Dissertation Defense March 29th 2018

The Impact of LHC Run I pPb W/Z data on the nCTEQ15 PDF set

Eric Godat

Outline

- Introduction
 - The Standard Model
 - QCD and Phenemonology
 - Parton Distribution Functions (PDFs)
- The nCTEQ Collaboration
- PDF Reweighting
- Refitting nCTEQ15
 - nCTEQ++
 - nCTEQ+LHC
- Conclusions

Introduction

The Fundamentals

What is matter made of?

Atoms

- Electrons
- Nucleus
 - Protons/Neutrons
 - Partons (quarks)

Higher energies = Smaller distances

The Standard Model

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Describes particles: Fermions - Quarks - Leptons Bosons - Gauge

- Scalar

And their interactions:

Electromagnetic Force Weak Force Strong Force Neglects Gravity

Quantum Chromodynamics (QCD)

The study of proton structure is governed by QCD

A hint of color (QCD)

• Color Charge

- 3 colors/ 3 anticolors
 - red, blue, green
 - anti-red, anti-blue, anti-green
- Quarks carry a single color/anticolor
- Gluons carry a color <u>and</u> an anti-color
- Nature is color neutral
 - Net color has not been observed
 - Confinement

Asymptotic Freedom (QCD)

- Why can't I make a color "ion"?
 - As long as quarks are close together, they can move freely
 - Pulling a single quark away requires exponentially more energy

 $lpha_s$

- This energy then creates a quark antiquark pair that satisfies confinement
 - α_s Running Coupling Constant
 - Describes strength of QCD interactions
 - Changes with the energy of the interaction
 - Large for low energy interactions
 - Small for high energy

What is a Proton?

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers

• Structure described by parton distribution functions (PDFs)

What is a Proton?

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers
 - Gluons
- Structure described by parton distribution functions (PDFs)

What is a Proton?

Protons are hadrons

- Made of partons
 - 3 Valence quarks (uud)
 - Determine quantum numbers
 - Gluons
 - Sea quarks
- Structure described by parton distribution functions (PDFs)

Image Source

Studying Structure

Scattering experiments provide insight into the structure of the proton

Eric Godat - SMU

Factorization

We link theory to experiment with the factorization theorem

Parton Distribution Functions describe the nonpertubative terms

Parton Distribution Functions (PDFs)

- Describe the probability of a parton inside a proton with a given momentum fraction at a given energy interacting
- Parameterized fits to experimental data
- Universal across processes
- Nuclear corrections are needed for heavy nuclei
- Broken down into discrete grids by:
 - All quark flavors + gluon
 - Hard scattering energy, Q
 - Momentum fraction, x

Flavor

Parton Distribution Functions (PDFs)

- Describe the probability of a parton inside a proton with a given momentum fraction at a given energy interacting
- Parameterized fits to experimental data
- Universal across processes
- Nuclear corrections are needed for heavy nuclei
- Broken down into discrete grids by:
 - All quark flavors + gluon
 - Hard scattering energy, Q
 - Momentum fraction, x

Nuclear PDFs

Nuclear corrections are needed to describe heavy nuclei

- Not just a sum of protons and neutrons
 - Partons can share momentum between nucleons
- Historically nuclear effects are described in regions of x
 - (1) Shadowing
 - (2) Anti-Shadowing
 - (3) EMC Effect
 - (4) Fermi Motion

The nCTEQ Collaboration

nCTEQ PDFs

Formalism:

Generalized A-Parameterization

-
$$xf_i^{p/A}(x,Q^2) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

$$- c_k \to c_{k,0} + c_{k,1} (1 - A^{-c_{k,2}})$$

No multiplicative nuclear correction

• More parameters than proton fits

~ 3 times as many so we make assumptions

• Fewer data points

e.g 740 nuclear points for nCTEQ15 vs 2947 protons points for CT14^[1]

nCTEQ PDFs

Nuclei with DIS data included in nCTEQ15

Eric Godat - SMU

nCTEQ15 PDF Set

Global fit to experimental data

- Deep Inelastic Scattering
- Drell-Yan
- Pion Production Data

NO LHC data

740 nuclear data points after kinematic cuts

Error analysis with Hessian Method

• 16 Eigenvalues

Reweighting

LHC Data for nCTEQ

pPb and PbPb collisions

- LHCb: $\sigma(Z \to \ell^+ \ell^-)$
- ALICE: $\sigma(W^{\pm} \to \ell^{\pm} \nu)$
- ATLAS: $d\sigma(W^{\pm} \to \ell^{\pm}\nu)/dy$ $d\sigma(Z \to \ell^{+}\ell^{-})/dy$ A_{ℓ}
- CMS: $d\sigma(W^{\pm} \to \ell^{\pm}\nu)/dy$ $d\sigma(Z \to \ell^{+}\ell^{-})/dy$ A_{ℓ} A_{FB}

nCTEQ PDFs at the LHC

23/105

CMS PbPb Z

ATLAS PbPb Z

All predictions shown at NLO

Done in modified FEWZ software which allows for pp, pPb, and PbPb collisions CT10 nucleus constructed using CT10 free protons

CMS PbPb Z

ATLAS PbPb Z

Good agreement between data and both sets

Not sensitive to nuclear corrections

Eric Godat - SMU

CMS pPb Z

ATLAS pPb Z

Slight deviance between data and CT10 from nCTEQ15

Good agreement for negative rapidities, the region we have data to constrain the PDF

Eric Godat - SMU

CMS pPb W+

ATLAS pPb W+

CMS pPb W⁺ ATLAS pPb W⁺

Definite separation between data and CT10 from nCTEQ15 Indicates this data could be useful in constraining PDFs in this region

Reweighting

Technique using Bayesian Statistics to shift existing PDF

Allows for new data to be added

DOES NOT REFIT

Can suggest the impact data might have on a future fit

Limited to existing parameterization

Reweighting

Results indicated parameterization is inflexible and refit was needed

- Extrapolation in x₂ region corresponding to positive rapidity
 - Previously lacked data in this range
- Strange quark parameter could be opened
 - Currently fixed to up and down quarks

Refitting nCTEQ15

nCTEQ Status After Reweighting

- FORTRAN fitting code
 - Internal theory calculations
 - Process specific modules
 - Internal PDF evolution
- Large χ^2 from reweighting study
 - Poor description of the shape of LHC data
 - Particularly for positive rapidities
- No LHC data included
 - New theory module would be needed

What is nCTEQ++?

- A complete rewrite of the original nCTEQ FORTRAN fitting code
- Changed the code to allow for modules when building a PDF

Evolution Interpolation Parameterization

- Fitting using Minuit
- Minor bug fixes

Validation: α_s

$$\frac{d\alpha_S}{d\ln(Q^2)} = \beta(\alpha_S(Q^2)) = -(b_0\alpha_S^2 + b_1\alpha_S^3 + b_2\alpha_S^4 + \dots)$$

<u>nCTEQ++</u>: (Hoppet)

Runge-Kutta numerical solution Number of Quark Flavors – 4, 5, 6

FORTRAN:

Truncated analytic series solution

Number of Quark Flavors – 4, 5

Eric Godat - SMU
Validation: Evolution

HOPPET to provide PDF evolution

- Accepted in PDF community (PDF4LHC)
- Externally maintained
- PDFs match at Q₀

Differences in evolution arise from different α_s

- HOPPET uses Runge-Kutta

Differences consistent across

Q range, x range, all flavors

Gluon reflects top quark threshold

Ratio of PDF Evolution Codes

Validation: Parameter Scans

How did the χ^2 change for nCTEQ15 in nCTEQ++?

- Minimum might have changed in new code
 - Scan each parameter fit in nCTEQ15
 - Step through parameter ~ , space
 - Calculate χ^2 at each point
 - χ^2 Tolerance (t) = 35
- All parameters fell within tolerance

Validation: χ^2

39/105

How did the χ^2 change for nCTEQ15np in nCTEQ++?

- Original:
 - χ^2 : 625.6
 - 708 points
 - 0.883 χ^2/dof
- nCTEQ++:
 - $\chi^2: 640.7$
 - 708 points
 - 0.905 χ^2/dof
- $\Delta \chi^2$: 15.1
 - Less than t=35

Theory Predictions

<u>Goal:</u> Include new LHC data in nCTEQ15 PDF fit

- Theory predictions are very slow and time consuming
 - Grid techniques drastically speed up the process
- Theory code must be tuned to match experimental measurement
- Theory codes available:
 - pAFEWZ
 - Modified to allow for pp, AA, pA modes
 - Previously tuned in reweighting study to match experiments
 - No grid techniques available
 - MCFM
 - Can only run in symmetric pp or AA modes
 - Not tuned to match experimental measurements
 - Links directly to APPLGrid
 - Extensive library of processes

Gridded Theory Predictions

- Produced in APPLGrid via MCFM
 - Cut-dependent arrays in (*x*,*Q*,*flavor*) space
 - Filled with weighted matrix elements from Monte Carlo integration
 - Precalculated, interpolated and summed, reducing computation time
 - Grids can be PDF independent with enough statistics Slow matrix element

$$\hat{\sigma}(x,Q) \rightarrow \hat{\sigma}_i(x_i,Q_i)$$

Fast Interpolated Grid

Eric Godat - SMU

(1)Data matched to pAFEWZ in reweighting

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

Maintains cuts and binning from asymmetric mode

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

(3)Compare pp FEWZ to pp MCFM

Compare FEWZ-pp to MCFM-pp CMS W-

Eric Godat - SMU

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

- (3)Compare pp FEWZ to pp MCFM
- (4)Generate APPLgrid grids
 - Using mcfm-bridge
 - Different Monte Carlo seeds

Producing grids using MCFM

- Events generated in MCFM
 - Extracted with mcfm-bridge
 - Stored in grids by APPLgrid
- Grids then convoluted with PDF used to generate events
- Different Monte Carlo seeds for MCFM change the events and subsequently the grids
 - ManeFrame allows this to run quickly in parallel

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

- (3)Compare pp FEWZ to pp MCFM
- (4)Generate APPLgrid grids
 - Using mcfm-bridge
 - Different Monte Carlo seeds

(5)Combine replica grids into a single PDF independent grid

PDF Independence for Grids

- Grids can be combined increase their statistics
 - applgrid-combine utility
 - Improve statistics
 - Decrease reliance on underlying PDF

Eric Godat - SMU

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

- (3)Compare pp FEWZ to pp MCFM
- (4)Generate APPLgrid grids
 - Using mcfm-bridge
 - Different Monte Carlo seeds

(5)Combine replica grids into a single PDF independent grid

• Using applgrid-combine

(6)Convolute PDF independent grid with asymmetric PDFs to compare to pAFEWZ

Comparing pAFEWZ to PDF Independent grid

- 10 grids from different MCFM runs combined into final grid
- Final grid then convoluted with pPb PDFs
 - Same that were used in pAFEWZ run

(1)Data matched to pAFEWZ in reweighting

(2) Run FEWZ in symmetric pp - mode

- (3)Compare pp FEWZ to pp MCFM
- (4)Generate APPLgrid grids
 - Using mcfm-bridge
 - Different Monte Carlo seeds

(5)Combine replica grids into a single PDF independent grid

• Using applgrid-combine

(6)Convolute PDF independent grid with asymmetric PDFs to compare to pAFEWZ

(7)Add data and grid in nCTEQ++ to fit W/Z LHC data

Bringing it all together

Convoluted grids can then be compared to data and

used in nCTEQ++ as theory predictions

nCTEQ+LHC

pPb Data for nCTEQ+LHC

No LHC data in any previous nCTEQ fit

• New gridded theory predictions would make this possible

ATLAS:

- $d\sigma(W^- \to \ell^- \nu)/dy$
 - ID: 6211 Npts: 10
- $d\sigma(Z \rightarrow \ell^+ \ell^-)/dy$ ID: 6215 Npts: 14

CMS:

• $d\sigma(W^- \to \ell^- \nu)/dy$

ID: 6231 Npts: 10

• $d\sigma(W^+ \to \ell^+ \nu)/dy$

ID: 6233 Npts: 10

Eric Godat - SMU

nCTEQ+LHC

nCTEQ+LHC

nCTEQ15np Proton nCTEQ15np Lead nCTEQ+LHC Lead

nCTEQ+LHC 1.4

nCTEQ15np Proton nCTEQ15np Lead nCTEQ+LHC Lead

1.4

Eric Godat - SMU

Eric Godat - SMU

Eric Godat - SMU

nCTEQ+LHC strange

- Opening the strange parameter had little effect on fit
 - Possibly due to small number of data points
 - Strange asymmetry remained fixed in parameterization
- Parameter scans show insensitivity in strange

Normalization

Normalization

lσ normalization applied to LHC sets

- Improved χ^2/dof
- Additional normalization could improve chis more

Penalty should be implemented to the χ^2

		Data ID:	6211	6231	6233	6215
	nCTEQ15-np	χ^2 per d.o.f:	1.55	6.91	7.73	3.16
	Reweighting	χ^2 per d.o.f:	0.87	3.27	2.95	1.76
	nCTEQ+LHC	χ^2 per d.o.f:	1.30	5.30	3.36	2.75
Normalized	nCTEQ+LHC $(1 \times \sigma_N)$	χ^2 per d.o.f:	0.92(+0.10)	2.77(+0.10)	1.66(+0.10)	1.96(+0.07)
	$\texttt{nCTEQ+LHC} \; \left(4\sigma_N^{ATLAS}, \; 2\sigma_N^{CMS} \right)$	χ^2 per d.o.f:	0.42(+1.60)	1.33(+0.40)	1.39(+0.40)	0.94(+1.14)
				-		

Eric Godat - SMU

Penalty

65/105

Fit with Normalization

Fit with Normalization

- Gluon and Strange quark able adjust to shape
 - Less of the fit is tied to compensating for normalization
- Validation of the results from reweighting
 - Reweighting indicated larger strange contribution at low x
 - Normalized fits show this to greater degree

Fit with Normalization

- Gluon and Strange quark able adjust to shape
 - Less of the fit is tied to compensating for normalization
- Validation of the results from reweighting
 - Reweighting indicated larger strange contribution at low x
 - Normalized fits show this to greater degree

Conclusions

Other Topics

ManeParse

- Mathematica Package
- Parses and interpolates PDFs
- Calculation and visualization functionalities
- Heavy Flavor Variable Number Schemes
 - Work done with xFitter collaboration
 - Studies the effect of shifting heavy quark mass thresholds for PDF fitting

Conclusions

- Inclusion of W/Z LHC data improves nCTEQ15 fit
 - Limited due to normalization
 - This can be adjusted post-fit
 - Data coverage in new kinematic region eliminates extrapolation
 - Improves shape of fit in positive rapidity
 - Reweighting analysis did indicate direction of new fit
- nCTEQ parameterization remains overly restrictive
 - Fixed strange and anti-strange quark contributions
- Fitting normalization is necessary
 - Greatly reduces χ²
 - Allows opening strange quark parameters

Next Steps nCTEQ+LHC

- More data available from the LHC
 - nCTEQ+LHC only contains a fraction of the data sets used in the reweighting study
 - e.g. LHCb, ALICE, ATLAS W+, PbPb sets
 - MCFM provides expansive library of processes (~1000)
 - Gridded theory predictions for a variety of types of data
- Dynamic normalization fitting with χ^2 penalties
 - Module nearly complete
- Hessian Error analysis to describe error bars on PDFs
 - Delicate for nuclear fitting due to lack of data and flat parameter space
 - Module in progress
Special Thanks to:

Dissertation Committee

F. Olness (advisor)*

S. Sekula (chair)

K. Hornbostel

J. Owens*

J. Ye

nCTEQ Collaborators*

D.B. Clark

T. Jezo

C. Keppel

K. Kovarik

A. Kusina

F. Lyonnet

J. Morfin

I. Schienbein

J.Y. Yu

xFitter Collaboration

Additional Slides

W+ Production at FCC

- The Future Circular Collider
 - Proposed as a future hadron-hadron collider
 - Energies pushing 100 TeV

- Using nCTEQ+LHC to study W production
 - At FCC energies, cs is nearly as large as ud
 - Especially at central rapidity
 - Fitting the strange quark PDF would have significant impact on this measurement

ManeParse

Development and Purpose

- Lightweight PDF Reader for multiple collaborations
 - LHAPDF6
 - CTEQ PDS
- Custom 4-point Lagrange Interpolation Routine
 - Fast, reliable, transparent
 - Adds continuity to otherwise discrete grids
- Mathematica provides user-friendly plotting and calculation functions
- Able to use multiple error techniques
 - Hessian
 - Monte Carlo
- Observables such as Luminosities and Cross Sections are calculable as well

Schematic Overview

78/105

Feature Examples

Feature Examples

80/105

Contributions and Relationship

- ManeParse was developed exclusively by myself and Ben Clark under the supervision of Fred Olness
- My contributions:
 - LHAPDF6 Reader and Interface
 - The primary operating mode for most users
 - Designed majority of user functions
 - Wrote documentation for User Manual
 - Heavily contributed to content of the paper
- ManeParse was used extensively throughout this work
 - Cross checks
 - Visualization of results
 - FCC Prediction

Heavy Flavor Variable Number Scheme

HFVNS

- Study the effect of shifting the mass thresholds for the heavy quarks when fitting PDFs to data
 - Done in xFitter in collaboration with xFitter development team
 - Charm and Bottom thresholds

HFVNS

At NNLO, PDFs are discontinuous at mass thresholds for the quarks

This can be smoothed for fitting to data by shifting the mass threshold above the quark mass

Fitting Heavy Quarks

NLO

NNLO

4.0

3.0

 μ_c (GeV)

1.02

1.00

0.99

0.98

b)

5

10

 $\frac{\chi^2}{\chi_0^2} 1.01$

- NLO: Optimal threshold $\sim m_c$
 - Strong preference (~6%)
- NNLO: No obvious threshold
 - Little variation (~1%)
- Bottom
 - NLO: Optimal threshold ~ 2mb
 Little Preference (<1%)
 - NNLO: Optimal threshold ~ mb
 - Little Preference (<1%)

$N_{\rm f}\,dependent\,PDF$

Charm

2.0

1.06

1.00

0.98

a)

1.0

 $\frac{\chi^2}{\chi^2_0} \, {}^{1.04}_{1.02}$

- Transition between number schemes
- Allows more flexibility in choice of number scheme

Bottom

NLO

20

25

NNLO

15

 μ_b (GeV)

Contributions and Relationship

- Contributions:
 - Assisting with xFitter runs and analysis
 - Theory assessment for paper
 - Analysis of α_S for different flavor schemes in xFitter Mirrors the work done later for nCTEQ++ validation
- Led to a greater understanding of PDF fitting
 - nCTEQ fits at NLO not NNLO
 - Not applicable to nCTEQ++ and nCTEQ+LHC

Reweighting

Reweighting

• Determine the effect LHC pPb and PbPb W/Z data would have on existing nPDFs without a full refit

Reweighting Formalism

Bayesian Reweighting Technique

- Generate Replica: $f_k(x) = f_0 + \sum_i \frac{1}{2}(f_i^+ f_i^-)R_{ik}$
- Calculate Giele-Keller weights: $w_k = \frac{e^{\frac{-1}{2}\chi_k^2}}{\frac{1}{N_{ren}}\sum_i e^{\frac{-1}{2}\chi_i^2}}$
- Estimate weighted average and standard deviation:

$$=\frac{1}{N_{rep}}\sum_{k}w_{k}O(f_{k})$$
$$\delta=\sqrt{\frac{1}{N_{rep}}\sum_{k}w_{k}(O(f_{k})-)^{2}}$$

Contributions and Relationship

- Reweighting determined that LHC W/Z Data would be worth adding to nCTEQ15 fit
 - New kinematic region previously unconstrained by data
 - Potential to open strange parameter
- My contributions:
 - Validation of reweighting results in ManeParse
 - Numerous contributions from my work on nCTEQ+LHC (post-publication)

Backup Slides

Determination of α_{s}

nCTEQ++:

Runge-Kutta numerical solution Number of Quark Flavors – 4, 5, 6 FORTRAN:

Truncated analytic series solution

Number of Quark Flavors – 4, 5

Leading Order:
$$\alpha_s(Q^2) = \frac{1}{b \ln(Q^2/\Lambda_{QCD}^2)}$$

Higher Orders:

$$\frac{d\alpha_S}{d\ln(Q^2)} = \beta(\alpha_S(Q^2)) = -(b_0\alpha_S^2 + b_1\alpha_S^3 + b_2\alpha_S^4 + \dots)$$

Eric Godat - SMU

Validation: Evolution

Validation: Evolution

Eric Godat - SMU

Error Band Estimate

- nCTEQ++ currently lacks the capability to extract PDF error bands
 - Roughly estimate errors for nCTEQ+LHC by using nCTEQ15np error bands
 - Central value from nCTEQ+LHC +/- error from nCTEQ15np

EPPS16

- EPPS fits nuclear ratios, not nuclear PDFs
 - EPPS16 includes LHC data
 - CMS Di-jets
 - W/Z Production from CMS, Z Production from ATLAS
 - Also includes large number of CHORUS Pb Fixed Target DIS points (824)
- More than double the data points in nCTEQ15 (1789)

Nuclear Correction Regions

(1) Shadowing

- Destructive interference between virtual boson and nucleons
- (2) Anti-Shadowing
 - Constructive interference between virtual boson and nucleons

(3) EMC Effect

- Discovered by European Muon Collaboration in 1983
- No definitive explanation
- (4) Fermi Motion
 - Quantum motion of nucleons Eric Godat SMU

DIS Structure Functions

- The experimental observable related to hadronic structure
 - In the parton model, they can be mapped directly to PDFs
- DIS Cross Section:

•
$$\frac{d^2\sigma^i}{dxdy} = \left(\frac{4\pi\alpha^2}{xyQ^2}\eta^i\right)\left\{y^2xF_1^i + (1 - y - \frac{x^2y^2M^2}{Q^2})F_2^i \mp \left(y - \frac{y^2}{2}\right)xF_3^i\right\}$$

•
$$F_L = 0 \Rightarrow F_2 = 2xF_1$$

- This is known as the Callan-Gross relation

• Example: • $F_2^{ep} = \frac{4}{9}x[u+\bar{u}+c+\bar{c}] + \frac{1}{9}x[d+\bar{d}+s+\bar{s}]$ Eric Godat - SMU

98/105

Twist

- Formally a quantum number describing the exponent on the mass term of the matrix element in the definition of the structure function
 - Determined solely through dimensional analysis
 - Related to the dimension and spin
 - Twist-2 is Leading Order
 - Twist-3 and Twist-4 are considered higher order
- Practically it describes the order (in $1/Q^{2}$) at which an effect is seen in an experiment
 - Gluon interactions within the nucleon are higher twist effects
 - High twist effects are suppressed by $1/Q^2$
 - Cuts at low Q² are designed to limit theses contributions
- Intuitively it describes how uncertain we are that a particular parton actually has the momentum that the PDF describes during the short range scattering process

Eric Godat - SMU

Collider Definitions

Rapidity:
$$y = \frac{1}{2}ln\frac{E+p_z}{E-p_z}$$

- A measure of how far forward a particle is boosted $1 \quad \vec{n} \neq n$
- Pseudorapidity: $\eta = \frac{1}{2} ln \frac{\vec{p} + p_z}{\vec{p} p_z}$
 - The massless equivalent of rapidity
- Cross Section: $\sigma_{pp \to H+X} = \sum_{ij} \int_{\tau}^{1} d\tau \frac{d\mathcal{L}_{ij}}{d\tau} \hat{\sigma}_{ij} (\hat{s})$
 - A measure of how likely an interaction will occur
- Luminosity: $\frac{d \mathcal{L}_{ij}}{d \tau} (\tau, \mu) = \frac{1}{1 + \delta_{ij}} \int_{\tau}^{1} \frac{1}{x} [f_i(x, \mu) f_j(\tau / x, \mu) + f_j(x, \mu) f_i(\tau / x, \mu)] d x$
 - Ratio of the number of events to the cross section
 - More luminosity = More Data

n=0

Compare FEWZ-pp to MCFM-pp ATLAS W-

Eric Godat - SMU

APPLgrid Technique

APPLGRID method

Eur.Phys.J.C66:503-524,2010.

zFitter@JINR

- Step 1 (long run): Collect perturbative weights to grids.
 - binning (x_1, x_2, Q^2)
 - interpolation
 - ▶ initial flavours decomposition : $13 \times 13 \rightarrow \mathcal{L}$ ($\mathcal{L} \sim 10$)

$$\frac{d\hat{\sigma}_{(p)}^{ij}}{dX}(x_1, x_2, Q_F^2, Q_R^2; S) \xrightarrow{3D-grid} w^{(p)(l)}(x_1^m, x_2^n, Q^{2^k}) (Q_R^2 \equiv Q_F^2)$$

- Step 2 (\sim 10–100 ms): Convolute grid with PDF's .
 - integral \rightarrow sum
 - any coupling, PDF

$$\frac{d\sigma}{dX} = \sum_{p} \sum_{l=0}^{L} \sum_{m,n,k} w_{m,n,k}^{(p)(l)} \left(\frac{\alpha_s(Q_k^2)}{2\pi}\right)^{p_l} F^{(l)}\left(x_{1m}, x_{2n}, Q_k^2\right)$$

APPLGRID project

Stolen from: APPLGrid Talk at HERAFitter 2016

9QQ

4 / 18

MCFM Processes Library (v6.8)

Citation

nproc	$f(p_1) + f(p_2) \to d$	•••		Orde	er		
1	$W^+(\rightarrow \nu(p_3) + e^-)$	$(p_4))$		NLC) [270 $H(\gamma(p_3) + \gamma(p_4)) + f(p_5) + f(p_6)$ [in heavy top limit] NLO 271 $H(b(p_6) + \bar{b}(p_4)) + f(p_6) + f(p_6)$ [in heavy top limit] NLO	$540 H(b(p_5) + b(p_4)) + t(p_5) + q(p_6)$ NLO
6	$\mid W^-(\rightarrow e^-(p_3) + i$	$\bar{ u}(p_4))$		NLC)	$\begin{array}{ll} 272 & H(\tau^-(p_3) + \tau^+(p_4)) + f(p_3) + f(p_6) [\text{in heavy top limit}] & \text{NLO} \\ 273 & H(W^+(\nu(p_3), e^+(p_4))W^-(e^-(p_3), \bar{\nu}(p_6))) + f(p_7) + f(p_8) & \text{NLO} \\ 274 & H(Z(e^-(p_3), e^+(p_4))Z(\mu^-(p_3), \mu^+(p_6))) + f(p_7) + f(p_8) & \text{NLO} \end{array}$	541 $H(b(p_3) + b(p_4)) + t(p_5) + q(p_6)$ NLO 544 $H(b(p_3) + b(p_4)) + t(p(p_5) + e^+(p_6) + b(p_7)) + q(p_6)$ NLO 577 $H(t_{(-)}, t_{(-)}, t_{(-)}) + t(t_{(-)}, t_{(-)}) + t(t_{(-)}) + t(t_{(-)}$
11	$W^+(\rightarrow \nu(p_3) + e^-)$	$(p_4)) + f(p_5)$		NLC)	$ \begin{array}{c} 275 & H(b(p_{3})+\bar{b}(p_{4}))+f(p_{5})+f(p_{6})+f(p_{7}) \tilde{n} \mbox{ heavy top limit} \\ 276 & H(\tau^{-}(p_{3})+\tau^{+}(p_{4}))+f(p_{5})+f(p_{6})+f(p_{7}) \tilde{n} \mbox{ heavy top limit} \\ 10 & 128 & H(-W^{-}(v(p_{3}),e^{+}(p_{4}))W^{-}(e^{-}(p_{3}),\bar{\nu}(p_{6})))+f(p_{7})+f(p_{8})+f(p_{8})+IO \\ \end{array} $	$\frac{ 34 }{500} \frac{H(p_0p_1 + 0p_2) + t(e_1(p_1 + v(p_6) + 0(p_1)) + q(p_6)}{1500} \frac{NLO}{H(\gamma_1(p_3) + \gamma_1(p_1)) + t(p_3) + q(p_6)} \frac{NLO}{VIO}$
12	$W^+(\rightarrow \nu(p_3) + e^-)$	$(p_4)) + \bar{b}(p_5)$		NLC)	$\begin{array}{ccc} 279 & H(- & Z(c^-(p_3), e^+(p_4))Z(\mu^-(p_5), \mu^+(p_6))) + f(p_7) + f(p_8) + f(p_9) & \text{LO} \\ 280 & \gamma(p_6), + f(p_4) \\ 282 & f(p_1) + f(p_2) \rightarrow \gamma(p_3) + f(p_4) + f(p_5) & \text{LO} \\ \end{array}$	$\begin{array}{c} \hline 557 H(\gamma(p_3) + \gamma(p_4)) + i(v(p_5) + e^+(p_6) + b(p_7)) + q(p_9) \\ \hline 557 H(\gamma(p_3) + \gamma(p_4)) + i(e^-(p_5) + e^+(p_6) + b(p_7)) + q(p_9) \\ \hline NLO \\ \hline \end{array}$
13	$W^+(\rightarrow \nu(p_3) + e^-)$	$(p_4) + \bar{c}(p_5) + \bar{c}(p_5)$		NLC)	$\begin{array}{cccc} 283 & f(p_1) + f(p_2) - \gamma(p_3) + o(p_4) & \text{LO} \\ 284 & f(p_1) + f(p_2) - \gamma(p_3) + c(p_4) & \text{LO} \\ 285 & f(p_1) + f(p_2) - \gamma(p_3) + \gamma(p_4) & \text{NLO} + F \\ 986 & f(p_1) + f(p_2) - \gamma(p_3) + \gamma(p_4) & \text{NLO} + F \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
14	$W^+(\rightarrow \nu(p_3) + e^-)$	(p_4) + $\bar{c}(p_5)$ [massless]		LO		$\begin{array}{cccc} 230 & f(\mu) + f(\mu) - f(\mu) + $	$ \sum_{k=0}^{n} \frac{562}{2} \frac{Z(e - (p_3) + e + (p_4)) + l(p_5) + q(p_6) + f(p_7)}{163} \frac{LO}{2(e - (p_3) + e + (p_4)) + l(p_5) + q(p_6) + f(p_7)}{LO} $
16	$W^{-}(\rightarrow e^{-}(p_3) + i)$	$\bar{p}(p_4)) + f(p_5)$		NLC)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{cases} , 0 & 0 & 1 & 2(e - (p_k) + e + (p_k)) + (t → ν(p_k) + e + (p_k) + d(p_k)) + q(p_k) \\ 566 & 2(e - (p_k) + e + (p_k)) + t(→ ν(p_k) + e^+(p_k) + d(p_k)) + q(p_k) + f(p_k) \\ 567 & 2(e - (p_k) + e + (p_k)) + t(v → e^+(p_k) + d(p_k) + d(p_k) \\ 567 & 2(e - (p_k) + e + (p_k)) + t(v → e^+(p_k) + d(p_k) + d(p_k) \\ 10 & 10 & 10 \\ 567 & 2(e - (p_k) + e + (p_k)) + t(v → e^+(p_k) + d(p_k) + d(p_k) \\ 10 & 10 & 10 \\ 10 & 1$
17	$W^-(\rightarrow e^-(p_2) + i)$	$(p_4) + b(p_5)$ $\bar{p}(p_4)) + b(p_5)$		NLC)	$\begin{array}{ccc} 301 & \mathcal{Z}^0 (\to e^-(p_3) + e^+(p_4)) + \gamma(p_5) + \gamma(p_6) & \text{NLO +I} \\ 302 & \mathcal{Z}^0 (\to e^-(p_3) + e^+(p_4)) + \gamma(p_5) + f(p_6) & \text{NLO +I} \\ 303 & \mathcal{Z}^0 (\to e^-(p_3) + e^+(p_4)) + \gamma(p_5) + \gamma(p_6) + f(p_7) & \text{LO} \end{array}$	$ F_{\rm F} = \frac{560}{100} \frac{L(c-(p_3)+c+(p_4))+\bar{u}(-c-(p_3)+c+(p_4)-\bar{u}(p_4))+q_{108}}{560} \frac{L(c-(p_3)+c+(p_4))+\bar{l}(-c-(p_3)+\bar{u}(p_4)+\bar{b}(p_7))+q_{108}}{100} + \frac{LO}{LO} $
18	$W^-(\rightarrow e^-(p_2) + i)$	$\overline{\nu}(p_4)) + c(p_5)$ $\overline{\nu}(p_4)) + c(p_5)$		NLC		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c c} {}_{\rm F} & 602 & H(b(p_3) + \bar{b}(p_4)) + H(\gamma(p_3) + \gamma(p_6)) & {}_{\rm LO} \\ {}_{\rm F} & 640 & t(p_3) + \bar{t}(p_4) + H(p_5) & {}_{\rm LO} \end{array} $
19	$W^{-}(\rightarrow e^{-}(p_{2}) + i)$	$\overline{\nu}(p_4)$ + $c(p_5)$ $\overline{\nu}(p_4)$ + $c(p_5)$ [massless]				307 $Z^{0}(-3(\nu(p_{3}) + \tilde{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{6})$ NLO + 308 $Z^{0}(-3(\nu(p_{3}) + \tilde{\nu}(p_{4}))) + \gamma(p_{5}) + \gamma(p_{6}) + f(p_{7})$ LO 309 $Z^{0}(-3(\nu(p_{3}) + \tilde{\nu}(p_{4}))) + \gamma(p_{5}) + f(p_{5}) + f(p_{7})$ LO 211 $U(p_{3}) + \nu(p_{3}) + \tilde{\nu}(p_{3}) + \nu(p_{3}) + \mu(p_{3}) +$	F 641 $t(\rightarrow \nu(p_4) + e^+(p_4) + d(p_5)) + t(\rightarrow \tilde{\nu}(p_7) + e^-(p_8) + \delta(p_6)) + H(b(p_8) + b(p_{10}))$ LO 644 $t(\rightarrow \nu(p_4) + e^+(p_4) + d(p_3)) + \tilde{t}(\rightarrow \tilde{d}(p_7) + d(p_8) + b(p_8)) + H(b(p_8) + b(p_{10}))$ LO 647 $(i \rightarrow \nu(p_4) + e^+(p_4) + d(p_3)) + \tilde{t}(\rightarrow \tilde{t}(p_7) + d(p_8) + \tilde{t}(p_8)) + H(b(p_8) + \tilde{t}(p_{10}))$ LO
$\frac{\text{nproc}}{1} \frac{f(p_1) + f(p_2)}{W^+(\rightarrow y(p_1))}$	$\rightarrow \dots$ Order NIO	$\begin{array}{c} 101 & Z^0(-e^-(p_3) + e^+(p_4)) + H(- b(p_5) + b(p_6)) \\ 102 & Z^0(-3 \times (\nu(p_3) + \bar{\nu}(p_4))) + H(- b(p_5) + b(p_6)) \\ 103 & Z^0(-b(p_3) + b(p_6)) + H(-b(p_5) + b(p_6)) \\ 103 & Z^0(-b(p_3) + b(p_6)) + H(-b(p_5) + b(p_6)) \\ \end{array}$	NLO NLO NLO	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \psi_{41} \left((\neg q_1 \psi_2) + q_1 \psi_1 + (\neg q_1 y_2) + (\neg p_1 \psi_1 + ($
$\begin{array}{c} 6 & W^-(\rightarrow e^-(p_3)) \\ \hline 11 & W^+(\rightarrow \nu(p_3) - 12 & W^+(\rightarrow \nu(p_3) - 12) \end{array}$	$(+ i p_4))$ $(+ i p_4))$ $(+ e^+(p_4)) + f(p_5)$ $(+ e^+(p_4)) + b(p_5)$ NLO NLO NLO	$\begin{array}{ll} 104 & Z^0(\rightarrow e^{-r}(p_3) + e^{+t}(p_4)) + H(\rightarrow \gamma(p_5) + \gamma(p_6)) \\ 105 & Z^0(\rightarrow \rightarrow 3 \times (\nu(p_3) + \bar{\nu}(p_4))) + H(\rightarrow \gamma(p_5) + \gamma(p_6)) \\ 106 & Z^0(\rightarrow e^{-r}(p_3) + e^{+t}(p_4)) + H(\rightarrow W^+(\nu(p_5), e^{+t}(p_6))W^-(e^{-t}(p_7), \bar{\nu}(p_5))) \end{array}$	NLO NLO NLO	$\begin{array}{c} 126 W^{-}(\nu (p_3) + e^+(\mu_1) + W^{-}(e^-(p_3) + \nu (p_4)) \ \text{gg only}, \ (\text{H} + \text{gg} - \text{WW}) \ \text{squared} \text{LO} \\ 128 H(-2^{-}e^+(e^-)A) + e^+(\mu_1) + W^{-}(e^-(p_3) + \nu (p_3)) \ \text{(gg} - \text{WW}) \ \text{squared} \text{LO} \\ 128 H(-2^{-}e^+(e^-)A) + e^+(\mu_1) + 2^{-}(\mu_1 - \rho_3) + \mu^+(\rho_1)) \ \text{(np, bottom loops, exact \ LO} \\ 109 H(-2^{-}e^-(p_3) + e^+(\mu_1)) + 2^{-}(\mu_1 - \rho_3) + \mu^+(\rho_1)) \ \text{(ny H, gg} + 22Z \ \text{inf}, \text{LO} \end{array}$	- -	331 $W^{-}(\rightarrow \nu \rho_3) + e^{-}(p_4)) + c(p_5) + f(p_6)[cos interaction] LO 336 W^{-}(\rightarrow e^{-}(p_3) + \nu (p_3)) + c(p_3) + f(p_6)[cos interaction] LO 341 f(p_1) + b(p_2) \rightarrow Z^0(\rightarrow e^{-}(p_3) + e^{+}(p_4)) + b(p_5) + f(p_6)[+f(p_7)] NLO(DEAL) (DEAL) (DEAL$	$= \frac{657}{661} t(-\nu(p_3) + \tilde{q}(p_1) + b(p_3)) + t(-\bar{\nu}(p_7) + e^-(p_3) + b(p_6)) + H(\gamma(p_3) + \gamma(p_{16}))} LO$ $= \frac{661}{661} t(-\nu(p_3)e^-(p_3)b(p_3)) + t(-\bar{\nu}(p_7)e^-(p_3)b(p_6)) + H(W^+(p_3, p_6)W^-(p_1, p_2))} LO$ $= \frac{661}{660} t(-\nu(p_3)e^-(p_3)b(p_3)) + t(-\bar{\nu}(p_7)e^-(p_3)b(p_6)) + H(W^+(p_3, p_6)W^-(p_1, p_2))} LO$ $= \frac{661}{660} t(-\nu(p_3)e^-(p_3)b(p_3)) + t(-\bar{\nu}(p_7)e^-(p_3)b(p_6)) + H(W^+(p_3, p_6)W^-(p_1, p_2)) + LO$
13 14 $W^+(\rightarrow \nu(p_3) - 14$ $W^+(\rightarrow \nu(p_3) - 16$ $W^-(\rightarrow e^-(p_3) - 16)$	$+ e^+(p_4)) + \bar{c}(p_5)$ NLO $+ e^+(p_4)) + \bar{c}(p_3)[massless]$ LO $+ \bar{\nu}(p_4)) + f(p_5)$ NLO	107 $Z^{0}(\rightarrow 3 \times (\nu(p_{3}) + \bar{\nu}(p_{4}))) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}, \bar{\nu}(p_{5})))$ 108 $Z^{0}(\rightarrow b(p_{3}) + \bar{b}(p_{4})) + H(\rightarrow W^{+}(\nu(p_{5}), e^{+}(p_{6}))W^{-}(e^{-}(p_{7}), \bar{\nu}(p_{3})))$ 109 $Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + H(\rightarrow Z(e^{-}(p_{5}), e^{+}(p_{6})) + Z(\mu^{-}(p_{7}), \mu^{+}(p_{5})))$ 111 $H(-\lambda_{W}) + b(\nu_{W})$	NLO 1 NLO 1 NLO 1	130 $H(-z^2(e^-(p_3) + e^+(p_4)) + z^2(µ^-(p_5) + µ^+(p_6)) H ^2$ and H_{sg} −ZZ inff.] I.O 131 $Z^{b}(e^-(p_3) + e^+(p_4)) + z^{b}(µ^-(p_5) + µ^+(p_6)) g_{sg}$ −ZZ) squared [.O 132 $Z^{b}(e^-(p_3) + e^+(p_4)) + z^{b}(µ^-(p_5) + µ^+(p_6)) g_{sg}$ −ZZ) squared [.O 132 $Z^{b}(e^-(p_3) + e^+(p_4)) + z^{b}(µ^-(p_5) + µ^+(p_6)) g_{sg}$ −ZZ) squared [.O		$\begin{array}{ll} 442 & f(\mu_1) + b(\mu_2) - Z^{(-)}(-e^{-}(p_3) + e^{-}(\mu_4)) + b(\mu_5) + f(\mu_6) + b(\mu_7) \\ 345 & f(\mu_1) + b(\mu_2) - Z^{(-)}(-e^{-}(p_3) + e^{+}(\mu_4) + b(\mu_5) + f(\mu_6) + f(\mu_7) \\ 347 & f(\mu_1) + b(\mu_2) \rightarrow Z^{(0)}(-e^{-}(\mu_3) + 84e^{+}(\mu_4)) + b(\mu_5) + f(\mu_6) + b(\mu_7) \\ \end{array}$	$ \begin{array}{c} 004 & i(-\neq \nu) p_3 [e - (p_1) q_1 p_3) + i(-\neq q(p_1 q_1 q_3 q_2 p_3) + h (vr - (p_2 p_1 q_0) vr - (p_1, p_2)) \\ 667 & t(-\neq q(p_3) \bar{q}(p_1) b(p_3)) + \bar{t} \rightarrow (\bar{\nu}(p_7) e^-(p_8) \bar{b}(p_6)) + H (W^+(p_9, p_{10}) W^-(p_{11}, p_{12})) \\ \end{array} \right) $
17 $W^-(\rightarrow e^-(p_3))$ 18 $W^-(\rightarrow e^-(p_3))$ 19 $W^-(\rightarrow e^-(p_3))$	$\begin{array}{c} + \bar{\nu}(p_4)) + b(p_5) & \text{NLO} \\ + \bar{\nu}(p_4)) + c(p_5) & \text{NLO} \\ + \bar{\nu}(p_4)) + c(p_5)[\text{massless}] & \text{LO} \end{array}$	112 $H(\rightarrow \overline{v}(p_3) + \overline{v}(q_4))$ 113 $H(\rightarrow \overline{v}(p_3) + e^+(p_4)) + W^-(e^-(p_5) + \overline{v}(p_6)))$ 114 $H(\rightarrow W^+(\nu(p_3) + e^+(p_4)) + W^-(q(p_5) + \overline{q}(p_6)))$	NLO 1 NLO 1 NLO 1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\begin{array}{ll} 351 & f(p_1) + (p_2) \rightarrow Z^{0}(-e^{-}(p_3) + e^{+}(p_4)) + c(p_3) + f(p_6)[+f(p_7)] & \text{NLO} \\ 352 & f(p_1) + c(p_2) \rightarrow Z^{0}(-e^{-}(p_3) + e^{+}(p_4)) + c(p_3) + f(p_6)[+f(p_7)] & \text{(REA} \\ 356 & f(p_1) + c(p_2) \rightarrow Z^{0}(-e^{-}(p_3) + e^{+}(p_2)) + c(p_3) + f(p_6) + f(p_7) & \text{I.O} \end{array}$	L) 800 $V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_6)$ [Vector Mediator] NLO 801 $A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5)$ [Axial Vector Mediator] NLO
20 $W^+(\rightarrow \nu(p_3) - 21 W^+(\rightarrow \nu(p_3) - 22 W^+(\rightarrow \nu$	$\begin{array}{ll} & \text{NLO} \\ + e^+(p_4)) + b(p_5) + b(p_6) [\text{massive}] & \text{NLO} \\ + e^+(p_4)) + b(p_5) + \overline{b}(p_6) & \text{NLO} \\ + e^+(p_4)) + f(p_5) + f(p_6) & \text{NLO} \end{array}$	$ \begin{array}{ll} 115 & H(\rightarrow W^+(\nu(p_3)+e^+(p_4))+W^-(\bar{q}(p_3)+\bar{q}(p_6))))[rad in.dk] \\ 116 & H(\rightarrow Z^0(e^-(p_3)+e^+(p_4))+Z^0(\mu^-(p_5)+\mu^+(p_6)) \\ 117 & H(\rightarrow Z^0(3\times(\nu(p_3)+\bar{\nu}(p_4)))+Z^0(\mu^-(p_5)+\mu^+(p_6)) \\ \end{array} $	NLO NLO NLO	$ \begin{array}{c} 1.012 = (r_{1}0) + e^{-r_{1}}(p_{1}) + \nu(p_{0}) + \nu(p_{0}) \ g_{0} \ oilly, (11 + g_{2} - \omega L) \ squared LO \\ 1.022 = e^{-r_{1}}(p_{1}) + e^{-r_{1}}(p_{1}) + \nu(p_{0}) \ g_{0} - \omega L^{2} \ squared LO \\ 1.033 H(-\Sigma^{\prime\prime}(e^{-r_{1}}(p_{1}) + e^{-r_{1}}(p_{1})) + Z^{\prime\prime}(\mu^{-r_{1}}(p_{0}) + \mu^{+r_{1}}(p_{0}) + f^{+r_{1}}(p_{0}) + f^{-r_{1}}(p_{0}) + f^{-r_$		357 $f(p_1) + c(p_2) \rightarrow Z^0 (\rightarrow e^-(p_3) + e^+(p_4)) + c(p_5) + f(p_6) + \bar{c}(p_7)$ I.O 361 $c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow v(p_3) + e^+(p_4)) mc \rightarrow 0$ in NLO 362 $l_c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow v(p_3) + e^+(p_4)) maxwess corrections only $ NLO	802 $S \rightarrow (\chi(p_0) + \chi(p_1)) + f(p_2)$ [Scalar Mediator] NLO 803 $PS \rightarrow (\chi(p_0) + \chi(p_1)) + f(p_2)$ [Pseudo Scalar Mediator] NLO 804 $GG \rightarrow (\chi(p_0) + \chi(p_1)) + f(p_1)$ [Ghomic DM operator] NLO
23 $W^+(\rightarrow \nu(p_3) -$ 24 $W^+(\rightarrow \nu(p_3) -$ 25 $W^-(\rightarrow e^-(p_3))$	$e^{-\tau}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ LO $e^{+\tau}(p_4)) + b(p_5) + \bar{b}(p_6) + f(p_7)$ LO $+ \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)[massive]$ NLO NLO	118 $H(-Z^{0}(\mu^{-}(p_{3}) + \mu^{+}(p_{4})) + Z^{0}(b(p_{5}) + b(p_{6}))$ 119 $H(-\gamma(p_{3}) + \gamma(p_{4}))$ 120 $H(-Z^{0}(\mu^{-}(p_{3}) + \mu^{+}(p_{4})) + \gamma(p_{5}))$ 121 $H(-Z^{0}(Z^{-}(p_{3}) + \mu^{+}(p_{4})) + \gamma(p_{5}))$	NLO 1 NLO 1 NLO	$ \begin{array}{c} (\text{REAL}) \\ 137 & H(\rightarrow b(p_3) + b(p_4)) + b(p_6)(\rightarrow b(p_6)) \\ 138 & H(\rightarrow b(p_3) + b(p_4)) + b(p_6) + b(p_6) \text{both observed} \\ (\text{REAL}) \\ $		$\begin{array}{c} 363 c(p_1) + \bar{s}(p_2) \rightarrow W^+(\rightarrow v(p_2) + e^+(p_1))[\text{massive charm in real}] & \text{NLO} \\ 370 W^+(\rightarrow v(p_3) + e^+(p_1)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^+(\rightarrow v(p_3) + e^+(p_4)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) + \gamma(p_3) + \gamma(p_4) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}(p_3)) & \text{LO} \\ 370 W^-(\rightarrow v(p_3) + \bar{s}($	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
26 $W \rightarrow e^{-}(p_3)$ 27 $W^{-}(\rightarrow e^{-}(p_3))$ 28 $W^{-}(\rightarrow e^{-}(p_3))$ 20 $W^{-}(\rightarrow e^{-}(p_3))$	$+ \bar{\nu}(p_4)) + \delta(p_5) + \delta(p_6)$ NLO $+ \bar{\nu}(p_4)) + f(p_5) + f(p_6)$ NLO $+ \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7)$ LO LO	$\begin{array}{c} 56 Z^{0}(\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + c(p_{5}) + \bar{c}(p_{6}) \\ \hline 61 W^{+}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + W^{-}(\rightarrow e^{-}(p_{5}) + \bar{\nu}(p_{6})) \end{array}$	NLO	$\begin{array}{l} 141 & ((-\nu \ \nu(\mu) + e(\mu) + e(\mu) + i(-\nu \ 0(\mu) + e(\mu) + i(\mu_0)) & NLO\\ 142 & ((-\nu \ \mu(\mu) + e^+(\mu_0) + i(-\mu) + i(-\nu \ 0(\mu) + e^-(\mu_0) + i(\mu_0)) & (\text{mdin.dk}) \\ 143 & ((-\nu \ \mu(\mu) + e^+(\mu_0) + i(-\nu \ 0(\mu) + e^-(\mu_0) + i(\mu_0)) & LO\\ 144 & ((-\nu \ \mu(\mu) + e^+(\mu_0) + i(-\mu_0) + i(-\nu \ 0(\mu_0) + e^-(\mu_0) + i(\mu_0)) & NLO\\ \end{array}$		$\begin{array}{cccc} & (m + (-c + (y_3) + (y_4)) + (y_6)) + (y_6) + (y_6)$	$= \begin{array}{c} 821 A \rightarrow (\chi(p_d) + \chi(p_d) + \gamma(p_g) Axai Vector Mediator] \\ 822 S \rightarrow (\chi(p_d) + \bar{\chi}(p_d)) + \gamma(p_g) Scalar Mediator] \\ 823 PS \rightarrow (\chi(p_d) + \bar{\chi}(p_d)) + \gamma(p_g) Pseudo Scalar Mediator] \\ 824 VLO + F \\ 823 PS \rightarrow (\chi(p_d) + \chi(p_d)) + \gamma(p_g) Pseudo Scalar Mediator] \\ 824 VLO + F \\ 825 VLO + F \\ 8$
29 $W \rightarrow e^{-}(p_3)$ 31 $Z^0(\rightarrow e^{-}(p_3))$ 32 $Z^0(\rightarrow 3 \times (\nu (p_3)))$	$\begin{array}{c c} + \nu(p_4)) + v(p_5) + v(p_6) + f(p_7) & \text{LO} \\ + e^+(p_4)) & \text{NLO} \\ p_3) + \nu(p_4))) & \text{NLO} \\ \hline \end{array}$	$\begin{array}{c} 62 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow q(p_3) + \bar{q}(p_6)) \\ 63 & W^+(\rightarrow \nu(p_3) + e^+(p_4)) + W^-(\rightarrow q(p_3) + \bar{q}(p_6)) \\ 64 & W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_3)) W^+(\rightarrow q(p_3) + \bar{q}(p_6)) \\ 64 & W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_3)) W^+(\rightarrow q(p_3) + \bar{q}(p_6)) \end{array}$	NLO NLO NLO	$ \begin{array}{ll} 145 & t(-\nu(p_3)+e^+(p_4)+d(p_3))+\bar{t}(-b(p_6)+e^-(p_7)+\bar{\nu}(p_6)) \ [\text{radin.dk}].\text{uncorr} & \text{NLO} \\ 146 & t(-\nu(p_3)+e^+(p_4)+d(p_5))+\bar{t}(-b(p_6)+q(p_7)+\bar{q}(p_5)) & \text{NLO} \\ 147 & t(-\nu(p_3)+e^+(p_4)+d(p_5))+\bar{t}(-b(p_6)+q(p_7)+\bar{q}(p_5)) \ [\text{radin.top.dk}] & \text{NLO} \end{array} $		405 $W (\rightarrow k_l p_3) + e \cdot (p_4)) + \theta(p_3) + \theta(p_6) [2 \text{ or } 3 \text{ jets}, 4 \epsilon \text{ NS}]$ NLO 406 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + (b(p_3)) [12 \text{ or } 3 \text{ jets}, 4 \text{FNS}]$ NLO 107 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + (b + \bar{b}(p_5) [1 \text{ or } 2 \text{ jets}, 4 \text{FNS}]$ NLO	$ \begin{array}{c c} 840 V \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6) [Vector \ Mediator] \\ 841 A \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_6) + f(p_6) [Axial \ Vector \ Mediator] \\ \ LO \end{array} $
$\begin{array}{ccc} 33 \\ 34 \\ 35 \end{array} \begin{array}{c} Z^{\circ}(\rightarrow b(p_3) + \\ Z^{0}(\rightarrow 3 \times (d(p_3) + d(p_3))) \\ Z^{\circ}(\rightarrow 2 \times (u(p_3) + d(p_3))) \\ Z^{\circ}(\rightarrow (u(p_3) + d($	$b(p_4))$ NLO $p_5) + \bar{d}(p_6)))$ NLO $p_5) + \bar{u}(p_6)))$ NLO	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	NLO LO	$ \begin{array}{ll} 148 & t(- \nu (p_3) + e^+ (p_4) + b(p_3)) + \bar{t}(- b \ (p_6) + q(p_7) + \bar{q}(p_3)) \ [rad in.W.dk] \\ 149 & t(- \varphi (p_3) + \bar{q}(p_4) + b(p_3)) + \bar{t}(- b \ (p_6) + e^- (p_7) + \bar{\nu}(p_8)) \\ 150 & t(- q(p_3) + \bar{q}(p_4) + b(p_5)) + \bar{t}(- b \ (p_6) + e^- (p_7) + \bar{\nu}(p_8)) \ [rad intop,dk] \\ \end{array} \right. \\ \begin{array}{l} \text{NLO} \end{array} $		408 $W^-(\rightarrow e^-(p_4) + \bar{\nu}(p_4)) + b(p_5) + \bar{b}(p_6)$ [2 or 3 jets, 4FNS] NLO 411 $f(p_1) + b(p_2) \rightarrow W^+(\rightarrow \nu(p_3) + e^+(p_4)) + b(p_5) + f(p_6)$ [5FNS] NLO 416 $f(p_1) + b(p_2) \rightarrow W^+(\rightarrow e^-(p_4) + e^+(p_4)) + b(p_3) + f(p_6)$ [5FNS] NLO	842 $S \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Scalar Mediator] LO 843 $PS \rightarrow (\chi(p_3) + \bar{\chi}(p_4)) + f(p_5) + f(p_6)$ [Pseudo Scalar Mediator] LO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(y_1) + e^+(p_4) + b(p_5)) + t(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_8))$ LO + $e^+(p_4)) + f(p_5)$ NLO $(p_3) + \bar{\nu}(p_4))) + f(p_5)$ NLO	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	NLO NLO	$\begin{array}{ll} 151 & t(- q(p_3) + \tilde{q}(p_4) + b(p_5)) + \tilde{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8)) \ [rad in.W.dk] & \text{NLO} \\ 157 & tt[for total Xsect] & \text{NLO} \\ 158 & b\tilde{b}[for total Xsect] & \text{NLO} \end{array}$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bar{b}(p_4)) + f(p_5)$ NLO + $e^+(p_4)) + f(p_5) + f(p_6)$ NLO + $e^+(p_4)) + f(p_5) + f(p_6)$ LO	$\begin{array}{ccc} ^{13} & W & (\rightarrow \nu(p_3) + \mu^*(p_4)) + 2^{-}(\rightarrow 0(p_3) + 0(p_6)) \\ 74 & W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + 2^{0}(\rightarrow 3 \times (d(p_3) + d(p_6))) \\ 75 & W^+(\rightarrow \nu(p_3) + \mu^+(p_4)) + 2^{0}(\rightarrow 2 \times (u(p_3) + \bar{u}(p_6))) \end{array}$	NLO NLO NLO	159 c_{c}^{c} for total Xsect] NLO 161 $t\bar{t} + g$ for total Xsect] LO 161 $t(-v(p_{3}) + e^{+}(p_{4}) + b(p_{5})) + q(p_{6})$ [t-channel] NLO		431 W ⁺ (→ $\nu(p_3) + e^+(p_4)) + b(p_5) + b(p_6) + f(p_7)$ [massive] LO 436 W ⁻ (→ $e^-(p_4) + b(p_4)) + b(p_6) + f(p_7)$ [massive] LO 50 W ⁺ (→ $e^-(p_4) + b(p_4)) + b(p_6) + b(p_6) + f(p_7)$ [massive] LO	$= \frac{66}{847} \left[X \rightarrow \chi(p_0) + \chi(p_1) + \gamma(p_3) + f(p_6) \right] \text{ from Vector Architect} \right] \qquad \text{LO}$ $= \frac{847}{848} \left[P_S \rightarrow \chi(p_0) + \bar{\chi}(p_1) + \gamma(p_3) + f(p_6) \right] \text{ Scalar Mediator} \qquad \text{LO}$ $= \frac{848}{848} \left[P_S \rightarrow \chi(p_1) + \bar{\chi}(p_1) + \gamma(p_3) + \gamma(p_6) + \gamma(p_6) \right] for all of a constraint of a constra$
45 $Z^{0}(\rightarrow 3 \times (\nu q))$ 46 $Z^{0}(\rightarrow 3 \times (\nu q))$ 47 $Z^{0}(\rightarrow 3 \times (\nu q))$	$\begin{array}{l} \text{LO} \\ p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7) \\ p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) \\ p_3) + \bar{\nu}(p_4)) + f(p_5) + f(p_6) + f(p_7) \\ \end{array}$	76 $W^-(\rightarrow \mu^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow e^-(p_5) + e^+(p_6))$ 77 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\rightarrow 3 \times (\nu_e(p_5) + \bar{\nu}_e(p_6)))$ 78 $W^-(\rightarrow e^-(n_9) + \bar{\nu}(n_1)) + Z^0(\rightarrow b(p_2) + b(p_3))$	NLO NLO NLO	162 $t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[decay]$ NLO 163 $t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[c-hannel]mb > 0$ NLO 164 $\tilde{t}(\rightarrow c(p_3) + \tilde{p}(p_3) + \tilde{b}(p_3)) + q(p_6)[c-hannel]$ NLO		$\begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & $	902 Check of Volume of 2 particle phase space 903 Check of Volume of 3 particle phase space
50 $Z^0(\rightarrow e^-(p_3) -$ 51 $Z^0(\rightarrow e^-(p_3) -$ 52 $Z_0(\rightarrow 3 \times (p_1) -$	$+ e^+(p_4)) + b(p_5) + b(p_6)$ [massive] LO $+ e^+(p_4)) + b(p_5) + \bar{b}(p_6)$ NLO $p_1) + \bar{\mu}(p_2)) + b(p_3) + \bar{b}(p_4)$ NLO	$\begin{array}{cccc} 79 & W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\to 3 \times d(p_5) + d(p_6)))) \\ 80 & W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + Z^0(\to 2 \times (u(p_5) + \bar{u}(p_6)))) \\ \end{array}$	NLO NLO	167 $\vec{t}(-e^{-}(p_3) + \bar{\nu}(p_4) + \vec{b}(p_3)) + q(p_6)[rad.in.dk]$ NLO 168 $\vec{t}(-e^{-}(p_3) + \bar{\nu}(p_4) + \vec{b}(p_3)) + q(p_6)[red.in.dk] = 0$ NLO 171 $\vec{t}(-e^{-}(p_3) + e^{-}(p_3) + e^{-}(p_4)) + q(p_6)[red.in.dk] = 0$ NLO		$ \begin{array}{l} t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \overline{t}(\rightarrow b \ (p_6) + q(p_7) + q \ (p_8)) + W^+(\nu(p_8), \mu^+(p_{10})) & \text{NLO} \\ t(\rightarrow q(p_3) + q \ (p_4) + b(p_3)) + \overline{t}(\rightarrow b \ (p_6) + e^-(p_7) + \overline{\nu}(p_8)) + W^+(\nu(p_8), \mu^+(p_{10})) & \text{NLO} \end{array} $	904 Check of Volume of 4 particle phase space 905 Check of Volume of 5 particle phase space
$53 = Z_0^0(\to b(p_3) + Z_0^0(\to e^-(p_3) + Z_0^0(\to e^-(p_3) - Z_0^0(\to e^-(p_3) - Z_0^0(\to e^-(p_3) - Z_0^0))))$	$\hat{b}(p_4)) + b(p_5) + \hat{b}(p_6)$ NLO $+ e^+(p_4)) + b(p_5) + \hat{b}(p_6) + f(p_7)$ LO	81 $Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow \mu^-(p_5) + \mu^-(p_6))$ 82 $Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow 3 \times (\nu_3) + \bar{\nu}(p_6)))$ 83 $Z^0(\rightarrow e^-(p_3) + e^+(p_4)) + Z^0(\rightarrow b(p_3) + b(p_6))$	NLO NLO NLO	$\begin{array}{c} \text{Int} & (v(p_3) + e^-(p_4) + \phi(p_3)) + \phi(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + e^+(p_4) + b(p_6)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + e^+(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5)) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6) + b(p_6)) [\text{schannel}] & \text{Int} O \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_3) + v(p_4) + b(p_5) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_5) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_5) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_5) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- v(p_4) + b(p_6) + b(p_6) + b(p_6) + b(p_6) \\ \text{Int} & (- $		510 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(p_5) + t(p_6)[massive]$ NLO 511 $t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b(p_6) + e^-(p_7) + \bar{\nu}(p_5)) + W^-(\mu^-(p_9), \bar{\nu}(p_{10}))$ NLO 512 (seem as property 514) that with prediction in decay.)	906 Check of Volume of 6 particle phase space 908 Check of Volume of 8 particle phase space
	79	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NLO LO	$\begin{array}{llllllllllllllllllllllllllllllllllll$		$\begin{array}{l} \text{NLO} \\ 513 t(\rightarrow v(p_3) + e^+(p_4) + b(p_5)) + \tilde{t}(\rightarrow b(p_6) + q(p_7) + q(p_5)) + W^-(\mu^-(p_8), \tilde{\nu}(p_{10})) \\ \text{NLO} \\ 516 t(\rightarrow q(p_3) + q(p_4) + b(p_6)) + \tilde{t}(\rightarrow b(p_6) + e^-(p_7) + \tilde{\nu}(p_5)) + W^-(\mu^-(p_8), \tilde{\nu}(p_{10})) \\ \text{NLO} \end{array}$	909 Check of Volume of 4 particle massive phase space 910 Check of Volume of 3 particle (2 massive) phase space
		86 $Z^{0} \rightarrow \mu^{-}(p_{3}) + \mu^{+}(p_{4}) + Z^{0} \rightarrow e^{-}(p_{3}) + e^{+}(p_{6}) [\ln 0 \text{ gamma}^{*}]$ 87 $Z^{0} (\rightarrow e^{-}(p_{3}) + e^{+}(p_{4})) + Z^{0} (\rightarrow 3 \times (\nu(p_{5}) + \bar{\nu}(p_{6}))) [\ln 0 \text{ gamma}^{*}]$ 88 $Z^{0} \rightarrow e^{-}(p_{3}) + e^{+}(p_{3}) + Z^{0} (\rightarrow b(p_{3}) + \bar{b}(p_{3})) [\ln 0 \text{ gamma}^{*}]$	NLO NLO	182 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7))[rad.in.dk]$ NLO 183 $W^-(\rightarrow e^-(p_4) + \bar{\nu}(p_4)) + t(\nu(p_5) + e^+(p_6) + b(p_7)) + b(p_8)$ LO		$\begin{array}{c} 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	911 Check of Volume of 5 particle W+t (with decay) massive phase space 912 Check of Volume of 5 particle W+t (no decay) massive phase space
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NLO NLO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} 531 t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow e^-(p_7) + \bar{\nu}(p_8) + b \ (\bar{p}_6)) + Z(b(p_6), b \ (p_{10})) \\ 532 t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow q(p_7) + \bar{q}(p_8) + b \ (p_6)) + Z(e^-(p_9), e^+(p_{10})) \\ \end{array} \right) \text{I.O} $	913 Check of Volume of 5 particle W+t+g (in decay) massive phase space 914 Check of Volume of 5 particle W+t+g (in recoduction) massive phase space
		91 $W^{-}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow b(p_5) + b(p_6))$ 92 $W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow W^{+}(\nu(p_5), e^{+}(p_6))W^{-}(e^{-}(p_7), \bar{\nu}(p_8)))$ 93 $W^{+}(\rightarrow \nu(p_3) + e^{+}(p_4)) + H(\rightarrow Z(e^{-}(p_4), e^{+}(p_4)) + Z(e^{-}(p_4), e^{+}(p_4)))$	NLO NLO NLO	18 $\ell \mid W^{-}(\rightarrow \nu(p_{3}) + e^{+}(p_{4})) + t(e^{-}(p_{5}) + \bar{\nu}(p_{6}) + b(p_{7})[\text{rad.in.dk}]$ NLO	기 [533 $t(\rightarrow q(p_3) + \tilde{q}(p_4) + b(p_5)) + t(\rightarrow e^-(p_7) + \tilde{\nu}(p_8) + b(p_6)) + Z(e^-(p_9), e^+(p_{10}))$ I.O.	1
		94 $W^+(\rightarrow \nu(p_3) + e^+(p_4)) + H(\rightarrow \gamma(p_5) + \gamma(p_6))$ 96 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + H(\rightarrow (p_3) + \bar{b}(p_6))$ 97 $W^-(\rightarrow e^-(p_3) + \bar{\nu}(p_4)) + H(\rightarrow (p_3) + \bar{b}(p_6))$	NLO NLO	Eric Godat - SMU			105/105
		$\begin{array}{l} \mathfrak{y}_1 \mathfrak{w} (\to e^-(p_3) + \nu(p_4)) + t\mathbf{I}(\to W^-(\nu(p_5), e^-(p_6))W^-(e^-(p_7), \bar{\nu}(p_8))) \\ \mathfrak{g}_8 W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to Z(e^-(p_5), e^+(p_6)) + Z(\mu^-(p_7), \mu^+(p_6))) \\ \mathfrak{g}_9 W^-(\to e^-(p_3) + \bar{\nu}(p_4)) + H(\to \gamma(p_5) + \gamma(p_6)) \end{array}$	NLO NLO NLO				