T, Y, \phi, \hat{s}, M_1, M_2, \vec{\Omega} | \vec{A}) =$ $W_{\text{prod}}(\vec{p}_T, Y, \phi, \hat{s}) \times \frac{d\sigma_{4\ell}(\hat{s}, M_1, M_2, \vec{\Omega} | \vec{A})}{dM_1^2 dM_2^2 d\vec{\Omega}}$
- Construct ratios $\Lambda = L(A_a)/L(A_b) \Rightarrow$ hypothesis testing
- Perform parameter extraction via maximization of the likelihood

$$\frac{\partial L(\vec{A})}{\partial \vec{A}}\Big|_{\vec{A}=\hat{A}} = 0$$

Searching for CP Violation in *hVV* Couplings

- Smoking gun' of BSM physics which could perhaps be connected with baryogenesis ⇒ matter/anti-matter asymmetry
- Many indirect constraints of CP violation:
 - Constraints from EWPD
 - Measurements of $h \rightarrow SM$ decay rates
 - The most severe constraints come from EDMs
- These are indirect and rely on model dependent assumptions

(figure stolen from Joe Lykken Madrid Higgs workshop talk)

Direct probes of CP are needed free of these assumptions

'Conventional' CP Violation via Triple Products

- Typically rely on constructing a CP-odd triple product asymmetry
- Need four visible 4-momenta to construct CPV observable
- One example is the azimuthal angle between decay planes of a four-body Higgs decay such as in h → 4ℓ or h → ττ

 For this type of CPV only need distinct 'weak phases' (phases that change sign under CP) in amplitudes which are interfering

Proposals for Direct Probes of $h\gamma\gamma$ CP Properties

- ► Can we directly probe the CP nature of $h \gamma \gamma$ couplings?
- Recent proposals include:
 - Measuring correlations in $V\!B\!F o \gamma\gamma$ (M. Buckley, M. Ramsey-Musolf: 1208.4840)
 - Measuring correlations between photons which convert in detector (F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J.Shu, J. Zupan: 1312.2955)

Interesting possibilities...experimentally challenging measurements

Probing CPV in hZZ and $hV\gamma$ with $h \rightarrow 4\ell$

Sensitivity is driven by interference between tree level ZZ mediated amplitude and the 1-loop VV = ZZ, Zγ, γγ mediated decays

(Y. Chen, RVM: 1310.2893, Y. Chen, R. Harnick, RVM: 1404.1336, 1503.05855)

- The effective couplings to VV provide the potential weak phases
- BUT...CPV observables also possible without 4 visible momenta!

CP Violation Without Triple Products

- Consider decay into CP conjugate final states F and \overline{F}
- Conditions necessary for CPV without triple products:
 - Interference between different amplitudes

$$\mathcal{M}_F = \mathcal{M}_1 + \mathcal{M}_2$$

 \blacktriangleright Distinct strong and weak phases for \mathcal{M}_1 and \mathcal{M}_2

$$\mathcal{M}_i = |c_i| e^{i(\delta_i + \phi_i)}$$

(where $\delta_i o \delta_i$ and $\phi_i o - \phi_i$ under CP)

Need a CP violating observable such as an asymmetry

$$A_{\rm CP} = \frac{d\Gamma_F - d\Gamma_{\bar{F}}}{d\Gamma_F + d\Gamma_{\bar{F}}} \propto |c_1| |c_2| \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

- ▶ Note also that last condition requires $\mathcal{M}_F \neq CP(\mathcal{M}_F) \equiv \mathcal{M}_{\bar{F}}$
- What kind of physics/processes can satisfy these conditions?

A well known effect in flavor physics and studied in BSM context by J. Berger, et al: 1105.0672

New Observables for CPV in Higgs Decays

• Our primary example of this type of CPV is $h \rightarrow 2\ell V$ ($V = \gamma, Z$)

(see Y. Chen, A. Falkowski, I. Low, RVM: 1405.6723 for other examples of this type of CPV)

• Observable as an asymmetry in polar angle of final state lepton ℓ^-

- ▶ Note generally asymmetry \neq CPV (e.g. $e^+e^- \rightarrow f\bar{f}$, WW @ LEP)
- Also need C violation since individual polarizations not measured
- Of course this type of CPV also possible in $h \rightarrow 4\ell$ decays

Anomalous Higgs Couplings in $h \rightarrow 4\ell$

- We consider $h \to VV \to 4\ell$ where $4\ell \equiv 2e2\mu$, 4e, 4μ and $VV = ZZ, Z\gamma, \gamma\gamma$
- Can parametrize the hVV couplings with an effective Lagrangian (up to D = 5)

Probing Anomalous Couplings at the LHC

Framework in CMS Analysis CMS PAS HIG-14-014, arXiv: 1411.3441

► A multi-dimensional Higgs couplings extraction framework

Y. Chen, N. Tran, RVM: arXiv:1211.1959, Y. Chen, RVM: arXiv:1310.2893,

- Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1401.2077, arXiv:1410.4817
- Used in recent CMS study of anomalous hVV couplings in $h \rightarrow 4\ell$

Used in a limited scope and validated with other frameworks

Can begin utilizing full power of framework in future LHC studies

Testing $SU(2)_L \otimes U(1)_Y$ Gauge Invariance and EFT

▶ Wilson coefficients in $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ invariant theory are generated at some high scale Λ and RG evolved down to weak scale

(LHC Higgs Cross Section Working Group 2: LHCHXSWG-INT-2015-001 cds.cern.ch/record/2001958)

Construct SM + D6 EFT and perform fits to Wilson coefficients

► Gauge invariance implies correlations among different 4ℓ components

Extracting Wilson Coefficients at LHC

Can fit in any basis such as in 'Warsaw' or 'Higgs' basis

(B. Grzadkowski, et. al.: 1008.4884, R. S. Gupta, A. Pomarol, F. Riva: 1405.0181)

(Y. Chen, A. Falkowski, R. Harnik, RVM: PRELIMINARY)

Wilson coefficients give a more direct connection with UV theories

Probing top and *W* Loop Effects in $h \rightarrow 4\ell$

▶ The *W* and top loops contribute to effective *hVV* couplings

Can study the nature of the top and W couplings to the Higgs

$$egin{aligned} \mathcal{L}_{ZW} &\supset rac{h}{v} \Big(g_Z m_Z^2 Z^\mu Z_\mu + 2 g_W m_W^2 W^{\mu +} W_\mu^- \Big) \ \mathcal{L}_t &\supset rac{m_t}{v} h ar{t} (y_t + i ilde{y}_t \gamma^5) t \end{aligned}$$

Interference between tree level hZZ amplitude and top loop diagram allows us to probe top CP properties and searching for CP violation

Probing Top Yukawa CP Properties in $h \rightarrow 4\ell$

- Compare with other probes such as $h \rightarrow \gamma \gamma$, $h \rightarrow Z \gamma$, and *tth*
- Qualitatively different probe of the top Yukawa CP properties

(Y. Chen, D. Stolarski, RVM: 1505.01168)

 Not yet sensitive, but should become at high luminosity LHC

Custodial Symmetry and Top CP Properties

 Another possibility is to probe custodial symmetry through the ratio of couplings λ_W = g_W/g_Z

 Examining possibility of probing custodial symmetry and top CP quark properties simultaneously

Exotic Higgs Decays in the Golden Channel

Can use h → 4ℓ to search for exotic Higgs decays to BSM particles (D. curtin, et. al: arXiv:1312.4992) Can probe parameter space of models with new vector bosons in mass range 10 – 65 GeV

- \blacktriangleright VL leptons below $\,\sim 110$ GeV
- Useful probe even if total $h \rightarrow 4\ell$ is close to SM value

Ongoing Work and Conclusions

As part of ongoing work we are also exploring:

Work in progress with Y. Chen, A. Falkowski, R. Harnik, D. Stolarski

- Sensitivity to Higgs quartic coupling
- Other NP contributions to loops (squarks, charginos, etc.)
- ▶ Examining using priors with $h \rightarrow 4\ell$ and $h \rightarrow 2\ell\gamma$ MEM studies
- Probing effective couplings in loop processes (i.e. NLO EFT)
- Conclusions:
 - $h \rightarrow 4\ell$ an indispensable tool to study Higgs and search for BSM
 - ► Can use $h \rightarrow 4\ell$ to study Higgs couplings to $ZZ, Z\gamma$, and $\gamma\gamma$ and couplings to top, W, and Z in underlying loop processes
 - It is a direct probe of CP properties of these couplings
 - ► $h \rightarrow 4\ell$ serves as complementary, but qualitatively different measurement to $h \rightarrow Z\gamma$ and $h \rightarrow \gamma\gamma$ on-shell decays
 - Can be used to search for exotic Higgs decays

THANKS!

Extra Slides

The 'non Higgs' Background

▶ Dominant irreducible background is $q\bar{q} \rightarrow 4\ell$ ($V_1, V_2 = Z, \gamma$) which includes both t & s channel

 Enters largely as a resolution effect due to detector smearing

- Different components dominate in different regions of M_{4l}
- ► t-channel Zγ dominates around signal region of M_{4ℓ} = 125 GeV.
- ► Implies Higgs couplings to $Z\gamma$ will be most affected by presence of $q\bar{q} \rightarrow 4\ell$ BG

Matrix Element Method (MEM) Analysis

- We use all decay observables to construct a MEM analysis using normalized (analytic) fully differential cxns for h → 4ℓ & qq̄ → 4ℓ
- Pseudo experiments are performed to examine sensitivity to hVV loop induced couplings as a function of number of events (or luminosity)
- Fix $A_1^{ZZ} = 2$ and perform 8D parameter fit to 'anamolous' couplings:

$$\vec{A} = (A_2^{ZZ}, A_3^{ZZ}, A_2^{Z\gamma}, A_3^{Z\gamma}, A_3^{\gamma\gamma}, A_2^{\gamma\gamma})$$

(In SM A_2^i generated at 1-loop and $\mathcal{O}(10^{-2}-10^{-3})$ while A_3^i only appear at 3-loop)

- All couplings floated independently and all correlations included
- As test statistic we define 'average error' on best fit value:

$$\sigma(A) = \sqrt{\frac{\pi}{2}} \langle |\hat{A} - \vec{A}_o| \rangle$$

(Â is best fit point, A₀ is 'true' value, and average taken over large set of PE)
Consider two sets of cuts ('CMS-like' and 'Relaxed'):

- ▶ $p_{T\ell} > 20, 10, 7, 7 \; \text{GeV}, \; |\eta_\ell| < 2.4, \; 40 \; \text{GeV} \leq M_1, \; 12 \; \text{GeV} \leq M_2$
- ▶ $p_{T\ell} > 20, 10, 5, 5$ GeV, $|\eta_\ell| < 2.4$, 4 GeV $\leq M_{1,2} \notin (8.8, 10.8)$ GeV

'Detector level' Likelihood

- Of course what we really want is to do all of this at 'detector level'
- Need a likelihood that takes reconstructed observables as input
- ► This can be done by a convolution of the *analytic* 'generator level' *pdf* with a transfer function $T(\vec{X}^R | \vec{X}^G)$ over generator level observables

$$P(\vec{X}^{\mathrm{R}}|\vec{A}) = \int P(\vec{X}^{\mathrm{G}}|\vec{A})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{\mathrm{G}}$$
$$\vec{X} \equiv (\vec{p}_{T}, Y, \phi, \hat{s}, M_{1}, M_{2}, \vec{\Omega})$$

Note: Not done by MC integration \Rightarrow done via C.O.V. and numerical techniques

- $T(\vec{X}^R | \vec{X}^G)$ represents probability to observe \vec{X}^R given \vec{X}^G
- Can be optimized for specific detector and included in convolution
- ► This integration takes us from generator level observables (X̃^G) to detector level (reconstructed) observables (X̃^R)
- Conceptually simple, but requires a number of steps to perform (and massive computing) details in arXiv:1401.2077 and technical note arXiv:1410.4817
- We have performed this 12-D convolution for signal and background