

Beyond the Standard Model phenomenology at the NLO in QCD

Fuks Benjamin

LPTHE - CNRS - UPMC

High-Energy Physics seminar @ Southern Methodist University

Dallas, 08 February 2017

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 1

Outline

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 2

The quest for new physics at the LHC

Standard Model simulations: the status

- The need for better simulation tools has spurred a very intense activity
 - Automated matrix element generation (MADGRAPH5, SHERPA, WHIZARD, etc.)
 - Higher-order computations (MC@NLO, POWHEG, NNLO)
 - Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)
 - Matrix element parton showering matching
 - Merging techniques (MLM, CKKW, FxFx, UNLOPS, etc.)

Standard Model simulations

- * All processes relevant for the LHC can be simulated with a very good precision
- The precision will improve in the next few years (e.g. electroweak corrections)

Standard Model simulations under control What about new physics?

New physics simulations: the challenges

 The challenges with respect to new physics simulations are different Theoretically, we are still in the dark ★ No sign of new physics ★ All measurements are Standard-Model-like 					
There is not any leading new physics candidate theory * Plethora of models to implement in the tools	/				
New physics is a standard in many tools today					
Result of 20 years of developments					
Simulations mostly achieved at the leading-order accuracy in QCD					
But this has started to change a couple of years ago					

A Monte Carlo tool framework for new physics

+ Streamlining the chain from the Lagrangian to analyzed simulated collisions

- Connect the physics to simulated LHC collisions: need for a framework
 - \star ... where any new physics model can be implemented
 - \star ... where any new physics model can be tested against data
 - \star ... easy to validate, to maintain
 - \star ... easily integrable in a software chain

A framework for new physics simulations

Inputs / Outputs

- * A physics object: the Lagrangian (unique and non ambiguous, no MC dependence)
- \star Flexible (a change in the model = a change in the Lagrangian)
- \star Automatic derivation of the Feynman rules and generate MC model files

Validation

 \star Automatic and systematical

Distribution

- \star Public, transparent
- ★ No private tools

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC'11)]

Automating new physics simulations

 First steps towards a new physics simulation frame Restricted to the CALCHEP / COMPHEP environment Working environment: C 	Work: LANHEP [Semenov (NIMA'97; CPC'98; CPC'09; CPC'16)] [Boos et al. (IJMPC'94; NIMA'04)] [Belyaev, Christensen & Pukhov (CPC'13)]
 FEYNRULES: a platform for new physics model implet Working environment: MATHEMATICA Flexibility, symbolic manipulations, easy implementation Interfaced to many Monte Carlo tools Dedicated translators to several tools (obsolete today Automatic linking of Lagrangians to files in a given process of the pr	ementations in MC tools of new methods, etc. thanks to the UFO) ogramming language
 The SARAH package Working environment: MATHEMATICA Interfaced to many Monte Carlo tools Spectrum generator features 	[Staub (CPC'13; CPC'14)]

New physics simulations: other challenges

Many interfaces dedicated to specific tools

- \star Removal of non compliant vertices
- \star Translation to a specific format/language

🚹 Not efficient

A step further: the Universal FEYNRULES Output

Beyond the Standard Model phenomenology at the NLO in QCD

Discoveries at the LHC (and simulations)

Can precision predictions for new physics be automated?

Outline

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 11

Predictions at the LHC (using QCD)

• Distribution of an observable ω : the QCD factorization theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \,\mathrm{d}x_b \,\mathbf{f}_{a/p_1}(x_a;\mu_F) \,\mathbf{f}_{b/p_2}(x_b;\mu_F) \,\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\ldots,\mu_F)$$

Long distance physics: the parton densities

* Short distance physics: the differential parton cross section $d\sigma_{ab}$

* Separation of both regimes through the factorization scale μ_F

 \star Choice of the scale \succ theoretical uncertainties

◆ Short distance physics: the partonic cross section
 ◆ Calculated order by order in perturbative QCD: dσ = dσ⁽⁰⁾ + α_s dσ⁽¹⁾ + ...
 ★ The more orders included, the more precise the predictions
 ★ Truncation of the series and α_s > theoretical uncertainties

Fixed-order predictions

- Leading-order (LO): $d\sigma \approx d\sigma^{(0)}$
 - Easily calculable
 - * Automated for any theory and any process
 - Very naive
 - * Rough estimate for many observables (large uncertainties)
 - ★ Cannot be used for any observable (e.g., dilepton p_T)

• Next-to-leading-order (NLO): $d\sigma \approx d\sigma^{(0)} + \alpha_s d\sigma^{(1)}$

- Two contributions: virtual loop and real emission
 - ★ Both divergent
 - ★ The sum is finite (KLN theorem)
- Reduction of the theoretical uncertainties
 - \star First order where loops compensate trees
- Better description of the process
 - \star Impact of extra radiation
 - \star More initial states included
 - ★ Sometimes not precise enough

Matrix-element / parton shower matching

Beyond the Standard Model phenomenology at the NLO in QCD

NLO calculations in a nutshell

Virtual contributions

The rational terms

Matching fixed order with parton showers

Subtracting the poles

* The structure of the poles appearing at NLO is known \succ subtraction methods

- $\star \mathcal{C}$ subtracted from the reals \succ makes them finite
- $\star \mathcal{C}$ integrated and added back to the virtuals \succ makes them finite

* Integrals can be made numerically (in four dimensions)

$$\sigma_{NLO} = \int d^4 \Phi_n \ \mathcal{B} + \int d^4 \Phi_{n+1} \left[\mathcal{R} - \mathcal{C} \right] + \int d^4 \Phi_n \left[\int_{\text{loop}} d^d \ell \ \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right]$$

Double counting when matching with parton showers

Two sources of double counting that compensate each other (shower unitarity)

- \star Radiation: both at the level of the reals and of the shower
- \star No radiation: both in the virtuals and in the no-emission probability

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 18

MG5_AMC@NLO: master formula

$$\sigma_{NLO} = \int d^4 \Phi_n \bigg[\mathcal{B} + \bigg(\int_{\text{loop}} d^d \ell \ \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \bigg) + \int d^4 \Phi_1 \bigg(\mathcal{MC} - \mathcal{C} \bigg) \bigg] \mathcal{I}_{\text{MC}}^{(n)} + \int d^4 \Phi_{n+1} \ \bigg[\mathcal{R} - \mathcal{MC} \bigg] \mathcal{I}_{\text{MC}}^{(n+1)}$$

S-events
H-events

 $\star \mathcal{I}_{MC}^{(n)}$ represents the shower operator for a (*n*)-body final state

- The MC counterterms match the real emission IR behavior (by definition)
 - **\star** They describe: how the shower gets from an (n)-body to a (n+1)-body final state
 - \star Same kinematics as the reals: pole cancelation
 - \star Extra component accounting for the soft divergences
- The MC counterterms cannot be integrated numerically
 - **★** Using simultaneously the NLO and MC counterterms in the virtuals
- In practice, S-events and H-events are generated separately
 - \star The related contribution can carry a negative weight
 - \star The sign of the weight has to be included in the unweighting procedure

[Alwall, Frederix, Frixione, Hirschi, Mattelaer, Shao, Stelzer, Torrielli & Zaro (JHEP'14)]

Automated NLO simulations with MG5_AMC

Outline

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 21

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

I - Supersymmetric QCD

The supersymmetric QCD Lagrangian

$$\mathcal{L}_{SQCD} = D_{\mu} \tilde{q}_{L}^{\dagger} D^{\mu} \tilde{q}_{L} + D_{\mu} \tilde{q}_{R}^{\dagger} D^{\mu} \tilde{q}_{R} + \frac{i}{2} \bar{\tilde{g}} D \tilde{\tilde{g}} \tilde{g} - m_{\tilde{q}_{L}}^{2} \tilde{q}_{L}^{\dagger} \tilde{q}_{L} - m_{\tilde{q}_{R}}^{2} \tilde{q}_{R}^{\dagger} \tilde{q}_{R} - \frac{1}{2} m_{\tilde{g}} \bar{\tilde{g}} \tilde{g}$$
$$+ \sqrt{2} g_{s} \Big[-\tilde{q}_{L}^{\dagger} T (\bar{\tilde{g}} P_{L} q) + (\bar{q} P_{L} \tilde{g}) T \tilde{q}_{R} + \text{h.c.} \Big] - \frac{g_{s}^{2}}{2} \Big[\tilde{q}_{R}^{\dagger} T \tilde{q}_{R} - \tilde{q}_{L}^{\dagger} T \tilde{q}_{L} \Big] \Big[\tilde{q}_{R}^{\dagger} T \tilde{q}_{R} - \tilde{q}_{L}^{\dagger} T \tilde{q}_{L} \Big]$$

- * All (s)quarks, gluino and gluon supersymmetric-QCD interactions included
- * Missing: subtraction of the possible intermediate resonances in the reals [in progress]
- ★ We need to decouple either the squarks or the gluino
 - > Supersymmetry-inspired simplified models

Validation and total cross sections

Beyond the Standard Model phenomenology at the NLO in QCD

Differential distributions: jet properties (I)

Differential distributions: jet properties (2)

Parton showers populate the low-pT region

[Degrande, BF, Hirschi, Proudom & Shao (PLB'16)]

- ★ Emitted partons often not reclustered back
- ★ Extra softer jets
- \star Distortion of the spectrum
- ★ Effects milder for hard p_T (the matrix element drives the shape)
- K-factor behavior (fixed-order vs. ME+PS)
 - ★ Changes more pronounced for I TeV gluinos
 ➤ Drastic behavior change
 - **\star** Effects appear at larger p_T for 2 TeV gluinos

The 'decay' origin of the jet dominates ➤ single peak at large p_T value

Differential distributions: jet properties (3)

[Degrande, BF, Hirschi, Proudom & Shao (PLB'16)]

Mixed effects: origin of the third jet

- ***** Sometimes a decay jet
- \star Sometimes a radiation jet
- ★ More activity in the low-p_T region

Constant K-factors not accurate

- * At all for I TeV gluinos
- \star In the small pT region for 2 TeV gluinos

NLO effects

- \star Crucial for a precise signal description
- ★ Reduction of the theoretical uncertainties

Differential distributions: jet properties (4)

Phenomenology

2 - Vector-like quark partners

[BF & Shao ('16); Cacciapaglia, Cai, Carvalho, Deandrea, Flacke, BF, Majumder & Shao (in prep.)]

T/B/X/Y

T/B/X/Y

An effective Lagrangian (with four partners: T, B, X and Y)

$$\begin{aligned} \mathcal{L}_{\mathrm{VLQ}} &= i\bar{Y}\not{D}Y - m_{Y}\bar{Y}Y + i\bar{B}\not{D}B - m_{B}\bar{B}B + i\bar{T}\not{D}T - m_{T}\bar{T}T + i\bar{X}\not{D}X - m_{X}\bar{X}X \\ &- h\left[\bar{B}\left(\hat{\kappa}_{L}^{B}P_{L} + \hat{\kappa}_{R}^{B}P_{R}\right)q_{d} + \bar{T}\left(\hat{\kappa}_{L}^{T}P_{L} + \hat{\kappa}_{R}^{T}P_{R}\right)q_{u} + \mathrm{h.c.}\right] \\ &+ \frac{g}{2c_{W}}\left[\bar{B}\not{Z}\left(\tilde{\kappa}_{L}^{B}P_{L} + \tilde{\kappa}_{R}^{B}P_{R}\right)q_{d} + \bar{T}\not{Z}\left(\tilde{\kappa}_{L}^{T}P_{L} + \tilde{\kappa}_{R}^{T}P_{R}\right)q_{u} + \mathrm{h.c.}\right] \\ &+ \frac{\sqrt{2}g}{2}\left[\bar{Y}\vec{W}\left(\kappa_{L}^{Y}P_{L} + \kappa_{R}^{Y}P_{R}\right)q_{d} + \bar{B}\vec{W}\left(\kappa_{L}^{B}P_{L} + \kappa_{R}^{B}P_{R}\right)q_{u} + \mathrm{h.c.}\right] \\ &+ \frac{\sqrt{2}g}{2}\left[\bar{T}\psi\left(\kappa_{L}^{T}P_{L} + \kappa_{R}^{T}P_{R}\right)q_{d} + \bar{X}\psi\left(\kappa_{L}^{X}P_{L} + \kappa_{R}^{X}P_{R}\right)q_{u} + \mathrm{h.c.}\right] \end{aligned}$$

Illustrative process

- * Quark partners decay into an electroweak boson and a jet/top
- T/B/ * Pair, single and QV/QH associated production can be simulated

WN W/Z/H

 $\sim W/Z/H$

Illustrative example

[BF & Shao ('16); Cacciapaglia, Cai, Carvalho, Deandrea, Flacke, BF, Majumder & Shao (in prep.)]

♦ Model description: T-Higgs interactions
$$\mathcal{L}_{VLQ} = i\bar{T}\not{D}T - m_T\bar{T}T - h\left[\bar{T}\left(\hat{\kappa}_L^T P_L + \hat{\kappa}_R^T P_R\right)u + h.c.\right] + Coupling proportional to $m_T/v_{SM} U_{41}$

$$\Rightarrow \text{ driven by the quark-VLQ mixing } U$$

$$\Rightarrow VLQ \text{ mass enhancement}$$$$

Investigation of (inclusive) Higgs-pair production

- ♣ Production mode I:TT pair-production followed by two T → uH decays
- ✤ Production mode 2:TH associated production followed by a T → uH decays
- Production mode 3: H-pair production (VLQ t-channel exchange or loop-diagrams)

NLO effects on total rates

[BF & Shao ('16); Cacciapaglia, Cai, Carvalho, Deandrea, Flacke, BF, Majumder & Shao (*in prep.*)]

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 30

Differential distribution: jet activity

Beyond the Standard Model phenomenology at the NLO in QCD

3 - (Higgs) Effective Field Theory

[Degrande, BF, Mawatari, Mimasu & Sanz ('16)]

Standard Model EFT operators could impact electroweak Higgs production

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{g^{\prime 2}}{4\Lambda^2} \bar{c}_{BB} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{ig}{2\Lambda^2} \bar{c}_W \left[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}_{\mu} \Phi \right] D_{\nu} W^{k,\mu\nu} + \frac{ig^{\prime}}{2\Lambda^2} \bar{c}_B \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] \partial_{\nu} B^{\mu\nu} + \frac{ig}{\Lambda^2} \bar{c}_{HW} \left[D_{\mu} \Phi^{\dagger} T_{2k} D_{\nu} \Phi \right] W^{k,\mu\nu} + \frac{ig^{\prime}}{\Lambda^2} \bar{c}_{HB} \left[D_{\mu} \Phi^{\dagger} D_{\nu} \Phi \right] B^{\mu\nu}$$

* Five operators as an illustrative example

- Effective field theories at NLO (in QCD)
 - * Renormalizability: order by order in $1/\Lambda^2$
 - Precision: including the QCD corrections
 - Double perturbative series

σ≈ I	+	$O(\alpha_s)$	+	$O(1/\Lambda^2)$	+	$O(\alpha_{\rm s}/\Lambda^4)$
↓		¥		¥		¥
SM@LO		SM@NLO		EFT@LO		EFT@NLO

Beyond the Standard Model phenomenology at the NLO in QCD

WH production at the LHC (I)

[Degrande, BF, Mawatari, Mimasu & Sanz ('16)]

- Differential K-factors scenario-dependent
- Significant deviations from the Standard Model
 The blue scenario features specific hVV couplings
 Huge deviations in the tails

$$-g_{hww}^{(2)}\left[W_{\nu}^{+}\partial_{\mu}W^{-\mu\nu}h + \text{h.c.}\right]$$

★ Could be exploited to further constrain SM EFT

LO and NLO predictions do not overlap
 LO uncertainties could be underestimated

WH production at the LHC (2)

[Degrande, BF, Mawatari, Mimasu & Sanz ('16)]

- \star 1/ Λ^4 effects possibly large (40-100%) in the tails
- ★ Benchmark- and process-dependent
- \star Care must be taken with the EFT interpretation
 - > WH: orange is OK, blue is not
 - > VBF: orange and blue OK

4 - Top-philic dark matter

[Arina, Backovic, Conte, BF, Guo et al. (JHEP'16)]

Recasting with MADANALYSIS 5

[Conte, BF, Serret (CPC '13); Conte, Dumont, BF, Wymant (EPJC '14); Dumont, BF, Kraml et al. (EPJC '15)]

Implementing a new analysis in MADANALYSIS 5

Recasting CMS-EXO-12-048

[Conte, BF, Gi	uo ('16)
-----------------	-------------------

								[,,
+	 Missing information for the validation Discussion with CMS to get validation benchmarks Cutflows and Monte Carlo information for given benchmark 							Discussions with CMS needed
•	Vali	dation:						
		Selection step	CMS	ϵ_i^{CMS}	MA5	ϵ_i^{MA5}	δ_i^{rel}	Validatad at
	0	Nominal	84653.7		84653.7			
	1	One hard jet	50817.2	0.6	53431.28	0.631	5.2%	the 20% level
	2	At most two jets	36061	0.7096	38547.75	0.721	1.61%	······
	3	Requirements if two jets	31878.1	0.884	34436.35	0.893	1.02%	
	4	Muon veto	31878.1	1	34436.35	1.000	0	
	5	Electron veto	31865.1	1	34436.35	1.000	0	
	6	Tau veto	31695.1	0.995	34397.54	0.998	0.3%	Issue with the low-
			8687.22	0.274	7563.04	0.219	20.00%	MET modelling in
		$E_T > 300 \text{ GeV}$	5400.51	0.621	4477.67	0.592	4.66%	
		$E_T > 350 \text{ GeV}$	3394.09	0.628	2813.70	0.628	0.00%	DELPHES
		$E_T > 400 \text{ GeV}$	2224.15	0.6553	1753.71	0.623	4.93%	
		$E_T > 450 \text{ GeV}$	1456.02	0.654	1110.92	0.633	3.21%	
		$\not\!$	989.806	0.679	722.83	0.650	4.27%	
		$E_T > 550 \text{ GeV}$	671.442	0.678	487.54	0.674	0.59%	

 \Rightarrow The tt+MET analysis (CMS-B2G-14-004) was validated to the 2-3% level

Beyond the Standard Model phenomenology at the NLO in QCD

MADANALYSIS 5 analyses on INSPIRE

[BF, Martini ('16)]

tt+MET constraints on top-philic dark matter

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 40

Phenomenology

NLO effects on a CLs

[Arina, Backovic, Conte, BF, Guo et al. (JHEP'16)]

Outline

Beyond the Standard Model phenomenology at the NLO in QCD

Benjamin Fuks - 08.02.2017 - 42

Summary

_ ~	·				
NLO-QCD simulations for new physics are now the state of the art					
Via a joint use of FEYNRULES and MADGRAPH5_aMC@NLO					
Divergences (UV, R ₂ , IR) and MC subtraction terms are automatically handled					
Many models are already publicly available (more to come)					
★ Supersymmetry-inspired simplified models					
★ BSM Higgs models					
\star Dark matter simplified model	[http://feynrules.irmp.ucl.ac.be/wiki/NLOModels]				
★ Higgs and top effective field theories					
★ Vector-like quark models					
·····					
 NLO effects are important 					
Better control of the normalization					
Distortion of the shapes					
Reduction of the theoretical uncertainties					
$\star Effects on a CLs number (even if the central value shift is mild)$					