Dissertation Defense

March 29th 2018

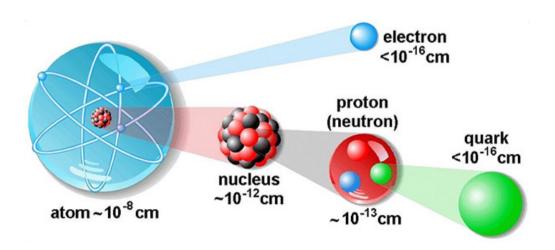
The Impact of LHC Run I pPb W/Z data on the nCTEQ15 PDF set

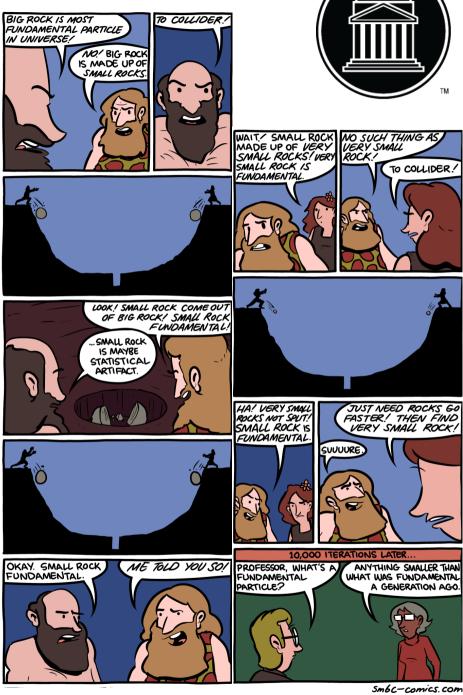
Eric Godat

Outline

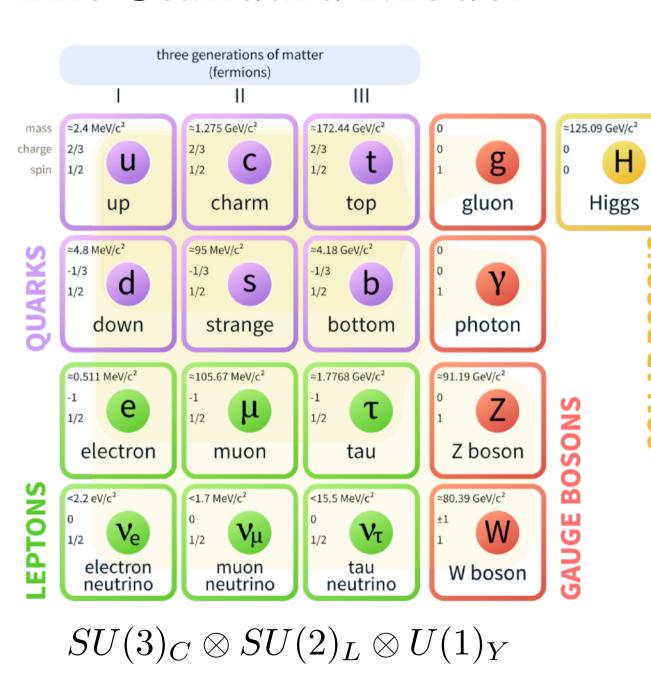
- Introduction
 - The Standard Model
 - QCD and Phenemonology
 - Parton Distribution Functions (PDFs)
- The nCTEQ Collaboration
- PDF Reweighting
- Refitting nCTEQ15
 - nCTEQ++
 - nCTEQ+LHC
- Conclusions

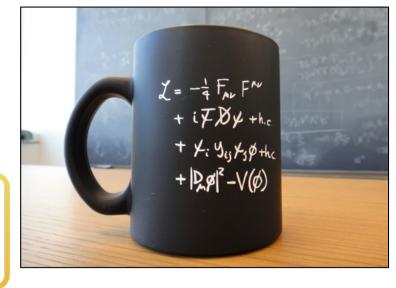
Introduction


The Fundamentals


What is matter made of?

Atoms


- Electrons
- Nucleus
 - Protons/Neutrons
 - Partons (quarks)


Higher energies = Smaller distances

The Standard Model

Describes particles:

Fermions

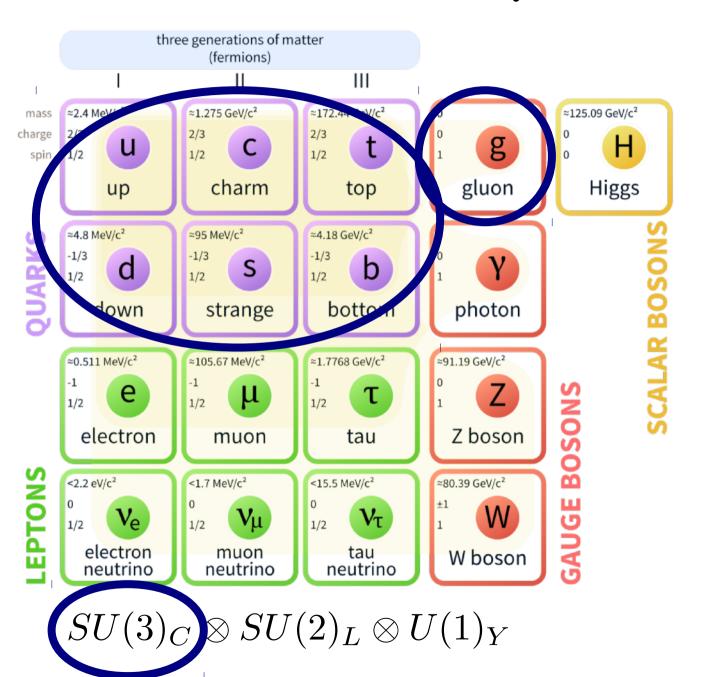
- Quarks
- Leptons

Bosons

- Gauge
- Scalar

And their interactions:

Electromagnetic Force


Weak Force

Strong Force

Neglects Gravity

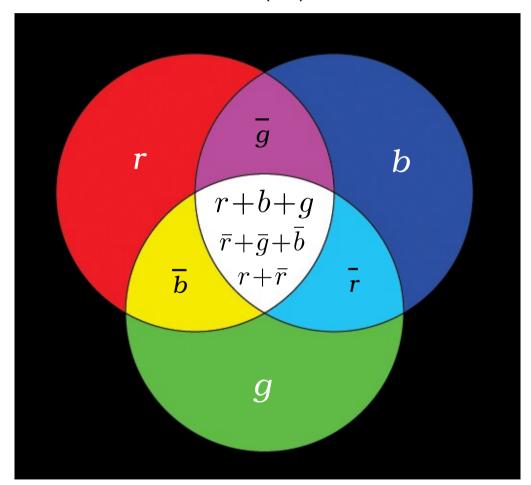
Quantum Chromodynamics (QCD)

The study of proton structure is governed by QCD

Eric Godat - SMU

6/107

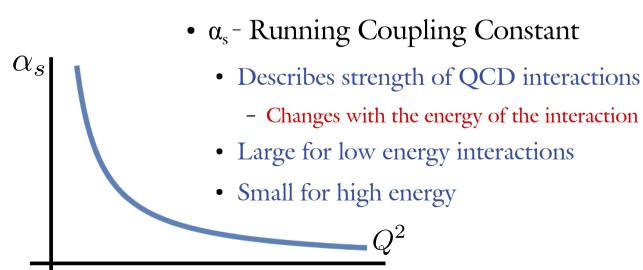
A hint of color (QCD)

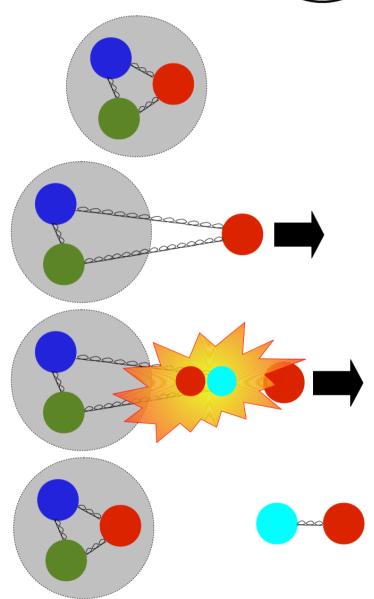


Color Charge

3 colors/ 3 anticolors

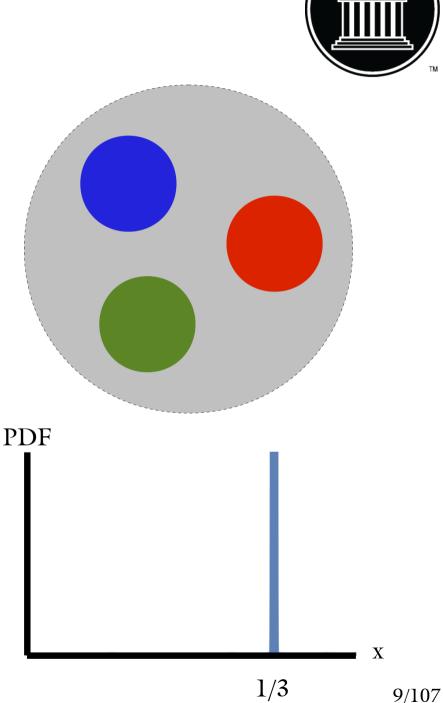
- red, blue, green
- anti-red, anti-blue, anti-green
- Quarks carry a single color/anticolor
- Gluons carry a color <u>and</u> an anti-color
- Nature is color neutral
 - Net color has not been observed
 - Confinement


$SU(3)_C$



Asymptotic Freedom (QCD)

- Why can't I make a color "ion"?
 - As long as quarks are close together, they can move freely
 - Pulling a single quark away requires exponentially more energy
 - This energy then creates a quark antiquark pair that satisfies confinement

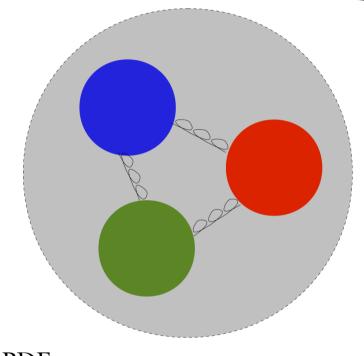


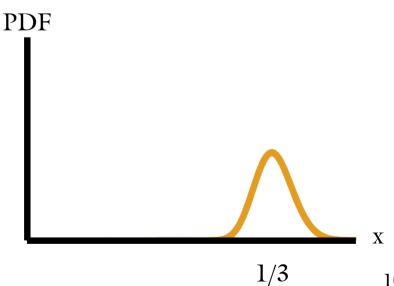
What is a Proton?

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers

 Structure described by parton distribution functions (PDFs)

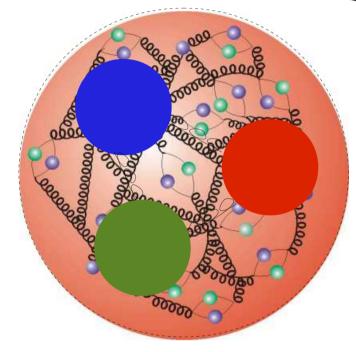


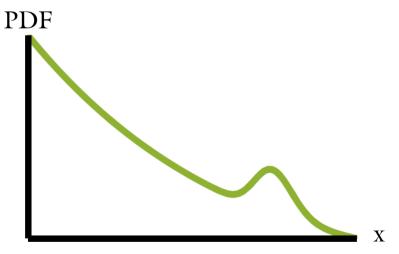

What is a Proton?

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers
 - Gluons

 Structure described by parton distribution functions (PDFs)

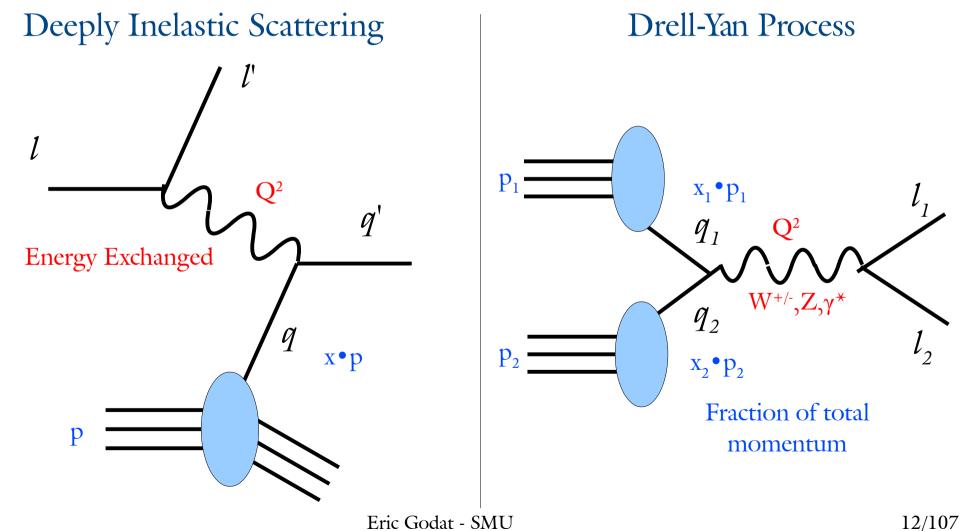

10/107


What is a Proton?

TM

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers
 - Gluons
 - Sea quarks
- Structure described by parton distribution functions (PDFs)

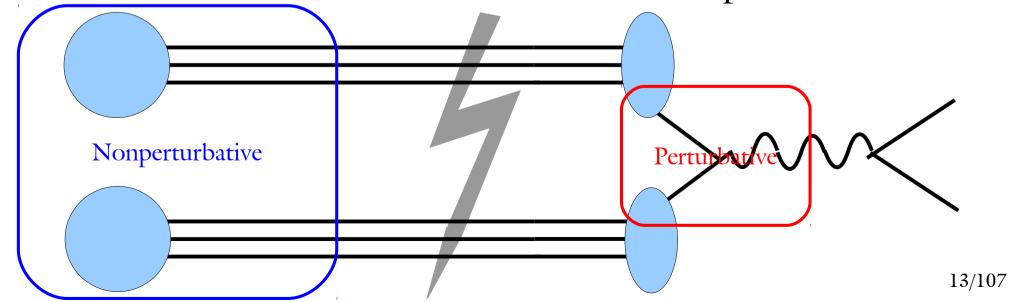


11/107

Studying Structure

Scattering experiments provide insight into the structure of the proton

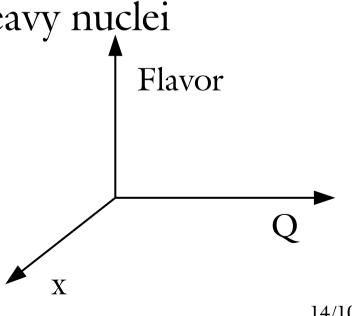
Factorization



We link theory to experiment with the factorization theorem

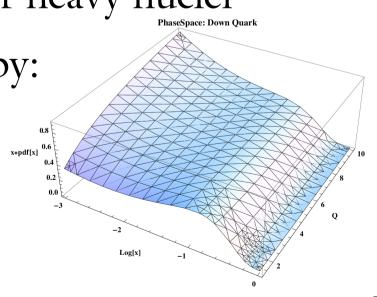
$$\sigma_{DY} = \sum_{q_1,q_2} f_1(x,Q^2) \otimes \hat{\sigma}_{q_1q_2} \otimes f_2(x,Q^2)$$
Nonperturbative
(Long Range)

Perturbative
(Short Range)


Parton Distribution Functions describe the nonperturbative terms

Parton Distribution Functions (PDFs)

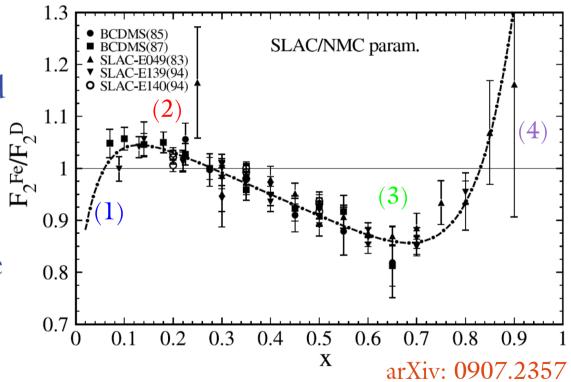
- Describe the probability of a parton inside a proton with a given momentum fraction at a given energy interacting
- Parameterized fits to experimental data
- Universal across processes
- Nuclear corrections are needed for heavy nuclei
- Broken down into discrete grids by:
 - All quark flavors + gluon
 - Hard scattering energy, Q
 - Momentum fraction, x



Eric Godat - SMU 14/107

Parton Distribution Functions (PDFs)

- Describe the probability of a parton inside a proton with a given momentum fraction at a given energy interacting
- Parameterized fits to experimental data
- Universal across processes
- Nuclear corrections are needed for heavy nuclei
- Broken down into discrete grids by:
 - All quark flavors + gluon
 - Hard scattering energy, Q
 - Momentum fraction, x



Nuclear PDFs

Nuclear corrections are needed to describe heavy nuclei

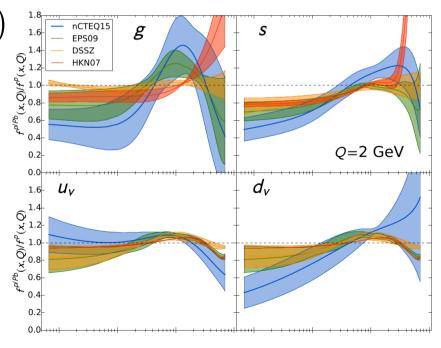
- Not just a sum of protons and neutrons
 - Partons can share momentum between nucleons
- Historically nuclear effects are described in regions of x
 - (1) Shadowing
 - (2) Anti-Shadowing
 - (3) EMC Effect
 - (4) Fermi Motion

The nCTEQ Collaboration

nCTEQ PDFs

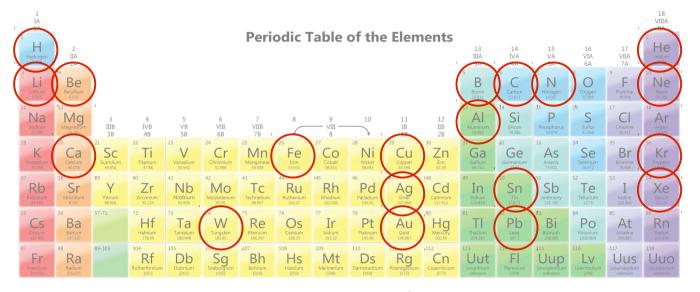
Formalism:

• Generalized A-Parameterization


$$-xf_i^{p/A}(x,Q^2) = c_0x^{c_1}(1-x)^{c_2}e^{c_3x}(1+e^{c_4}x)^{c_5}$$

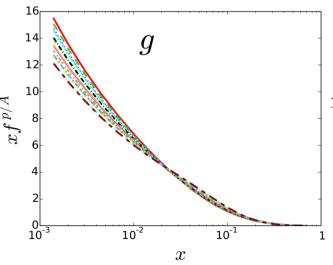
$$- c_k \rightarrow c_{k,0} + c_{k,1}(1 - A^{-c_{k,2}})$$

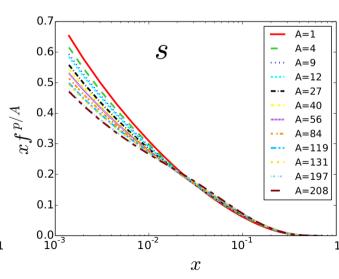
No multiplicative nuclear correction


- More parameters than proton fits
 - ~ 3 times as many so we make assumptions
- Fewer data points

e.g. 740 nuclear points for nCTEQ15 vs 2947 protons points for CT14[1]

nCTEQ PDFs




Nuclei with DIS data included in nCTEQ15

$$f^N = \frac{Z}{A}f^{p/N} + \frac{A - Z}{A}f^{n/N}$$

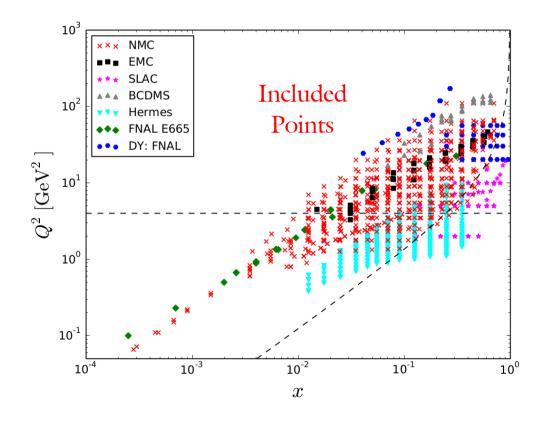
Assume isospin symmetry
Currently at NLO

Parameterization allows for construction of any nuclei

Eric Godat - SMU

nCTEQ15 PDF Set

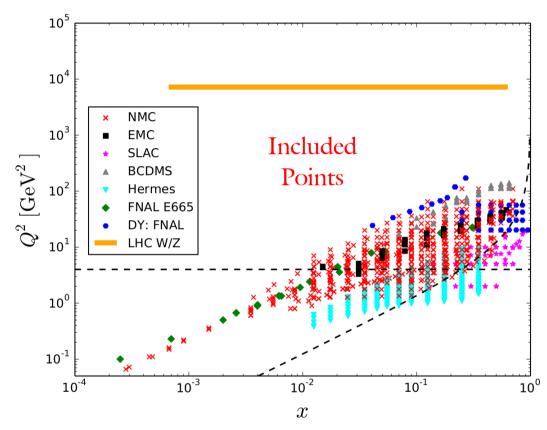
Global fit to experimental data


- Deep Inelastic Scattering
- Drell-Yan
- Pion Production Data

NO LHC data

740 nuclear data points after kinematic cuts

Error analysis with Hessian Method



Reweighting

LHC Data for nCTEQ

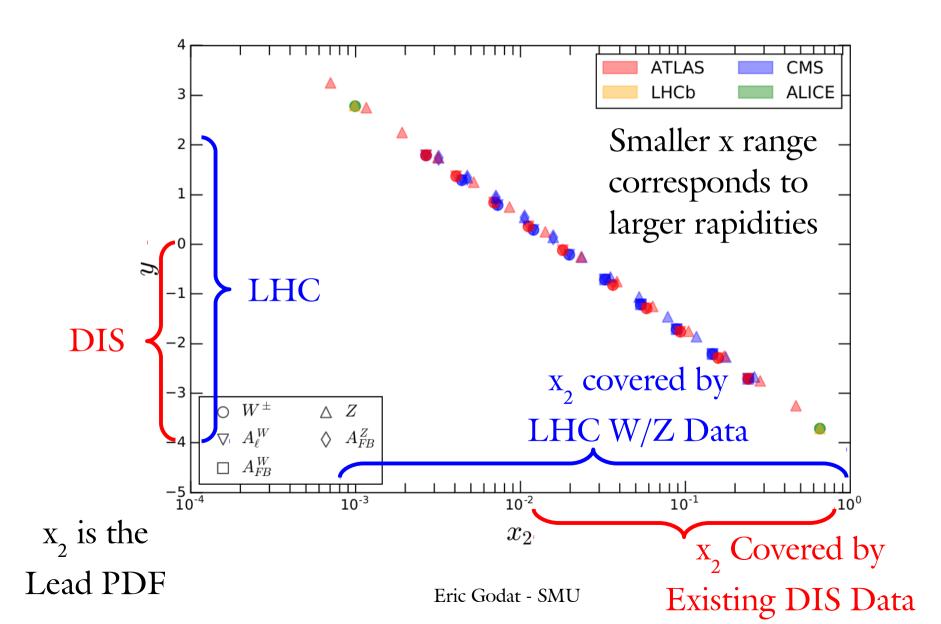
$$\sqrt{s_{pp}} = 7 \ TeV \rightarrow \sqrt{s_{PbPb}} = 2.76 \ TeV$$

$$\sqrt{s_{pp}} = 8 \ TeV \rightarrow \sqrt{s_{pPb}} = 5.02 \ TeV$$

pPb and PbPb collisions

- LHCb: $\sigma(Z \to \ell^+ \ell^-)$
- ALICE: $\sigma(W^{\pm} \to \ell^{\pm} \nu)$
- ATLAS: $d\sigma(W^{\pm} \to \ell^{\pm}\nu)/dy$ $d\sigma(Z \to \ell^{+}\ell^{-})/dy$ A_{ℓ}

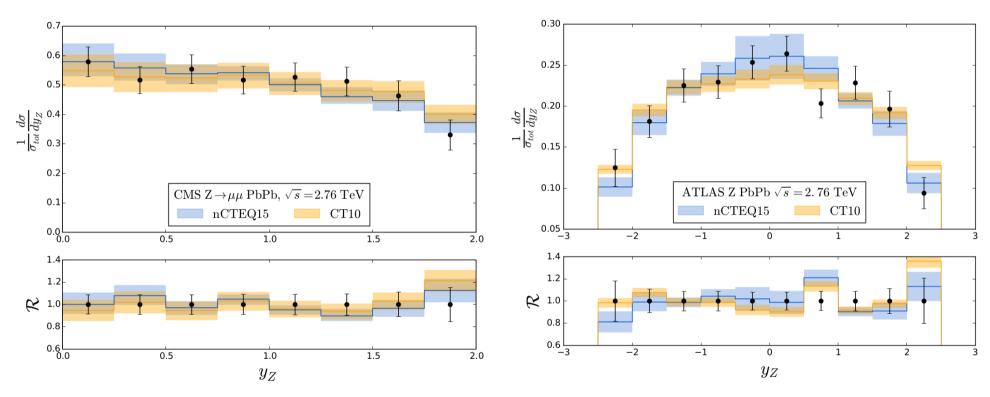
CMS:
$$d\sigma(W^{\pm} \to \ell^{\pm}\nu)/dy$$


$$d\sigma(Z \to \ell^{+}\ell^{-})/dy$$

$$A_{\ell}$$

$$A_{FB}$$

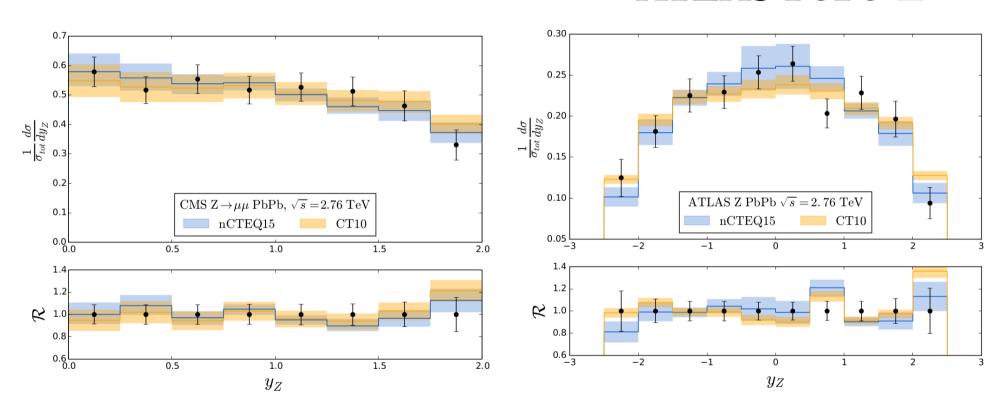
nCTEQ PDFs at the LHC



CMS PbPb Z

ATLAS PbPb Z

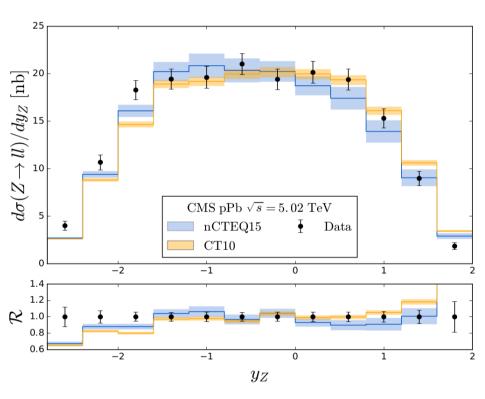
All predictions shown at NLO


Done in modified FEWZ software which allows for pp, pPb, and PbPb collisions

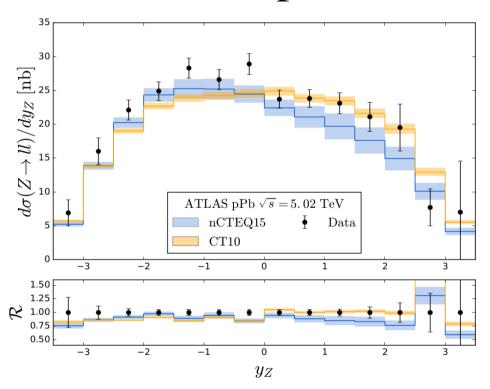
CT10 nucleus constructed using CT10 free protons

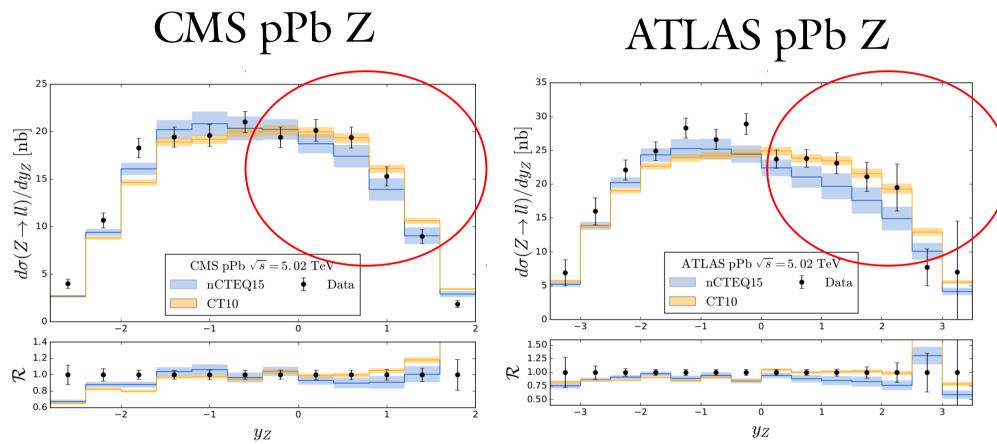
CMS PbPb Z

ATLAS PbPb Z

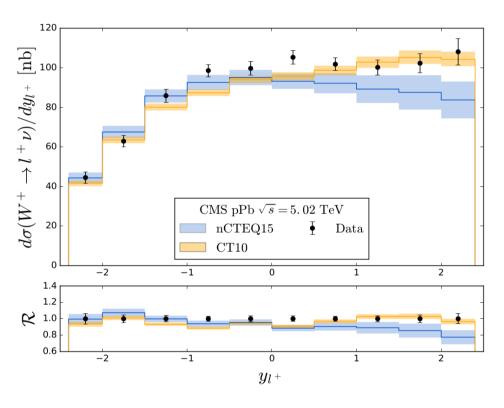

Good agreement between data and both sets

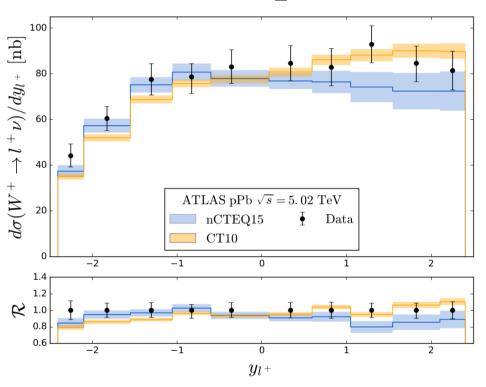
Not sensitive to nuclear corrections


Eric Godat - SMU 25/107



ATLAS pPb Z


Slight deviance between data and CT10 from nCTEQ15


Good agreement for negative rapidities, the region we have data to constrain the PDF

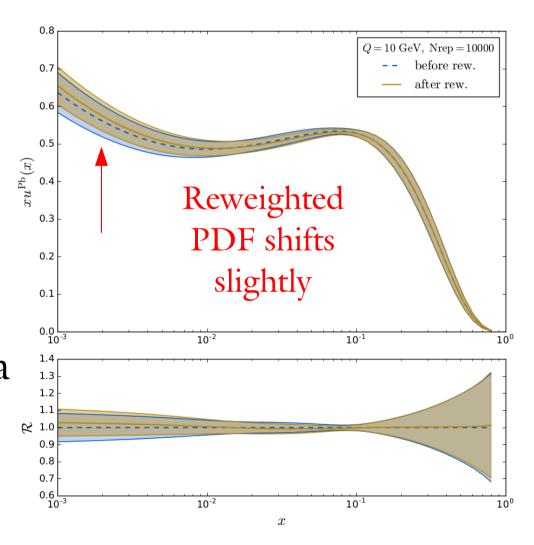


ATLAS pPb W+

Definite separation between data and CT10 from nCTEQ15

Indicates this data could be useful in constraining PDFs in this region

Reweighting

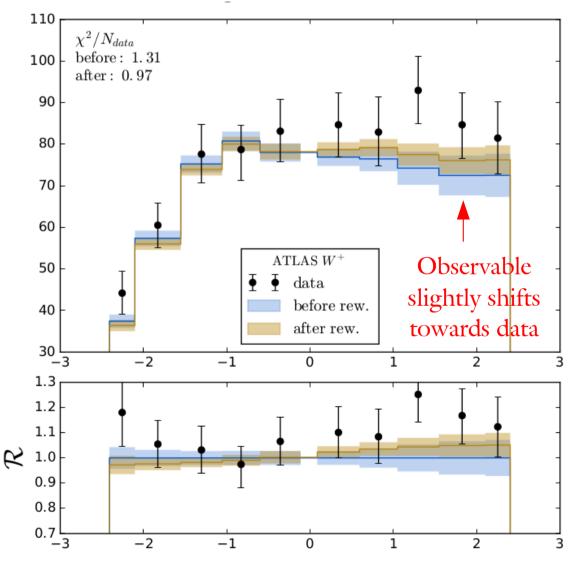

Technique using Bayesian Statistics to shift existing PDF

Allows for new data to be added

DOES NOT REFIT

Can suggest the impact data might have on a future fit

Limited to existing parameterization



Reweighting

Results indicated parameterization is inflexible and refit was needed

- Extrapolation in x₂
 region corresponding to positive rapidity
 - Previously lacked data in this range
- Strange quark parameter could be opened
 - Currently fixed to up and down quarks

Eric Godat - SMU

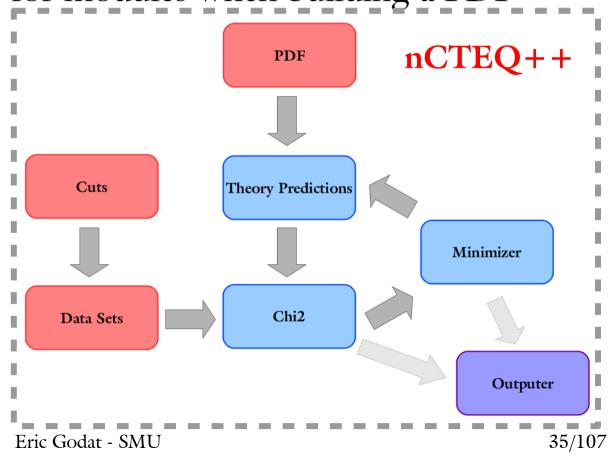
Refitting nCTEQ15

nCTEQ Status After Reweighting

- FORTRAN fitting code
 - Internal theory calculations
 - Process specific modules
 - Internal PDF evolution
- Large χ^2 from reweighting study
 - Poor description of the shape of LHC data
 - Particularly for positive rapidities
- No LHC data included
 - New theory module would be needed

nCTEQ++

What is nCTEQ++?


- A complete rewrite of the original nCTEQ FORTRAN fitting code in C++
- Changed the code to allow for modules when building a PDF

Evolution

Interpolation

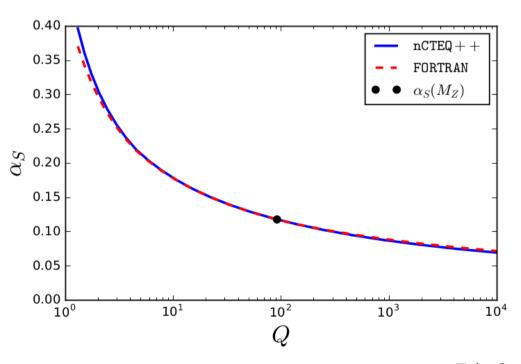
Parameterization

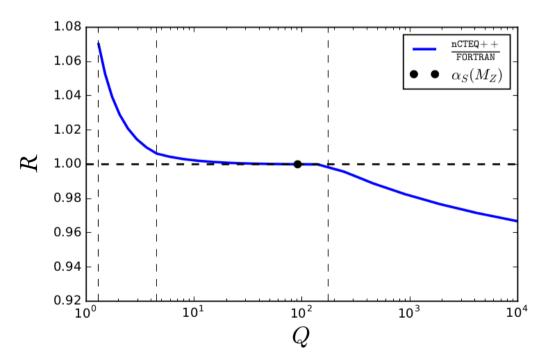
- Fitting using Minuit
- Minor bug fixes

Validation: α_s

$$\frac{d\alpha_S}{d\ln(Q^2)} = \beta(\alpha_S(Q^2)) = -(b_0\alpha_S^2 + b_1\alpha_S^3 + b_2\alpha_S^4 + \dots)$$

nCTEQ++: (HOPPET)


Runge-Kutta numerical solution


Number of Quark Flavors – 4, 5, 6

FORTRAN:

Truncated analytic series solution

Number of Quark Flavors – 4, 5

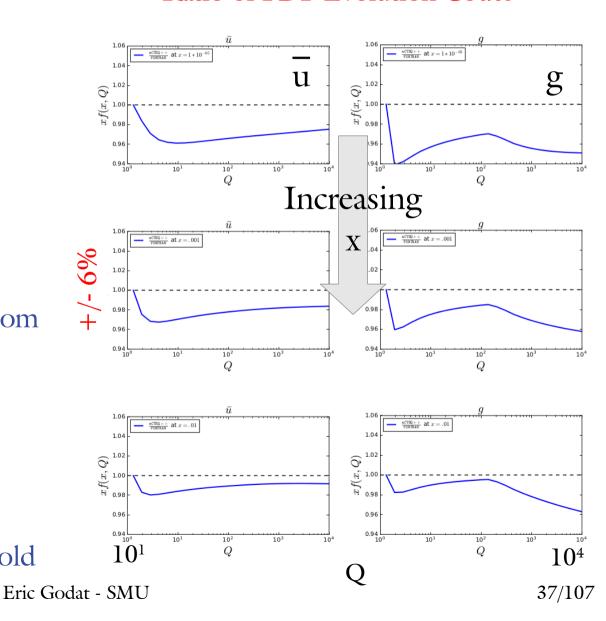
Eric Godat - SMU

Validation: Evolution

HOPPET to provide PDF evolution

- Accepted in PDF community (PDF4LHC)
- Externally maintained

PDFs match at Q₀

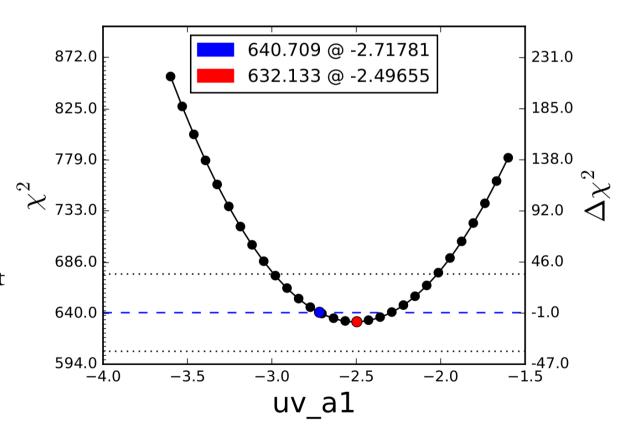

Differences in evolution arise from different α_s

- HOPPET uses Runge-Kutta

Differences consistent across

Q range, x range, all flavors
Gluon reflects top quark threshold

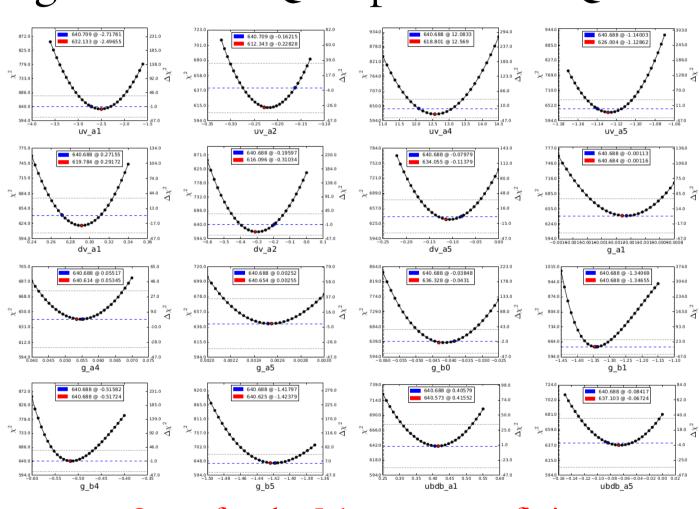
Ratio of PDF Evolution Codes



Validation: Parameter Scans

How did the χ^2 change for nCTEQ15 in nCTEQ++?

- Minimum might have changed in new code
 - Scan each parameter fit in nCTEQ15
 - Step through parameter \(\sigma \)space
 - Calculate χ^2 at each point
 - χ^2 Tolerance (t) = 35
- All parameters fell within tolerance



Validation: χ^2

How did the χ^2 change for nCTEQ15np in nCTEQ++?

- Original:
 - χ^2 : 625.6
 - 708 points
 - $0.883 \chi^2/d.o.f.$
- nCTEQ++:
 - $X^2: 640.7$
 - 708 points
 - $0.905 \chi^2/d.o.f.$
- $\Delta \chi^2$: 15.1
 - Less than t=35

Scans for the 16 parameters fit in

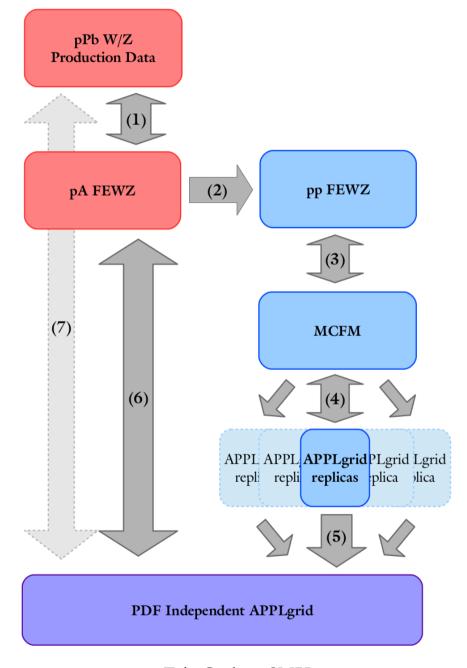
Eric Godat - SMU nCTEQ15np

Theory Predictions

Goal: Include new LHC data in nCTEQ15 PDF fit

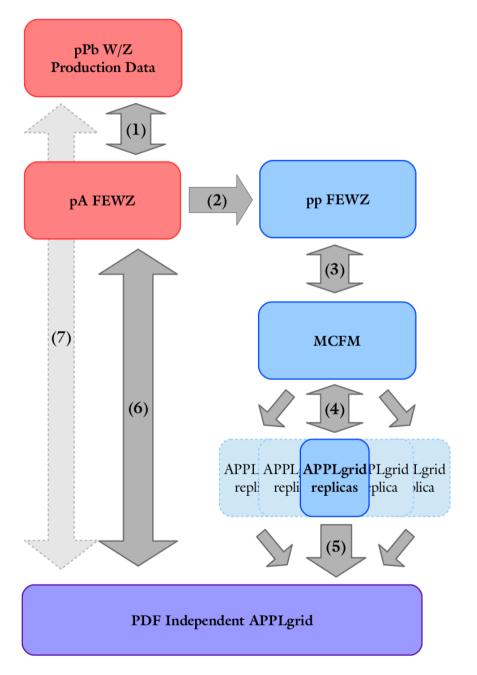
- Theory predictions are very slow and time consuming
 - Grid techniques drastically speed up the process
- Theory code must be tuned to match experimental measurement
- Theory codes available:
 - pAFEWZ
 - Modified to allow for pp, AA, pA modes
 - Previously tuned in reweighting study to match experiments
 - No grid techniques available
 - MCFM
 - Can only run in symmetric pp or AA modes
 - Not tuned to match experimental measurements
 - Links directly to APPLGrid
 - Extensive library of processes

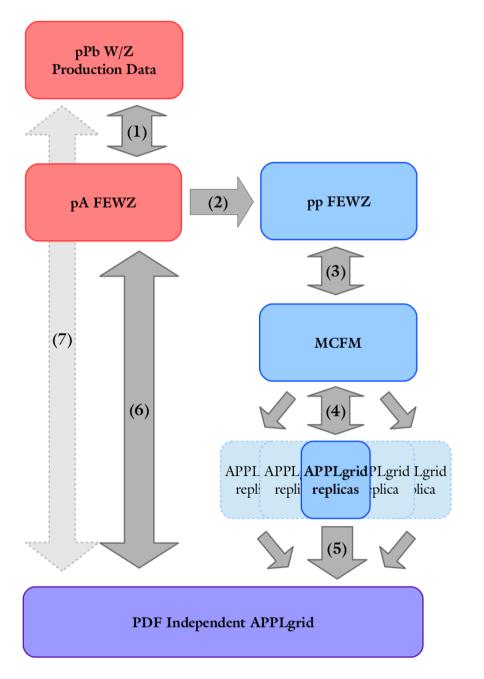
Gridded Theory Predictions



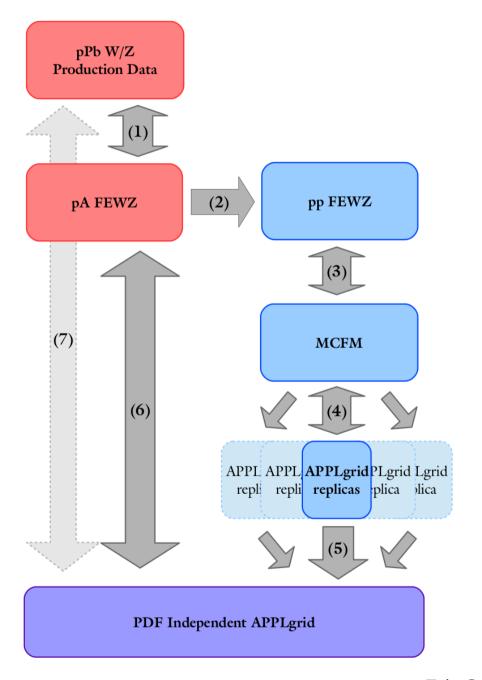
- Produced in APPLGrid via MCFM
 - Cut-dependent arrays in (x,Q,flavor) space
 - Filled with weighted matrix elements from Monte Carlo integration
 - Precalculated, interpolated and summed, reducing computation time
 - Grids can be PDF-independent with enough statistics Slow matrix element

$$\hat{\sigma}(x,Q) \rightarrow \hat{\sigma}_i(x_i,Q_i)$$
Fast Interpolated Grid


Eric Godat - SMU 42/107

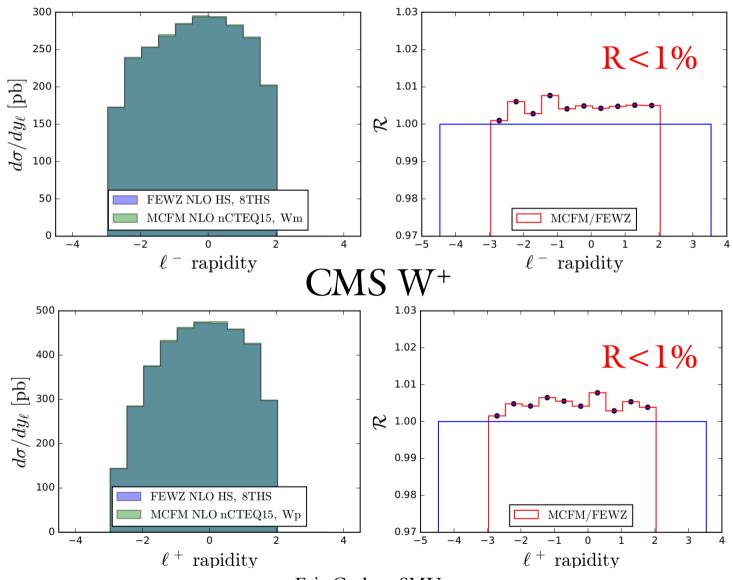

Eric Godat - SMU 43/107

(1)Data matched to pAFEWZ in reweighting



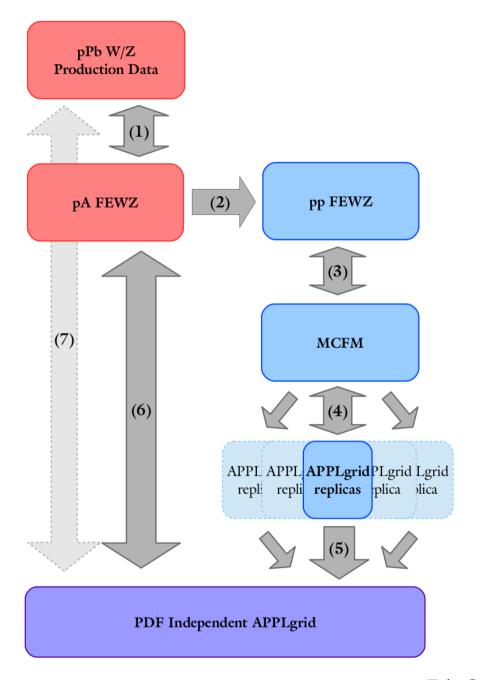
- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode

Maintains cuts and binning from asymmetric mode

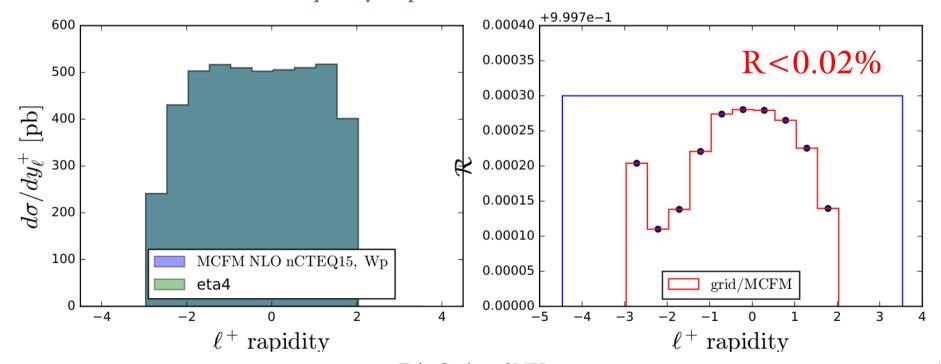


- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3) Compare pp FEWZ to pp MCFM

Compare FEWZ-pp to MCFM-pp

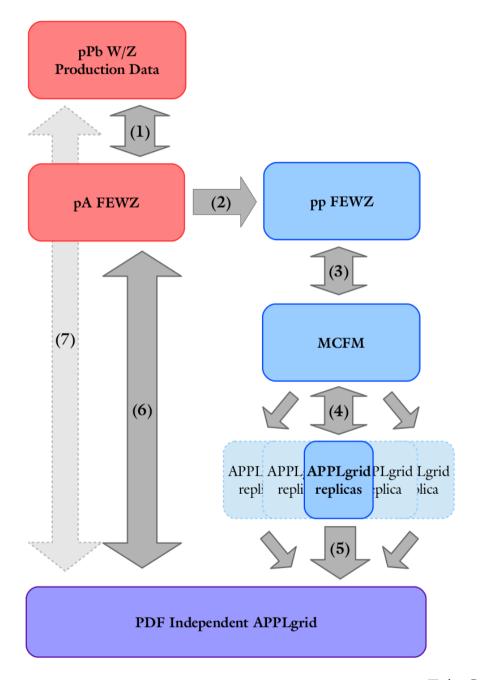


Eric Godat - SMU



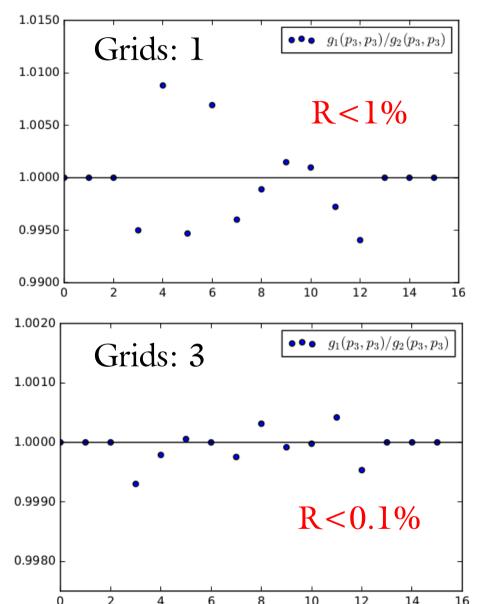
- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3) Compare pp FEWZ to pp MCFM
- (4) Generate APPLgrid grids
 - · Using mcfm-bridge
 - · Different Monte Carlo seeds

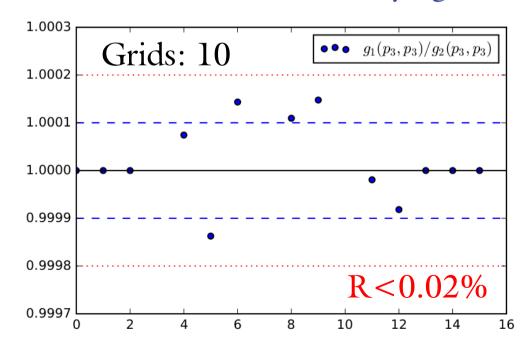
Producing grids using MCFM


- Events generated in MCFM
 - Extracted with mcfm-bridge
 - Stored in grids by APPLgrid
- Grids then convoluted with PDF used to generate events
- Different Monte Carlo seeds for MCFM change the events and subsequently the grids
 - ManeFrame allows this to run quickly in parallel

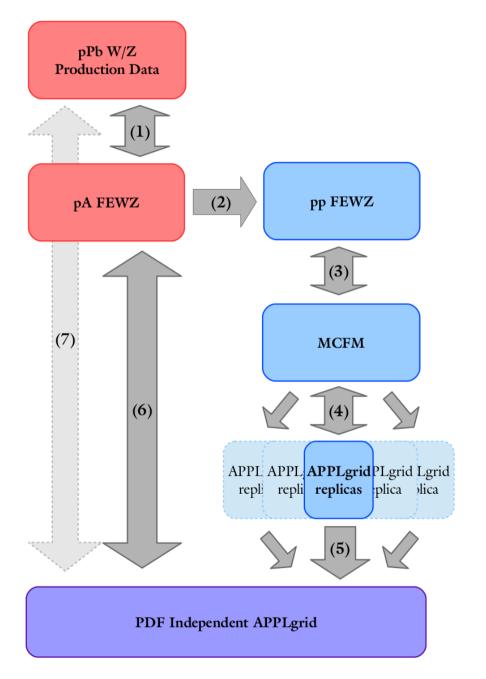
Eric Godat - SMU

49/107

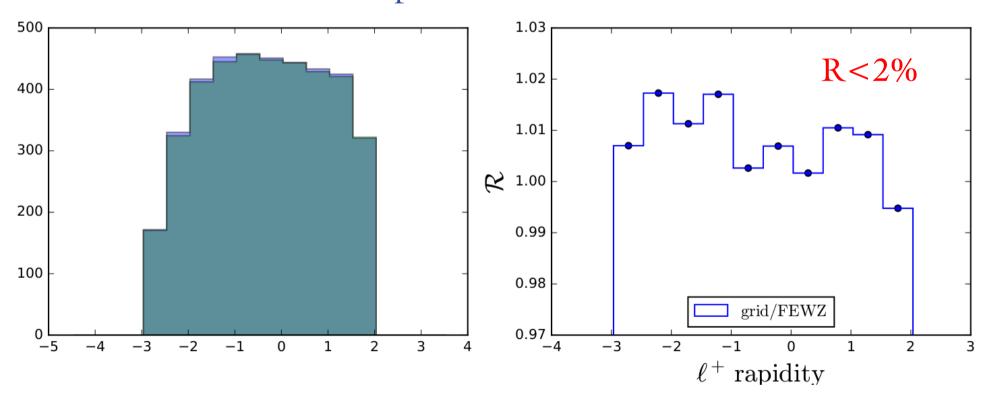



- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3) Compare pp FEWZ to pp MCFM
- (4) Generate APPLgrid grids
 - · Using mcfm-bridge
 - Different Monte Carlo seeds
- (5) Combine replica grids into a single PDF independent grid

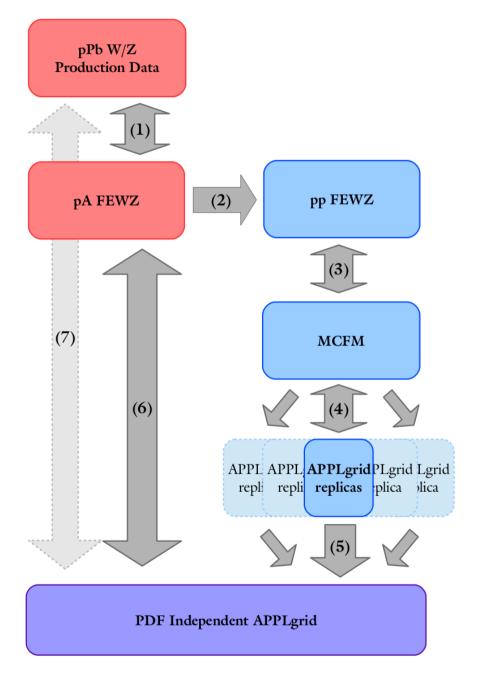
PDF Independence for Grids



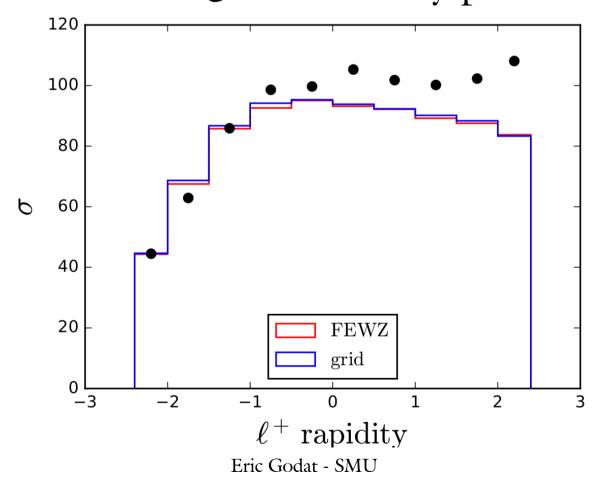
- Grids can be combined increase their statistics
 - applgrid-combine utility
 - Improve statistics
 - Decrease reliance on underlying PDF



- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3) Compare pp FEWZ to pp MCFM
- (4) Generate APPLgrid grids
 - · Using mcfm-bridge
 - Different Monte Carlo seeds
- (5) Combine replica grids into a single PDF independent grid
- · Using applgrid-combine
- (6) Convolute PDF independent grid with asymmetric PDFs to compare to pAFEWZ


Comparing pAFEWZ to PDF Independent grid

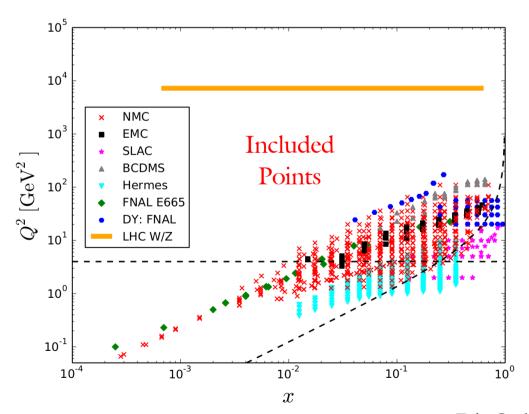
- 10 grids from different MCFM runs combined into final grid
- Final grid then convoluted with pPb PDFs
 - Same that were used in pAFEWZ run


- (1)Data matched to pAFEWZ in reweighting
- (2) Run FEWZ in symmetric pp mode
- (3) Compare pp FEWZ to pp MCFM
- (4) Generate APPLgrid grids
 - · Using mcfm-bridge
 - Different Monte Carlo seeds
- (5) Combine replica grids into a single PDF independent grid
- · Using applgrid-combine
- (6) Convolute PDF independent grid with asymmetric PDFs to compare to pAFEWZ
- (7) Add data and grid in nCTEQ++ to fit W/Z LHC data

Eric Godat - SMU 54/107

Bringing it all together

Convoluted grids can then be compared to data and used in nCTEQ++ as theory predictions



pPb Data for nCTEQ+LHC

No LHC data in any previous nCTEQ fit

 New gridded theory predictions would make this possible

ATLAS:

• $d\sigma(W^- \to \ell^- \nu)/dy$

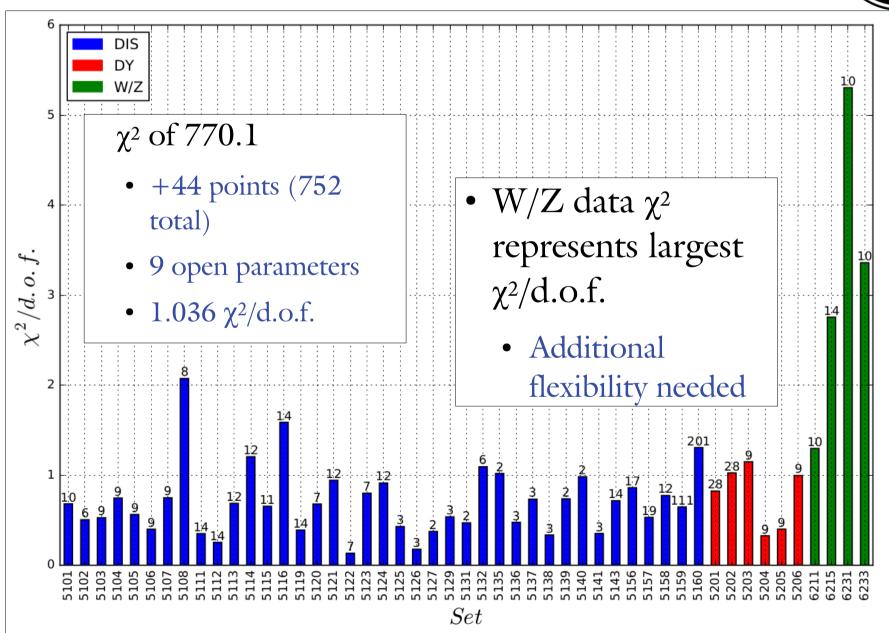
ID: 6211 Npts: 10

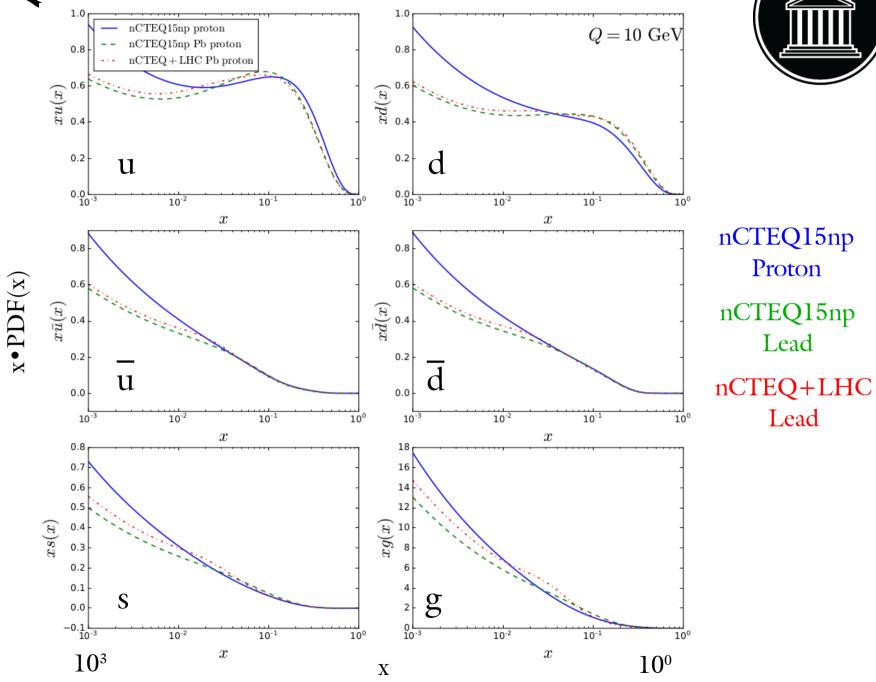
• $d\sigma(Z \to \ell^+\ell^-)/dy$

ID: 6215 Npts: 14

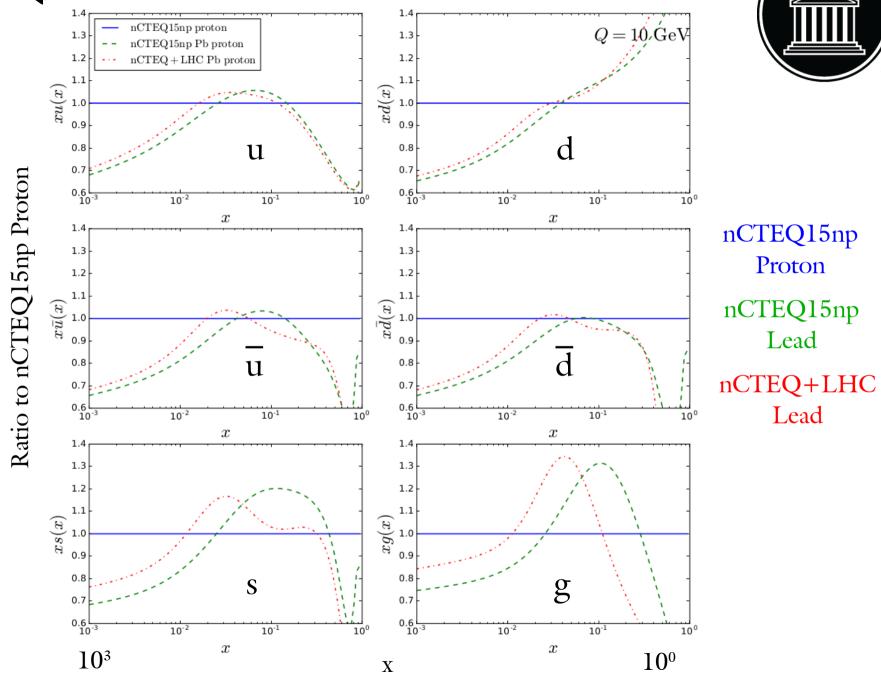
CMS:

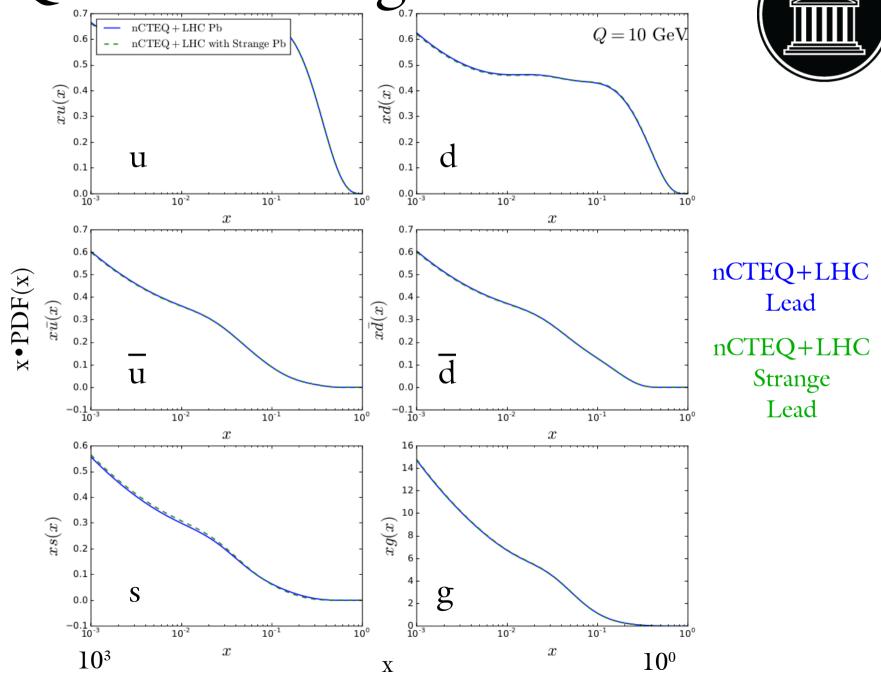
• $d\sigma(W^- \to \ell^- \nu)/dy$


ID: 6231 Npts: 10


• $d\sigma(W^+ \to \ell^+ \nu)/dy$

ID: 6233 Npts: 10


Eric Godat - SMU



Eric Godat - SMU

Eric Godat - SMU

nCTEQ+LHC strange

Eric Godat - SMU

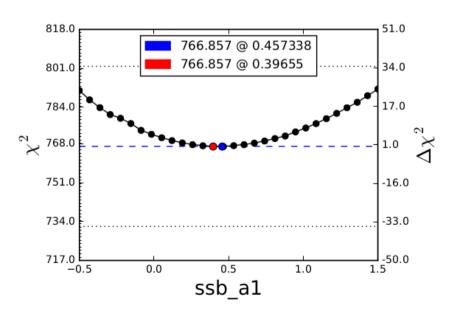
nCTEQ+LHC strange nCTEQ + LHC PbQ = 10 GeV1.3 1.3 nCTEQ + LHC with Strange Pb 1.2 1.2 $(x)^{1.1}$ 1.1 xd(x)0.9 0.9 0.8 0.8 u 0.7 0.7 Ratio to nCTEQ+LHC Lead 0.6 L 10⁻³ 0.6 L 10⁻³ 10⁻² 10⁻² 10⁻¹ 10° 10° 10⁻¹ \boldsymbol{x} x1.4 1.4 1.3 1.3 nCTEQ+LHC 1.2 1.2 $(x)_{1.0}^{1.1}$ Lead 1.1 $(x)^{1.0}$ 0.9 0.9 nCTEQ+LHC 0.8 0.8 u Strange 0.7 0.7 Lead 0.6 0.6 L 10⁻³ 10-2 10⁻¹ 10-2 10-1 10° 10° xx1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 xs(x)1.0 x g(x) 0.9 0.9 8.0 0.8 S g 0.7 0.7 0.6 0.6 10-2 10⁻² 10⁻¹ 10° 10-1 10°

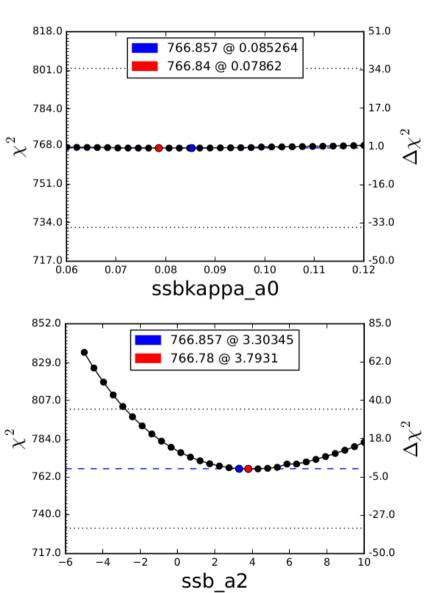
Eric Godat - SMU

 \mathbf{X}

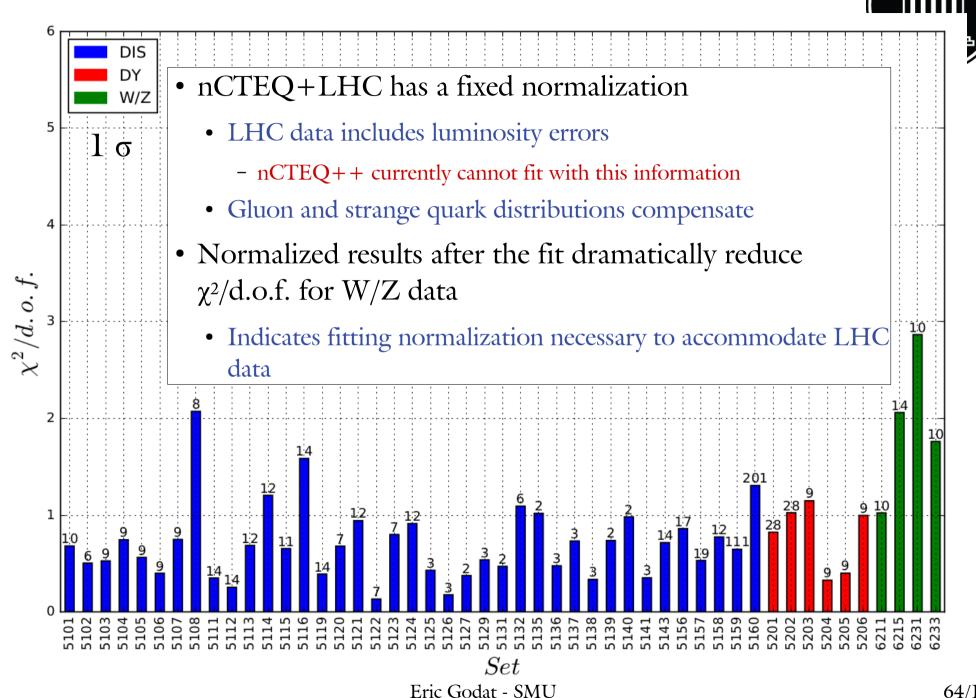
x

 10^{0}

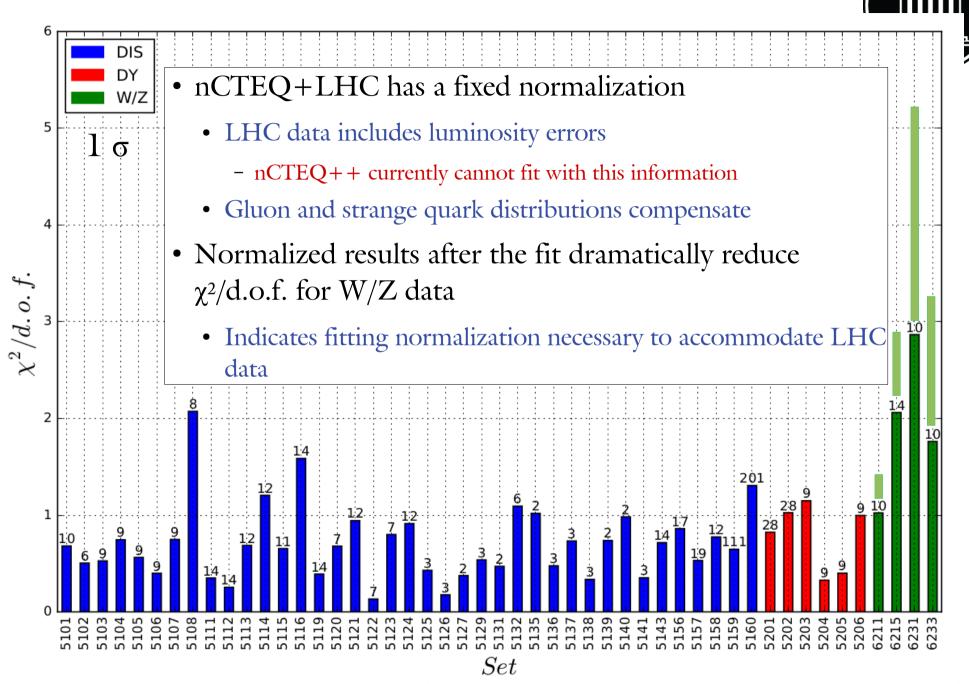

x

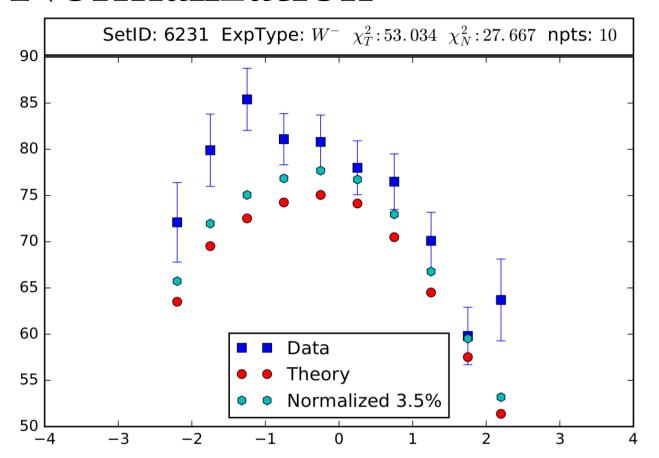

 10^3

nCTEQ+LHC strange



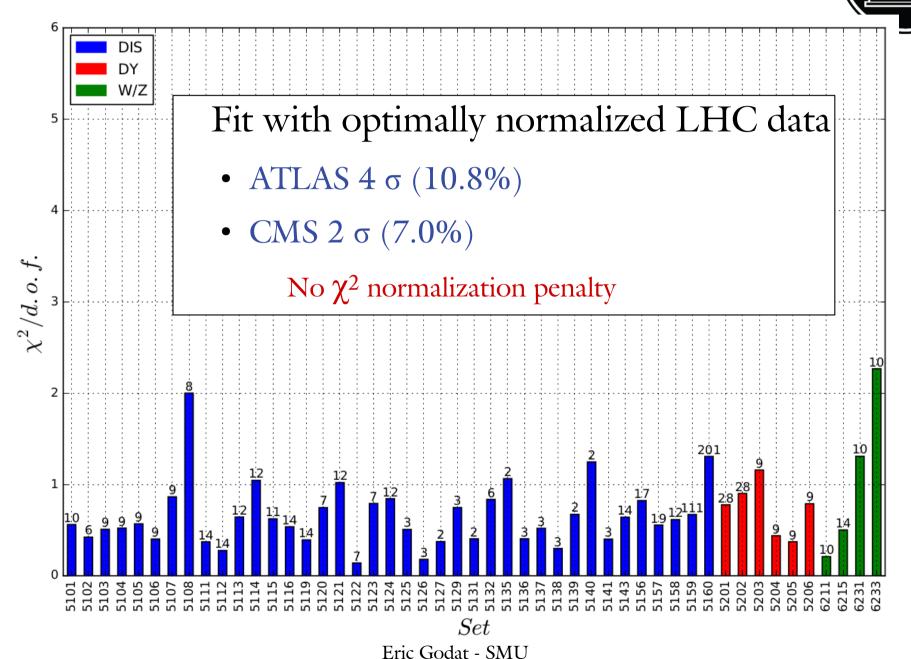
- Opening the strange parameter had little effect on fit
 - Possibly due to small number of data points
 - Strange asymmetry remained fixed in parameterization
 - $\kappa = 1/2$ from proton fit
- Parameter scans show insensitivity in strange




Normalization

Normalization

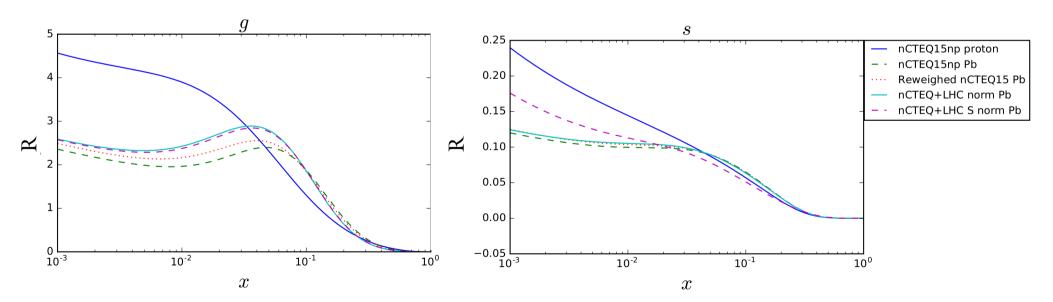
Normalization


lσ normalization applied to LHC sets

- Improved $\chi^2/\text{d.o.f.}$
- Additional normalization could improve χ² more

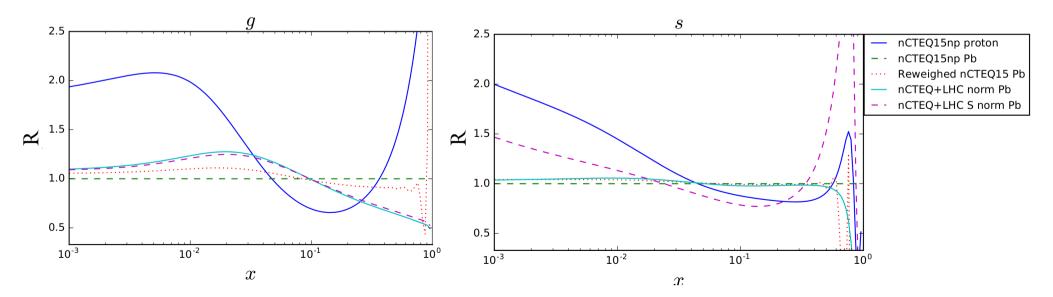
Penalty should be implemented to the χ^2

		Data ID:	6211	6231	6233	6215
	nCTEQ15-np	χ^2 per d.o.f:	1.55	6.91	7.73	3.16
	Reweighting	χ^2 per d.o.f:	0.87	3.27	2.95	1.76
	nCTEQ+LHC	χ^2 per d.o.f:	1.30	5.30	3.36	2.75
Normalized	nCTEQ+LHC $(1 \times \sigma_N)$	χ^2 per d.o.f:	0.92(+0.10)	2.77(+0.10)	1.66(+0.10)	1.96(+0.07)
	$\texttt{nCTEQ+LHC} \; \big(4\sigma_N^{ATLAS}, \; 2\sigma_N^{CMS} \big)$	χ^2 per d.o.f:	0.42(+1.60)	1.33(+0.40)	1.39(+0.40)	0.94(+1.14)


Fit with Normalization

Fit with Normalization

- Gluon and Strange quark able adjust to shape
 - Less of the fit is tied to compensating for normalization
- Validation of the results from reweighting
 - Reweighting indicated larger strange contribution at low x
 - Normalized fits show this to greater degree



Ratio of PDFs to nCTEQ15np lead

Fit with Normalization

- Gluon and Strange quark able adjust to shape
 - Less of the fit is tied to compensating for normalization
- Validation of the results from reweighting
 - Reweighting indicated larger strange contribution at low x
 - Normalized fits show this to greater degree

Ratio of PDFs to nCTEQ15np lead

Conclusions

Other Topics

ManeParse

- Mathematica Package
- Parses and interpolates PDFs
- Calculation and visualization functionalities

Heavy Flavor Variable Number Schemes

- Work done with xFitter collaboration
- Studies the effect of shifting heavy quark mass thresholds for PDF fitting

Eric Godat - SMU

Conclusions

- Inclusion of W/Z LHC data improves nCTEQ15 fit
 - Better description of shape
 - Normalization important
 - This can be adjusted post-fit
 - Data coverage in new kinematic region eliminates extrapolation
 - Improves shape of fit in positive rapidity
 - Reweighting analysis did indicate direction of new fit
- nCTEQ parameterization remains overly restrictive
 - Fixed strange and anti-strange quark contributions
 - κ parameter from the proton fit
- Fitting normalization is necessary
 - Greatly reduces χ^2
 - Allows opening strange quark parameters

Next Steps nCTEQ+LHC

- More data available from the LHC
 - nCTEQ+LHC only contains a fraction of the data sets used in the reweighting study
 - e.g. LHCb, ALICE, ATLAS W+, PbPb sets
 - MCFM provides expansive library of processes (~1000)
 - Gridded theory predictions for a variety of types of data
- Dynamic normalization fitting with χ^2 penalties
 - Module nearly complete
- Hessian Error analysis to describe error bars on PDFs
 - Delicate for nuclear fitting due to lack of data and flat parameter space
 - In progress

MCFM Processes Library (v6.8)

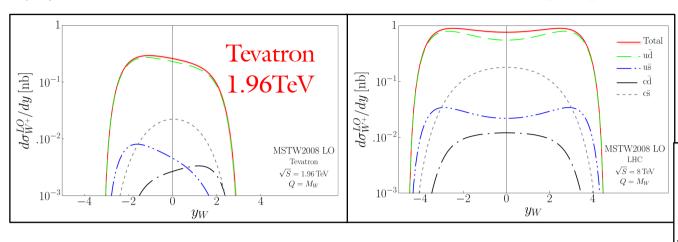
Citation

nproc	$f(p_1) + f(p_2) \rightarrow \dots$	Order
1	$W^+(\to \nu(p_3) + e^+(p_4))$	NLO
6	$W^-(\to e^-(p_3) + \bar{\nu}(p_4))$	NLO
11	$W^+(\to \nu(p_3) + e^+(p_4)) + f(p_5)$	NLO
12	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{b}(p_5)$	NLO
13	$W^+(\to \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$	NLO
14	$W^{+}(\to \nu(p_3) + e^{+}(p_4)) + \bar{c}(p_5)$ [massless]	LO
16	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + f(p_5)$	NLO
17	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + b(p_5)$	NLO
18	$W^{-}(\to e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5)$	NLO
19	$W^-(o e^-(p_3) + \bar{\nu}(p_4)) + c(p_5)$ [massless]	LO

nproc	$f(p_1) + f(p_2) \rightarrow$	Order
1	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4))$	NLO
6	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))$	NLO
11	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5)$	NLO
12	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{b}(p_5)$	NLO
13	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{c}(p_5)$	NLO
14	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + \bar{c}(p_5)$ [massless]	LO
16	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + f(p_5)$	NLO
17	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$	NLO
18	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + c(p_5)$	NLO
19	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + c(p_5)$ [massless]	LO
20	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + b(p_6)[massive]$	NLO
21	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + \bar{b}(p_6)$	NLO
22	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5) + f(p_6)$	NLO
23	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
24	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + b(p_5) + \vec{b}(p_6) + f(p_7)$	LO
25	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)[massive]$	NLO
26	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)$	NLO
27	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6)$	NLO
28	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
29	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$	LO
31	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4}))$	NLO
32	$Z^0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4)))$	NLO
33	$Z^0(\rightarrow b(p_3) + \bar{b}(p_4))$	NLO
34	$Z^0(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
35	$Z^0(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
36	$Z \rightarrow t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{b}(p_6) + e^-(p_7) + \bar{\nu}(p_8))$	LO
41	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5})$	NLO
42	$Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + f(p_5)$	NLO
43	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + f(p_{5})$	NLO
44	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6})$	NLO
45	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + f(p_{5}) + f(p_{6}) + f(p_{7})$	LO
46	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4})) + f(p_{5}) + f(p_{6})$	NLO
47	$Z^{0}(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$	LO
50	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6})[massive]$	LO
51	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$	NLO
52	$Z_0(\rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + b(p_5) + \bar{b}(p_6)$	NLO
53	$Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$	NLO
54	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6}) + f(p_{7})$	LO
	70	

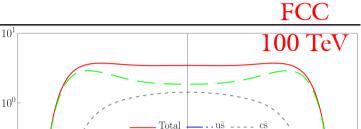
ノ(p_4)) + $c(p_5)$ massless	
10	$1 \mid Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow b(p_{5}) + b(p_{6}))$	NLO
103	$Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
103		NLO
10	4 $Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + H(\rightarrow \gamma(p_5) + \gamma(p_6))$	NLO
10	$5 \mid Z^0(\longrightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + H(\longrightarrow \gamma(p_5) + \gamma(p_6))$	NLO
100		NLO
10		NLO
10		NLO
109		NLO
11		NLO
11:		NLO NLO
11.		NLO
11		NLO
110		NLO
11		NLO
113		NLO
119		NLO
120		NLO
12		NLO
_		
56	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + \bar{c}(p_{6})$	NLO
61	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow e^{-}(p_5) + \bar{\nu}(p_6))$	NLO
62	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow q(p_5) + \bar{q}(p_6))$	NLO
63	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow q(p_5) + \bar{q}(p_6))[rad.in.dk]$	NLO
64	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4))W^{+}(\rightarrow q(p_5) + \bar{q}(p_6))$	NLO
65	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}))W^{+}(\rightarrow q(p_{5}) + \bar{q}(p_{6}))[rad.in.dk]$	NLO
66	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + W^{-}(\rightarrow e^{-}(p_5) + \bar{\nu}(p_6)) + f(p_7)$	LO
69	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + W^{-}(\rightarrow e^{-}(p_{5}) + \bar{\nu}(p_{6}))$ [no pol]	LO
71	$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow e^{-}(p_5) + e^{+}(p_6))$	NLO
72	$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$	NLO NLO
74	$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow b(p_5) + \bar{b}(p_6))$	NLO
	$W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$ $W^{+}(\rightarrow \nu(p_3) + \mu^{+}(p_4)) + Z^{0}(\rightarrow 2 \times (u(p_5) + \bar{u}(p_6)))$	NLO
75 76	$W^{-}(\rightarrow \nu(p_3) + \mu^{-}(p_4)) + Z^{-}(\rightarrow 2 \times (u(p_5) + u(p_6)))$ $W^{-}(\rightarrow \mu^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow e^{-}(p_5) + e^{+}(p_6))$	NLO
77	$W^{-}(\rightarrow \mu^{-}(p_3) + \bar{\nu}(p_4)) + Z^{-}(\rightarrow e^{-}(p_5) + e^{-}(p_6))$ $W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + Z^{0}(\rightarrow 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$	NLO
78	$W^{-}(\rightarrow e^{-}(p_{3}) + \nu(p_{4})) + Z^{-}(\rightarrow 3 \times (\nu_{e}(p_{5}) + \nu_{e}(p_{6})))$ $W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
79	$W (\rightarrow c (p_3) + \nu(p_4)) + Z^*(\rightarrow b(p_5) + b(p_6))$ $W^-(\rightarrow c^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow 3 \times (d(p_5) + \bar{d}(p_6)))$	NLO
80	$W c (p_3) + \overline{\nu}(p_4)) + Z \exists \lambda (u(p_5) + u(p_6))$ $W^-(\rightarrow e^-(p_3) + \overline{\nu}(p_4)) + Z^0(\rightarrow 2 \times (u(p_5) + \overline{u}(p_6)))$	NLO
81	$W (\rightarrow e^{-}(p_3) + \nu(p_4)) + Z (\rightarrow 2 \times (u(p_5) + u(p_6)))$ $Z^0(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + Z^0(\rightarrow \mu^{-}(p_5) + \mu^{+}(p_6))$	NLO
82	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + Z^{0}(\rightarrow \mu^{-}(p_{5}) + \mu^{-}(p_{6}))$ $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6})))$	NLO
83	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{-}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + b(p_{6}))$ $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
84	$Z^0(\rightarrow b(p_3) + \bar{b}(p_4)) + Z^0(\rightarrow 3 \times (\nu(p_5) + \bar{\nu}(p_6)))$ $Z^0(\rightarrow b(p_3) + \bar{b}(p_4)) + Z^0(\rightarrow 3 \times (\nu(p_5) + \bar{\nu}(p_6)))$	NLO
85	$Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow 3 \times (\nu(p_5) + \bar{\nu}(p_6))) + f(p_7)$ $Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow 3 \times (\nu(p_5) + \bar{\nu}(p_6))) + f(p_7)$	LO
86	$Z^0(\rightarrow e^-(p_3) + e^-(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6)) = 0$ gamma*	NLO
87	$Z^{0}(\rightarrow \mu^{-}(p_{3}) + \mu^{-}(p_{4})) + Z^{0}(\rightarrow e^{-}(p_{5}) + e^{-}(p_{5})) = gamma^{*}$ $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0}(\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6}))) = gamma^{*}$	NLO
88	$Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow b(p_5) + \bar{b}(p_6))$ [no gamma*]	NLO
89	$Z^0(\rightarrow b(p_3) + \bar{b}(p_4)) + Z^0(\rightarrow 3 \times (\nu(p_5) + \bar{\nu}(p_6)))$ [no gamma*]	NLO
90	$Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6))$	NLO
91	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow b(p_5) + b(p_6))$	NLO
92	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + H(\rightarrow \nu(p_{5}) + \nu(p_{6}))$ $W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{8})))$	NLO
93	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H^-(\rightarrow W^-(\nu(p_5), e^+(p_6))W^-(e^-(p_7), \nu(p_8)))$ $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H^-(\rightarrow Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu(p_8)))$	NLO
94	$W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H^-(\rightarrow Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu(p_8)))$ $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H^-(\rightarrow \gamma(p_5) + \gamma(p_6))$	NLO
96	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{e}^{-}(p_{4})) + H(\rightarrow b(p_{5}) + \bar{b}(p_{6}))$	NLO
97	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + H(\rightarrow b(p_3) + b(p_6))$ $W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + H(\rightarrow W^{+}(\nu(p_5), e^{+}(p_6))W^{-}(e^{-}(p_7), \bar{\nu}(p_8)))$	NLO
98	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + H(\rightarrow Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu^+(p_8)))$	NLO
99	$W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to \gamma(p_5) + \gamma(p_6))$	NLO
0.0	·· / - Ant - Antil + ** / . (/Lo) + (/Lo)/	

124	$H(\rightarrow W^{+}(\nu(p_{3}) + e^{+}(p_{4})) + W^{-}(e^{-}(p_{5}) + \bar{\nu}(p_{6})))$ [only H, gg \rightarrow WW intf.	LO
125	$H(\rightarrow W^{+}(\nu(p_{3}) + e^{+}(p_{4})) + W^{-}(e^{-}(p_{5}) + \bar{\nu}(p_{6})))$ [$ H ^{2}$ and $H,gg\rightarrow WW$ intf.]	LO
126	$W^{+}(\nu(p_3) + e^{+}(p_4)) + W^{-}(e^{-}(p_5) + \bar{\nu}(p_6))$ [gg only, (H + gg \rightarrow WW) squared]	LO
127	$W^{+}(\nu(p_3) + e^{+}(p_4)) + W^{-}(e^{-}(p_5) + \bar{\nu}(p_6))$ [(gg \rightarrow WW) squared]	LO
128	$H(\rightarrow Z^0(e^-(p3) + e^+(p4)) + Z^0(\mu^-(p5) + \mu^+(p6))$ [top, bottom loops, exact]	LO
129	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [only H, gg \rightarrow ZZ intf.]	LO
130	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [$ H ^{2}$ and $H,gg\rightarrow ZZ$ intf.]	LO
131 132	$Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [gg only, (H + gg \rightarrow ZZ) squared] $Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6))$ [(gg \rightarrow ZZ) squared]	LO
132	$Z^{\circ}(e^{-}(p3) + e^{-}(p4)) + Z^{\circ}(\mu^{-}(p5) + \mu^{+}(p6)) [(gg \rightarrow ZZ) \text{ squared}]$ $H(\rightarrow e^{-}(p3) + e^{+}(p4)\nu_{e}(p5) + \bar{\nu}_{e}(p6) \text{ top, bottom loops, exact}]$	LO
1311	$e^-(p3) + e^+(p4) + \nu_e(p5) + \bar{\nu}_e(p6)$ [gg only, (H + gg \rightarrow ZZ) squared]	LO
1321	$e^{-}(p3) + e^{+}(p4) + \nu_e(p5) + \bar{\nu}_e(p6)$ [gg \rightarrow ZZ] squared]	LO
1282	$H(\rightarrow e^-(p3) + e^+(p4) + \nu(p5) + \bar{\nu}(p6)$ [top, bottom loops, exact]	LO
1312	$e^{-}(p3) + e^{+}(p4) + \nu(p5) + \bar{\nu}(p6)$ [gg only, (H + gg \rightarrow ZZ) squared]	LO
1322	$e^{-}(p3) + e^{+}(p4) + \nu(p5) + \bar{\nu}(p6)$ [(gg \rightarrow ZZ) squared]	LO
133	$H(\rightarrow Z^{0}(e^{-}(p3) + e^{+}(p4)) + Z^{0}(\mu^{-}(p5) + \mu^{+}(p6) + f(p7))$ [intf,no p_{7} cut]	LO
136	$H(\rightarrow b(p_3) + b(p_4)) + b(p_5)(+g(p_6))$	NLO
137	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + \bar{b}(p_5)(+b(p_6))$	(REAL)
138	$H(\rightarrow b(p_3) + \bar{b}(p_4)) + b(p_5) + \bar{b}(p_6)[both observed]$	(REAL)
141	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
142	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.dk]	NLO
143	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + f(p_9)$	LO
144	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ (uncorr)	NLO
145	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.dk],unco	
146	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + q(p_7) + \bar{q}(p_8))$	NLO
147	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + q(p_7) + \bar{q}(p_8))$ [rad.in.top.dk]	NLO
148	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + q(p_7) + \bar{q}(p_8))$ [rad.in.W.dk]	NLO
149	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$	NLO
150	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.top.dk]	NLO
151	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ [rad.in.W.dk]	NLO
157	tt[for total Xsect]	NLO
158	$b\bar{b}[\text{for total Xsect}]$	NLO
159	cc[for total Xsect]	NLO
160	$t\bar{t} + g[\text{for total Xsect}]$	LO
161	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[t\text{-channel}]$	NLO
162	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[\text{decay}]$	NLO
163	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[t\text{-channel}]mb > 0$	NLO
166	$\bar{t}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}) + \bar{b}(p_{5})) + q(p_{6})[\text{t-channel}]$	NLO
167	$\bar{t}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + q(p_6)[\text{rad.in.dk}]$	NLO
168	$\bar{t}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4}) + \bar{b}(p_{5})) + q(p_{6})[\text{t-channel}]mb > 0$	NLO
171	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + b(p_6))$ [s-channel]	NLO
172	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{b}(p_6))[\text{dec ay}]$	NLO
176	$\bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + b(p_6))$ [s-channel]	NLO
177	$\bar{t}(\rightarrow e^{-}(p_{5}) + \bar{\nu}(p_{4}) + \bar{b}(p_{5})) + b(p_{6}))$ [rad.in.dk]	NLO
180	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5)$	NLO
181	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$	NLO
182	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))$ [rad.in.dk]	NLO
183	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + b(p_8)$	LO
184	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + t(p_5) + b(p_6)$ [massive b]	LO
185	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + \bar{t}(p_{5})$ $W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + \bar{t}(-p_{5})$	NLO
186 187	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{t}(e^{-}(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)$	NLO NLO
191	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \bar{t}(e^{-}(p_5) + \bar{\nu}(p_6) + b(p_7)[rad.in.dk]$	NLO

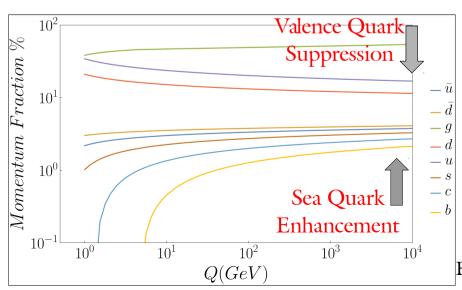

	272	$H(\tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6)[\text{in heavy top limit}]$	NLO	5
	273	$H(\rightarrow W^{+}(\nu(p_{3}), e^{+}(p_{4}))W^{-}(e^{-}(p_{5}), \bar{\nu}(p_{6}))) + f(p_{7}) + f(p_{8})$	NLO	5
	274	$H(\rightarrow Z(e^{-}(p_3), e^{+}(p_4))Z(\mu^{-}(p_5), \mu^{+}(p_6))) + f(p_7) + f(p_8)$	NLO	
	275	$H(b(p_3) + \bar{b}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [in heavy top limit]	LO	5
	276	$H(\tau^{-}(p_3) + \tau^{+}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ [in heavy top limit]	LO	5
	278	$H(\rightarrow W^{+}(\nu(p_3), e^{+}(p_4))W^{-}(e^{-}(p_5), \bar{\nu}(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO	5
	279	$H(\rightarrow Z(e^-(p_3), e^+(p_4))Z(\mu^-(p_5), \mu^+(p_6))) + f(p_7) + f(p_8) + f(p_9)$	LO	1.
	280	$\gamma(p_3) + f(p_4)$	NLO+F	5
	282	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + f(p_4) + f(p_5)$	LO	5
	283	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + b(p_4)$	LO	_
	284	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + c(p_4)$	LO	5
	285	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4)$	NLO+F	5
	286	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4) + f(p_5)$	NLO+F	5
	287	$f(p_1) + f(p_2) \rightarrow \gamma(p_3) + \gamma(p_4) + \gamma(p_5)$	NLO+F	1.
	290	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5)$	NLO+F	5
	292	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5) + f(p_6)$	LO	- 5
	295	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + \gamma(p_5)$	NLO+F	5
	297	$W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + \gamma(p_5) + f(p_6)$	LO	1.
	300	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5})$	NLO+F	5
	301	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6})$	NLO +F	- 5
	302	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6})$	NLO + F	_
	303	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$	LO	6
	304	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + \gamma(p_{5}) + f(p_{6}) + f(p_{7})$ $Z^{0}(\rightarrow 3(\nu(p_{4}) + \bar{\nu}(p_{4}))) + \gamma(p_{5})$	NLO + F	6
	306	$Z^{0}(\rightarrow 3(\nu(p_3) + \nu(p_4))) + \gamma(p_5)$ $Z^{0}(\rightarrow 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + \gamma(p_6)$	NLO + F	6
	307	$Z^-(\rightarrow 3(\nu(p_3) + \nu(p_4))) + \gamma(p_5) + \gamma(p_6)$ $Z^0(\rightarrow 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + f(p_6)$	NLO + F	- 1
	308	$Z^{-}(\rightarrow 3(\nu(p_3) + \nu(p_4))) + \gamma(p_5) + f(p_6)$ $Z^{0}(\rightarrow 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + \gamma(p_6) + f(p_7)$	LO + F	6
	309	$Z^0(\to 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + \gamma(p_6) + f(p_7)$ $Z^0(\to 3(\nu(p_3) + \bar{\nu}(p_4))) + \gamma(p_5) + f(p_6) + f(p_7)$	LO	6
	311	$f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$	LO	6
	316	$f(p_1) + b(p_2) \rightarrow W (\rightarrow \nu(p_3) + \nu(p_4) + b(p_5) + f(p_6)$ $f(p_1) + b(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$	LO	
	321	$f(p_1) + c(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + c(p_5) + f(p_6)$	LO	6
	326	$f(p_1) + c(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)$	LO	6
	331	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + f(p_{6})[c-s \text{ interaction}]$	LO	6
	336	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + c(p_5) + f(p_6)[c-s interaction]$	LO	
	341	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6)[+f(p_7)]$	NLO	6
	342	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6)[+\bar{b}(p_7)]$	(REAL)	6
	346	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + b(p_5) + f(p_6) + f(p_7)$	LO	6
	347	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) 84e^+(p_4)) + b(p_5) + f(p_6) + \bar{b}(p_7)$	LO	
J	351	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+f(p_7)]$	NLO	[8
ı		$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+\bar{c}(p_7)]$	(REAL)	18
ı		$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + f(p_7)$	LO	1
ı	357	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + \bar{c}(p_7)$	LO	13
Ì	361	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))[mc=0 \text{ in NLO}]$	NLO	8
ı	362	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))$ [massless corrections only]	NLO	8
ı	363	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_2) + e^+(p_4))$ [massive charm in real]	NLO	18
ì	370	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5) + \gamma(p_6)$	LO	1 8
ı	371	$W^-(\rightarrow e^-(p_1) + \bar{\nu}(p_1)) + \gamma(p_2) + \gamma(p_3)$	LO	1.
ì	401	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + h(p_5) + h(p_5)$ [1,2 or 3 jets, 4FNS]	NLO	8
ı	402	$W^{+}(\rightarrow \nu(p_3) + e^{-}(p_4)) + b(p_5)$ [1,2 of 3 jets, 4FNS] $W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + (b + \bar{b})(p_5)$ [1 or 2 jets, 4FNS]	NLO	8
J	403	$W^{+}(\rightarrow \nu(p_3) + e^{-}(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS]	NLO	8
н	400	$H = \{P_i\} \cap F = \{P_i\} \cap F \cap \{P_i\} \cap F \cap \{P_i\} \mid i \in J \text{ of } J \text{ (ci.s., 4f No.)}\}$	LATEO.	

347	$f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) \ 84e^+(p_4)) + b(p_5) + f(p_6) + b(p_7)$ L	0
351	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+f(p_7)]$	NLO
352	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6)[+\bar{c}(p_7)]$	(REAL)
356	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + f(p_7)$	LO
357	$f(p_1) + c(p_2) \rightarrow Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + \bar{c}(p_7)$	LO
361	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))[mc=0 \text{ in NLO}]$	NLO
362	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))[\text{massless corrections only}]$	NLO
363	$c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4))$ [massive charm in real]	NLO
370	$W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + \gamma(p_5) + \gamma(p_6)$	LO
371	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + \gamma(p_5) + \gamma(p_6)$	LO
401	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + b(p_{5})$ [1,2 or 3 jets, 4FNS]	NLO
402	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + (b + \overline{b})(p_{5})$ [1 or 2 jets, 4FNS]	NLO
403	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + \bar{b}(p_{6})$ [2 or 3 jets, 4FNS]	NLO
406	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS]	NLO
407	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + (b + \bar{b})(p_5)$ [1 or 2 jets, 4FNS]	NLO
408	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS]	NLO
411	$f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$ [5FNS]	NLO
416	$f(p_1) + b(p_2) \rightarrow W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + b(p_5) + f(p_6)$ [5FNS]	NLO
421	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + b(p_{5})$ [1,2 or 3 jets, 4FNS+5FNS]	NLO
426	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5)$ [1,2 or 3 jets, 4FNS+5FNS]	NLO
431	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + b(p_{5}) + b(p_{6}) + f(p_{7})$ [massive]	LO
436	$W^{-}(\rightarrow e^{-}(p_3) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$ [massive]	LO
500	$W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})[massive]$	NLO
501	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
502	(same as process 501 but with radiation in decay)	NLO
503	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + q(p_7) + q \ (p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
506	$t(\rightarrow q(p_3) + q(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^+(\nu(p_9), \mu^+(p_{10}))$	NLO
510	$W^{-}(\rightarrow e^{-}(p_{3}) + \bar{\nu}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})[massive]$	NLO
511	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
512	(same as process 511 but with radiation in decay)	NLO
513	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b (p_6) + q(p_7) + q (p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
516	$t(\rightarrow q(p_3) + q(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$	NLO
529	$Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + t(p_{5}) + \bar{t}(p_{6})$	LO
530	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO
531	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b(p_6)) + Z(b(p_9), b(p_{10}))$	LO
532	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow q(p_7) + \bar{q}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$	LO

540	$H(b(p_3) + \bar{b}(p_4)) + t(p_5) + q(p_6)$	NL
541	$H(b(p_3) + \bar{b}(p_4)) + \bar{t}(p_5) + q(p_6)$	NL
544	$H(b(p_3) + \bar{b}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	NL
547	$H(b(p_3) + \bar{b}(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)$	NL
550	$H(\gamma(p_3) + \gamma(p_4)) + t(p_5) + q(p_6)$	NL
551	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(p_5) + q(p_6)$	NL
554	$H(\gamma(p_3) + \gamma(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + q(p_9)$	NL
557	$H(\gamma(p_3) + \gamma(p_4)) + \bar{t}(e^-(p_5) + \bar{\nu}(p_6) + b(p_7)) + q(p_9)$	NL
560	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6)$	NL
561	$Z(e - (p_3) + e + (p_4)) + \bar{t}(p_5) + q(p_6)$	NL
562	$Z(e - (p_3) + e + (p_4)) + t(p_5) + q(p_6) + f(p_7)$	IO
563	$Z(e - (p_3) + e + (p_4)) + \bar{t}(p_5) + q(p_6) + f(p_7)$	LO
564	$Z(e - (p_3) + e + (p_4)) + t(\rightarrow \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8)$	NL
566	$Z(e - (p_3) + e + (p_4)) + t(\rightarrow \nu(p_5) + e^+(p_6) + b(p_7)) + q(p_8) + f(p_9)$	LO
567	$Z(e - (p_3) + e + (p_4)) + \bar{t}(\rightarrow e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)) + q(p_8)$	NL
569	$Z(e - (p_3) + e + (p_4)) + \bar{t}(\rightarrow e^-(p_5) + \bar{\nu}(p_6) + \bar{b}(p_7)) + q(p_8) + f(p_9)$	IO
601	$H(b(p_3) + \bar{b}(p_4)) + H(\tau^-(p_5) + \tau^+(p_6))$	LO
602	$H(b(p_3) + \bar{b}(p_4)) + H(\gamma(p_5) + \gamma(p_6))$	$\Gamma0$
640	$t(p_3) + \bar{t}(p_4) + H(p_5)$	LO
641	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	L0
644	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	LΟ
647	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(b(p_9) + \bar{b}(p_{10}))$	LO
651	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	I0
654	$t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7) + q(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	LO
657	$t(\rightarrow q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7) + e^-(p_8) + \bar{b}(p_6)) + H(\gamma(p_9) + \gamma(p_{10}))$	I0
661	$t(\rightarrow \nu(p_3)e^+(p_4)b(p_5)) + \bar{t}(\rightarrow \bar{\nu}(p_7)e^-(p_8)\bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	LO
664	$t(\rightarrow \nu(p_3)e^+(p_4)b(p_5)) + \bar{t}(\rightarrow \bar{q}(p_7)q(p_8)\bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	LO
667	$t(\rightarrow q(p_3)\bar{q}(p_4)b(p_5)) + \bar{t} \rightarrow (\bar{\nu}(p_7)e^-(p_8)\bar{b}(p_6)) + H(W^+(p_9, p_{10})W^-(p_{11}, p_{12}))$	LO


800	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Vector Mediator]	NLO
801	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Axial Vector Mediator]	NLO
802	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Anal vector inequator] $S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator]	NLO
803	$PS \rightarrow (\chi(p_3) + \chi(p_4)) + f(p_5)$ [Sealar Mediator] $PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Pseudo Scalar Mediator]	NLO
804	$GG \rightarrow (\chi(p_3) + \chi(p_4)) + f(p_5)$ [Fiscado Scalar Mediator] $GG \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Gluonic DM operator]	NLO
805	$S = -(\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Scalar Mediator, mt loops]	NLO
820		NLO + F
	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Vector Mediator]	NLO + F
821	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)[\text{Axial Vector Mediator}]$	
822	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)[\text{Scalar Mediator}]$	NLO + F
823	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5)$ [Pseudo Scalar Mediator]	NLO + F
840	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Vector Mediator]	LO
841	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Axial Vector Mediator]	LO
842	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Scalar Mediator]	LO
843	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Pseudo Scalar Mediator]	LO
844	$GG \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Gluonic DM operator]	LO
845	$V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Vector Mediator]	LO
846	$A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Axial Vector Mediator]	LO
847	$S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Scalar Mediator]	LO
848	$PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + \gamma(p_5) + f(p_6)$ [Pseudo Scalar Mediator]	LO
902	Check of Volume of 2 particle phase space	
903	Check of Volume of 3 particle phase space	
904	Check of Volume of 4 particle phase space	
905	Check of Volume of 5 particle phase space	
906	Check of Volume of 6 particle phase space	
908	Check of Volume of 8 particle phase space	
909	Check of Volume of 4 particle massive phase space	
910	Check of Volume of 3 particle (2 massive) phase space	
911	Check of Volume of 5 particle W+t (with decay) massive phase space	
912	Check of Volume of 5 particle W+t (no decay) massive phase space	
913	Check of Volume of 5 particle W+t+g (in decay) massive phase space	
914	Check of Volume of 5 particle W+t+g (in production) massive phase space	

W+ Production at FCC



nCTEQ + LHC $\sqrt{S} = 100 \text{ TeV}$

- The Future Circular Collider
 - Proposed as a future hadron-hadron collider
 - Energies pushing 100 TeV

Using nCTEQ+LHC to study W production

 10^{-1}

- At FCC energies, cs is nearly as large as ud
 - Especially at central rapidity
- Fitting the strange quark PDF would have significant impact on this measurement

Eric Godat - SMU

75/107

Special Thanks to:

Dissertation Committee

- F. Olness (advisor)*
 - S. Sekula (chair)
 - K. Hornbostel
 - J. Owens*
 - J. Ye

nCTEQ Collaborators *

- D.B. Clark
 - T. Jezo
- C. Keppel
- K. Kovarik
- A. Kusina
- F. Lyonnet
- J. Morfin
- I. Schienbein
 - J.Y. Yu

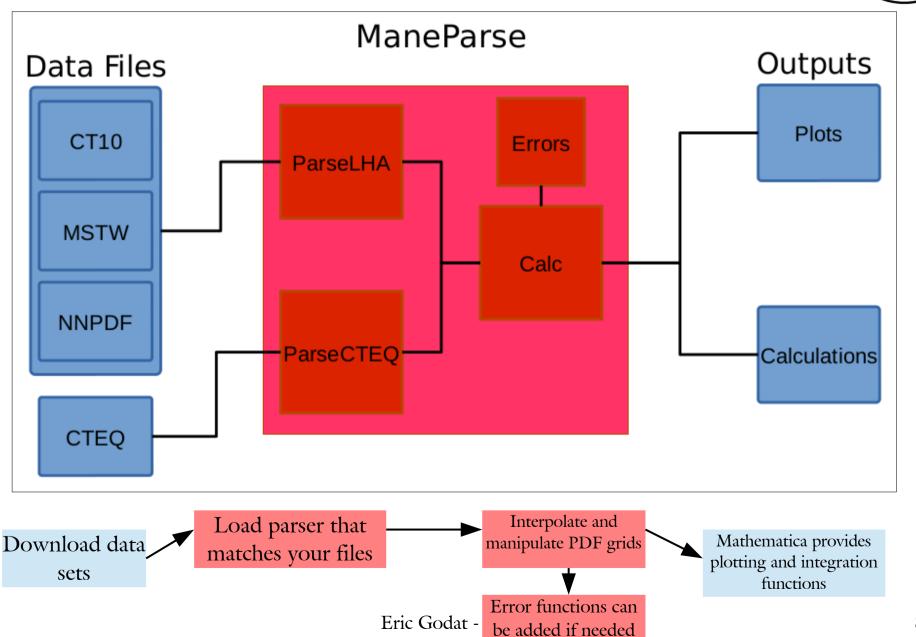
xFitter Collaboration

Conclusions

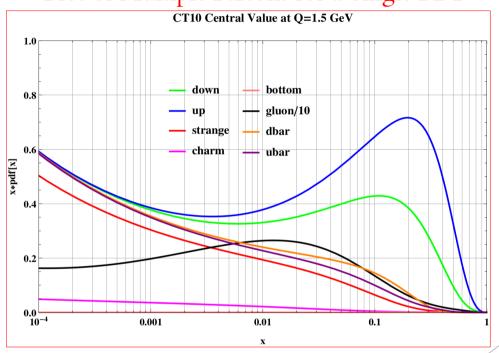
- Inclusion of W/Z LHC data improves nCTEQ15 fit
 - Better description of shape
 - Normalization important
 - This can be adjusted post-fit
 - Data coverage in new kinematic region eliminates extrapolation
 - Improves shape of fit in positive rapidity
 - Reweighting analysis did indicate direction of new fit
- nCTEQ parameterization remains overly restrictive
 - Fixed strange and anti-strange quark contributions
 - κ parameter from the proton fit
- Fitting normalization is necessary
 - Greatly reduces χ^2
 - Allows opening strange quark parameters

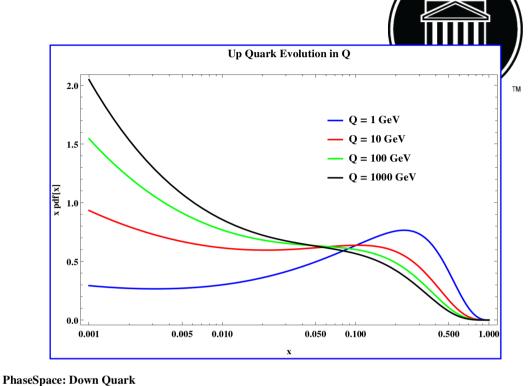
Additional Slides

ManeParse

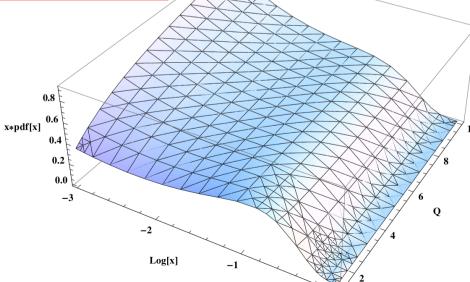

Development and Purpose

- Lightweight PDF Reader for multiple collaborations
 - LHAPDF6
 - CTEQ PDS
- Custom 4-point Lagrange Interpolation Routine
 - Fast, reliable, transparent
 - Adds continuity to otherwise discrete grids
- Mathematica provides user-friendly plotting and calculation functions
- Able to use multiple error techniques
 - Hessian
 - Monte Carlo
- Observables such as Luminosities and Cross Sections are calculable as well


Schematic Overview



Feature Examples



Compare PDFs at different

Visualize Phase Space with 3D plotting

82/107

energies

Feature Examples

100

1000

O

strange

down gluon

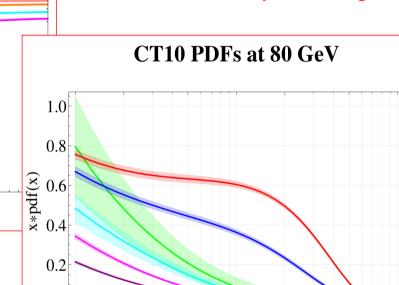
dbar

ubar

 10^{4}

Full sets of PDFs inside Mathematic

Easy to manipulate


charm

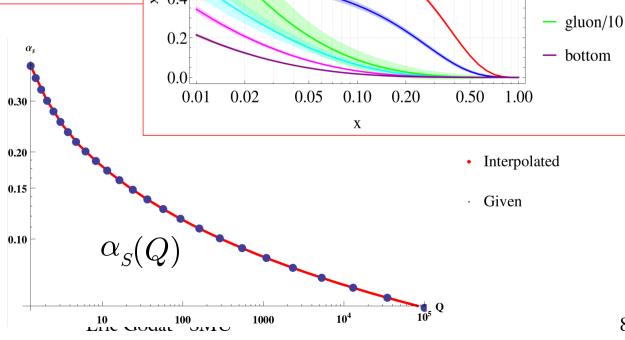
down

— up

strange

83/107

Momentum Sum Rule provides a good check for interpolation errors


10

0.1

0.01

$$1 = \sum_{i} \int_{0}^{x} x \cdot p df_{i}(x, Q) dx$$

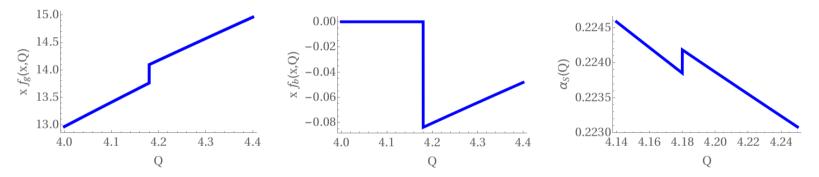
Proper α_s is essential for NLO+ calculations

Contributions and Relationship

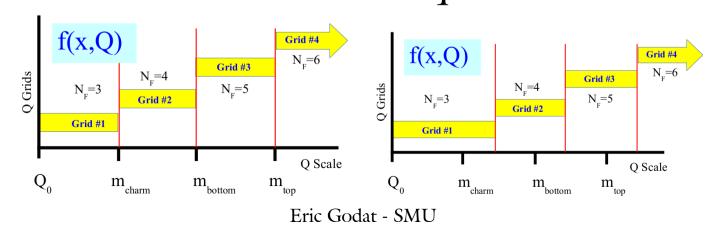
- ManeParse was developed exclusively by myself and Ben Clark under the supervision of Fred Olness
- My contributions:
 - LHAPDF6 Reader and Interface
 - The primary operating mode for most users
 - Designed majority of user functions
 - Wrote documentation for User Manual
 - Heavily contributed to content of the paper
- ManeParse was used extensively throughout this work
 - Cross checks
 - Visualization of results
 - FCC Prediction

Heavy Flavor Variable Number Scheme

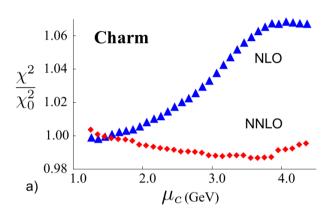
HFVNS

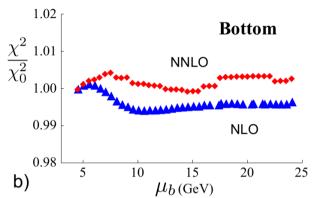

- Study the effect of shifting the mass thresholds for the heavy quarks when fitting PDFs to data
 - Done in xFitter in collaboration with xFitter development team
 - Charm and Bottom thresholds

Eric Godat - SMU


HFVNS

At NNLO, PDFs are discontinuous at mass thresholds for the quarks

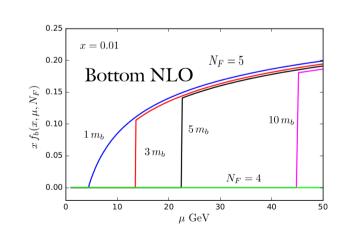

This can be smoothed for fitting to data by shifting the mass threshold above the quark mass

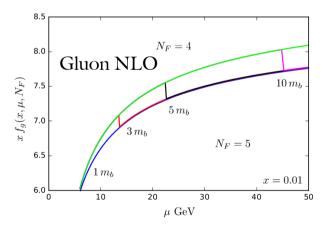


87/107

Fitting Heavy Quarks

• Charm


- NLO: Optimal threshold $\sim m_c$
 - Strong preference (~6%)
- NNLO: No obvious threshold
 - Little variation (∼1%)

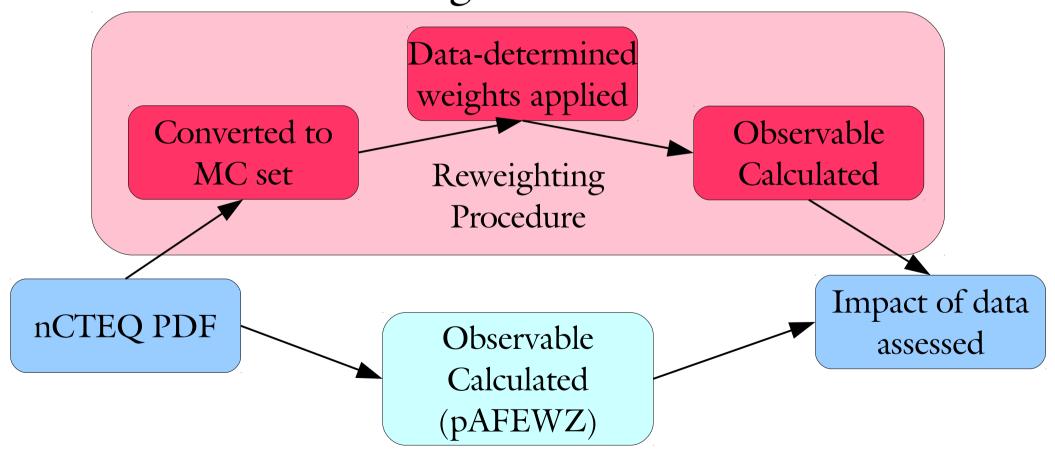

• Bottom

- NLO: Optimal threshold ~ 2mb
 - Little Preference (<1%)
- NNLO: Optimal threshold ~ mb
 - Little Preference (<1%)

N_f dependent PDF

- Transition between number schemes
- Allows more flexibility in choice of number scheme

Contributions and Relationship


- Contributions:
 - Assisting with xFitter runs and analysis
 - Theory assessment for paper
 - Analysis of α_S for different flavor schemes in xFitter Mirrors the work done later for nCTEQ++ validation
- Led to a greater understanding of PDF fitting
 - nCTEQ fits at NLO not NNLO
 - Not applicable to nCTEQ++ and nCTEQ+LHC

Reweighting

Reweighting

• Determine the effect LHC pPb and PbPb W/Z data would have on existing nPDFs without a full refit

Eric Godat - SMU

Reweighting Formalism

Bayesian Reweighting Technique

• Generate Replica:
$$f_k(x) = f_0 + \sum_{i=1}^{n} \frac{1}{2} (f_i^+ - f_i^-) R_{ik}$$

• Calculate Giele-Keller weights:

$$w_k = \frac{e^{\frac{-1}{2}\chi_k^2}}{\frac{1}{N_{rep}}\sum_{i} e^{\frac{-1}{2}\chi_i^2}}$$

• Estimate weighted average and standard deviation:
$$= \frac{1}{N_{rep}} \sum_k w_k O(f_k)$$

$$\delta < O > = \sqrt{\frac{1}{N_{rep}} \sum_{k} w_k (O(f_k) - < O >)^2}$$

Contributions and Relationship

- Reweighting determined that LHC W/Z Data would be worth adding to nCTEQ15 fit
 - New kinematic region previously unconstrained by data
 - Potential to open strange parameter
- My contributions:
 - Validation of reweighting results in ManeParse
 - Numerous contributions from my work on nCTEQ+LHC (post-publication)

Backup Slides

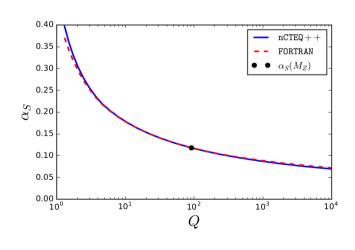
Determination of α_s

nCTEQ++:

FORTRAN:

Runge-Kutta numerical solution

Number of Quark Flavors – 4, 5, 6


Truncated analytic series solution


Number of Quark Flavors – 4, 5

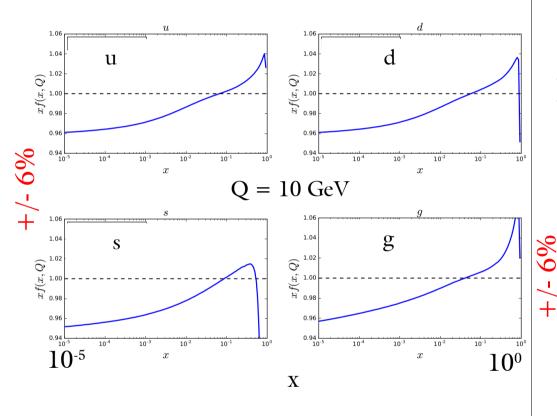
$$\alpha_s(Q^2) = \frac{1}{b \ln(Q^2/\Lambda_{QCD}^2)}$$

Higher Orders:

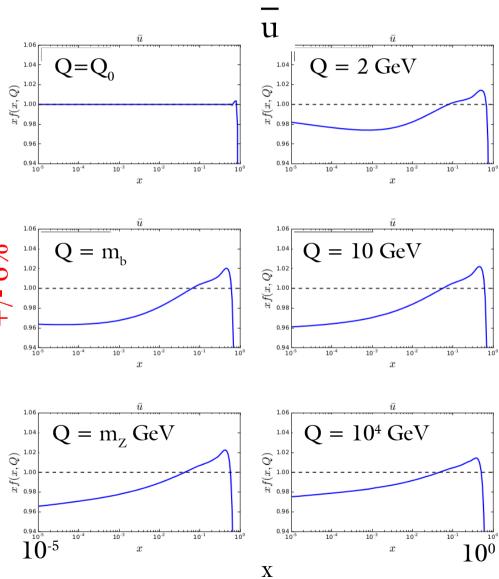
$$\frac{d\alpha_S}{d\ln(Q^2)} = \beta(\alpha_S(Q^2)) = -(b_0\alpha_S^2 + b_1\alpha_S^3 + b_2\alpha_S^4 + \dots)$$

$$b_0 = \frac{33 - 2n_f}{12\pi}$$

$$b_1 = \frac{153 - 19n_f}{24\pi^2}$$


Eric Godat - SMU

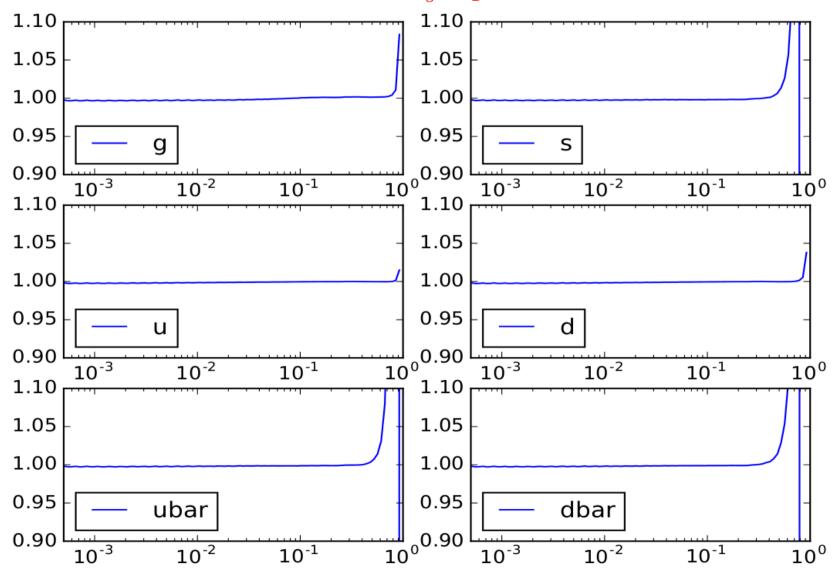
Validation: Evolution



96/107

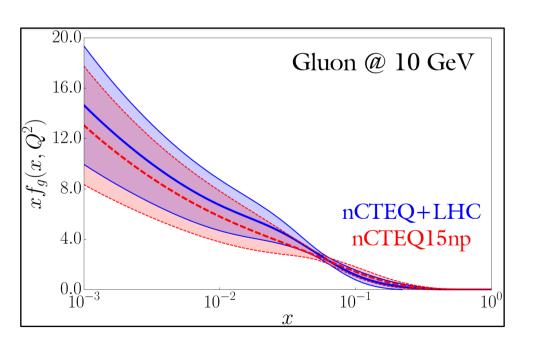
Ratio of PDF Evolution Codes

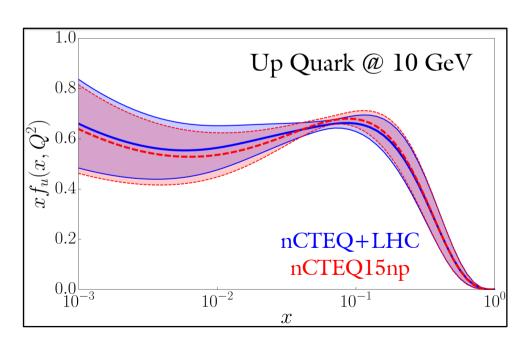
Ratio of PDF Evolution Codes



Eric Godat - SMU

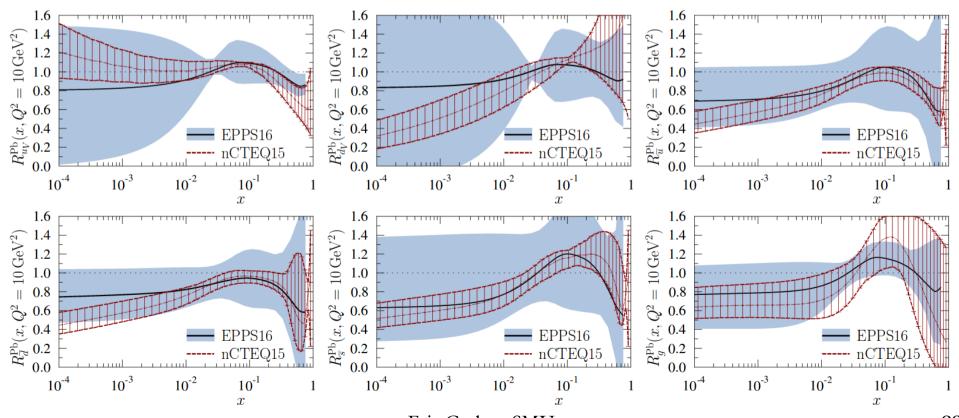
Validation: Evolution


Ratio of PDF Evolution Codes With the same α_s implemented



Error Band Estimate

- nCTEQ++ currently lacks the capability to extract PDF error bands
 - Roughly estimate errors for nCTEQ+LHC by using nCTEQ15np error bands
 - Central value from nCTEQ+LHC +/- error from nCTEQ15np



EPPS16

- EPPS fits nuclear ratios, not nuclear PDFs
 - EPPS16 includes LHC data
 - CMS Di-jets
 - W/Z Production from CMS, Z Production from ATLAS
 - Also includes large number of CHORUS Pb Fixed Target DIS points (824)
- More than double the data points in nCTEQ15 (1789)

Eric Godat - SMU Source: arXiv 1612.05741

99/107

Nuclear Correction Regions

(1) Shadowing

• Destructive interference between virtual boson and nucleons

(2) Anti-Shadowing

 Constructive interference between virtual boson and nucleons

(3) EMC Effect

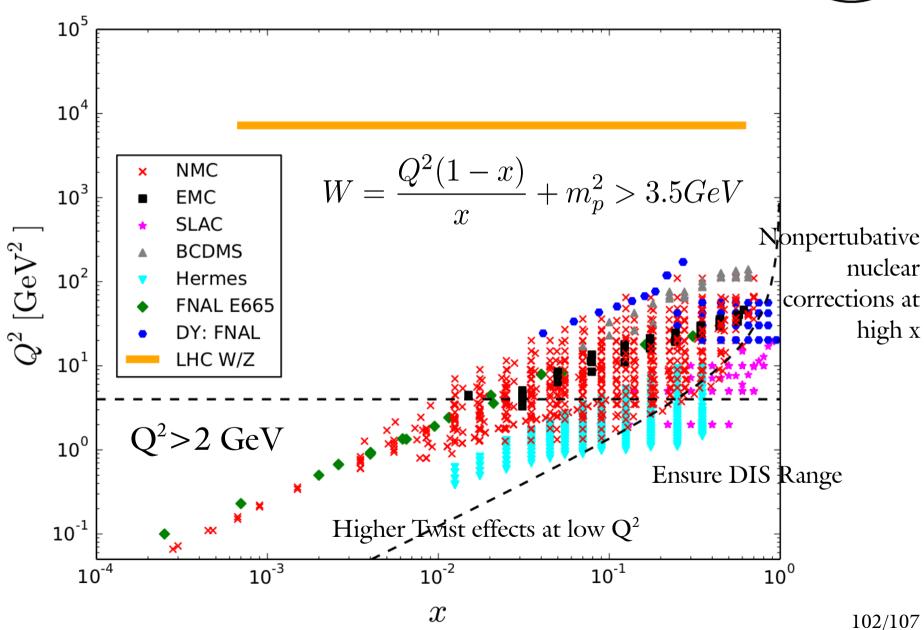
- Discovered by European Muon Collaboration in 1983
- No definitive explanation

(4) Fermi Motion

• Quantum motion of nucleons Eric Godat - SMU

DIS Structure Functions

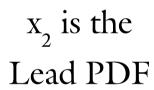
- The experimental observable related to hadronic structure
 - In the parton model, they can be mapped directly to PDFs
- DIS Cross Section:


$$\bullet \quad \frac{d^2\sigma^i}{dxdy} \; = \; (\frac{4\pi\alpha^2}{xyQ^2}\eta^i) \Big\{ y^2 x F_1^i \; + (1\; -\; y\; -\; \frac{x^2 y^2 M^2}{Q^2}) \; F_2^i \mp \; (y\; -\; \frac{y^2}{2}) \; x F_3^i \Big\}$$

- $F_L = 0 \Rightarrow F_2 = 2xF_1$
 - This is known as the Callan-Gross relation
- Example:

$$F_2^{ep} = \frac{4}{9}x[u+\bar{u}+c+\bar{c}] + \frac{1}{9}x[d+\bar{d}+s+\bar{s}]$$
Eric Godat - SMU

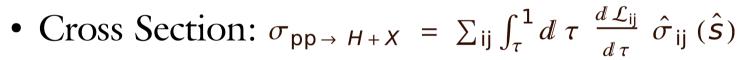
LHC Data vs Current Data Cuts


Twist

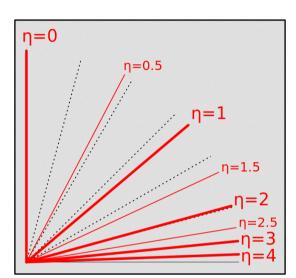


- Formally a quantum number describing the exponent on the mass term of the matrix element in the definition of the structure function
 - Determined solely through dimensional analysis
 - Related to the dimension and spin
 - Twist-2 is Leading Order
 - Twist-3 and Twist-4 are considered higher order
- Practically it describes the order (in 1/Q²) at which an effect is seen in an experiment
 - Gluon interactions within the nucleon are higher twist effects
 - High twist effects are suppressed by 1/Q2
 - Cuts at low Q² are designed to limit theses contributions
- Intuitively it describes how uncertain we are that a particular parton actually has the momentum that the PDF describes during the short range scattering process

Relating x₁ and x₂ to Rapidity

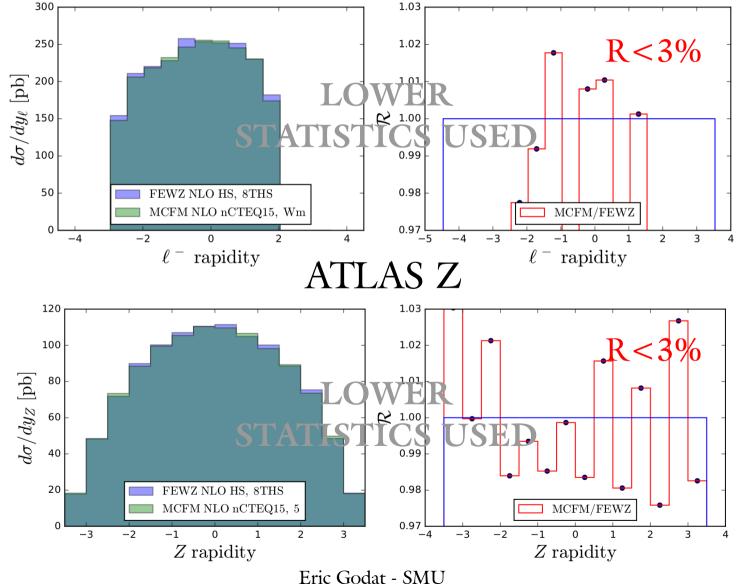

Eric Godat - SMU

Collider Definitions



• Rapidity:
$$y = \frac{1}{2} ln \frac{E + p_z}{E - p_z}$$

- A measure of how far forward a particle is boosted
- Pseudorapidity: $\eta = \frac{1}{2} ln \frac{\vec{p} + p_z}{\vec{p} p_z}$
 - The massless equivalent of rapidity


- A measure of how likely an interaction will occur
- Luminosity: $\frac{d \mathcal{L}_{ij}}{d \tau} (\tau, \mu) = \frac{1}{1 + \delta_{ij}} \int_{\tau}^{1} \frac{1}{x} [f_i(x, \mu) f_j(\tau/x, \mu) + f_j(x, \mu) f_i(\tau/x, \mu)] dx$
 - Ratio of the number of events to the cross section
 - More luminosity = More Data

Compare FEWZ-pp to MCFM-pp

APPLgrid Technique

APPLGRID method

Eur.Phys.J.C66:503-524,2010.

- Step 1 (long run): Collect perturbative weights to grids.
 - binning (x_1, x_2, Q^2)
 - interpolation
 - ▶ initial flavours decomposition : $13 \times 13 \rightarrow \mathcal{L}$ ($\mathcal{L} \sim 10$)

$$\frac{d\hat{\sigma}_{(p)}^{ij}}{dX}(x_1, x_2, Q_F^2, Q_R^2; S) \xrightarrow{3D-grid} w^{(p)(l)}(x_1^m, x_2^n, Q^{2^k}) (Q_R^2 \equiv Q_F^2)$$

- ullet Step 2 (\sim 10–100 ms): Convolute grid with PDF's .
 - ▶ integral \rightarrow sum
 - any coupling, PDF

$$\frac{d\sigma}{dX} = \sum_{p} \sum_{l=0}^{L} \sum_{m,n,k} w_{m,n,k}^{(p)(l)} \left(\frac{\alpha_s(Q_k^2)}{2\pi} \right)^{p_l} F^{(l)} \left(x_{1m}, x_{2n}, Q_k^2 \right)$$

Stolen from: APPLGrid Talk at HERAFitter 2016

Pavel Starovoitov (Kirchhof-Institut für Physik)

APPLGRID project

zFitter@JINR

4 / 18