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Particle Detectors

Chapters to study:
Ch.1, Interactions of particles and photon with matter
• Electromagnetic interactions of charged particles (electron, muon, pion, kion, proton).
• Photon specific interactions.
• Strong interactions of hadrons (pion, kion, proton, neutron).
• Mechanical interactions specific to gaseous detectors: drift and diffusion in gases.

Ch.5, Main physical phenomena used for particle detection and basic counter types
Ch.7, Track detectors
Ch.8, Calorimetry
Ch.9, Particle identification
Ch.14, Electronics
Ch.15, Data analysis
Ch.16, Applications of particle detectors outside of particle physics
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Particle Detectors
Chapters to study:
Ch.5, Main physical phenomena used for particle detection and basic counter types
• Ionization counters (of charges)

o With gas mixtures: 
1. Ionization chamber (no gas amplification)
2. Proportional chamber/tube
3. Geiger counter
4. Streamer tubes

o With liquids (LAr, LXe), mostly in calorimeters.
o With solid-state crystals, count electron-holes.

1. Most commonly used: si p-n junction
2. Others:  Germanium, C (diamond), etc.
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Fig. 5.14. Dependence of the counting rate on the high voltage in a streamer
tube [45].

on the anode wire. Additionally or alternatively, one can also record the
signals induced on the cathodes. A segmentation of the cathodes allows
the determination of the track position along the anode wire.

Because of the simple mode of operation and the possibility of multi-
particle registration on one anode wire, streamer tubes are an excellent
candidate for sampling elements in calorimeters. A fixed charge signal
Q0 is recorded per particle passage. If a total charge Q is measured in a
streamer tube, the number of equivalent particles passing is calculated to
be N = Q/Q0.
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Fig. 5.15. Characterisation of the modes of operation of cylindrical gas detec-
tors (after [16]). When the high voltage is increased beyond the Geiger regime
(for counters with small-diameter anode wires), a glow discharge will develop and
the voltage breaks down. This will normally destroy the counter.
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Fig. 5.3. Principle of operation of a cylindrical ionisation counter.

where τ is the linear charge density on the wire. The potential distribution
is obtained by integration:

U = U(ri) −
∫ r

ri

E(r) dr . (5.15)

Here ra – radius of cylindrical cathode, ri – anode-wire radius (Fig. 5.3).
By taking into account the boundary condition U(ri) = U0, U(ra) = 0,
Formulae (5.15), (5.14) provide U(r) and E(r) using the intermediate
Cτ = 2πε0/ ln(ra/ri) for the capacitance per unit length of the counter
and U0 = τ/Cτ :

U(r) =
U0 ln(r/ra)
ln(ri/ra)

, |E⃗(r)| =
U0

r ln(ra/ri)
. (5.16)

The field-dependent drift velocity can no longer assumed to be constant.
The drift time of electrons is obtained by

T− =
∫ ri

r0

dr

v−(r)
, (5.17)

if the ionisation has been produced locally at a distance r0 from the
counter axis (e.g. by the absorption of an X-ray photon). The drift velocity
can be expressed by the mobility µ(v⃗− = µ− · E⃗), and in the approxima-
tion that the mobility does not depend on the field strength one obtains
(v⃗∥(−E⃗)),

T− = −
∫ ri

r0

dr

µ− · E
= −

∫ ri

r0

dr

µ− · U0
r ln(ra/ri)

=
ln(ra/ri)
2µ− · U0

(r2
0 − r2

i ) . (5.18)



Particle Detectors

Chapters to study:
Ch.5, Main physical phenomena used for particle detection and basic counter types
• Scintillation counters (of UV to visible photons), PMTs, APDs, SiPM, devices that convert 

photons to electrons and lineally amplify them.
1. Inordanic: sodium-iodide NaI(Tl), BGO, Lead-Tungsten, … … often for total 

absorption energy measurement
2. Organic: plastic, liquid, or water base doped with scintillating agents, for total 

absorption energy measurement or fast counting/triggering use.
3. Gas scintillation counters
4. Photon conversion and amplification, some with position sensitivity
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5.5 Photomultipliers and photodiodes 131

• U0
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Fig. 5.29. Working principle of a photomultiplier. The electrode system is
mounted in an evacuated glass tube. The photomultiplier is usually shielded by a
mu-metal cylinder made from high-permeability material against stray magnetic
fields (e.g. the magnetic field of the Earth).

For most counters a negative high voltage is applied to the photocath-
ode, although for some types of measurements the opposite way (where a
positive high voltage is applied to the anode) is recommended. Photoelec-
trons are focussed by an electric guiding field onto the first dynode, which
is part of the multiplication system. The anode is normally at ground
potential. The voltage between the photocathode and anode is subdivided
by a chain of resistors. This voltage divider supplies the dynodes between
the photocathode and anode so that the applied negative high voltage is
subdivided linearly (Fig. 5.29). Detailed descriptions of photomultiplier
operation and applications can be found in [111, 112].

An important parameter of a photomultiplier is its quantum efficiency,
i.e. the mean number of photoelectrons produced per incident photon. For
the most popular bialkali cathodes (Cs–K with Sb) the quantum efficiency
reaches values around 25% for a wavelength of about 400 nm. It is worth to
note that in the last years photomultiplier tubes with GaAs and GaInAsP
photocathodes having quantum efficiencies up to 50% became commer-
cially available. However, these devices are up to now not in frequent use
and they do have some limitations.

Figure 5.30 shows the quantum efficiency for bialkali cathodes as a
function of the wavelength [111]. The quantum efficiency decreases for
short wavelengths because the transparency of the photomultiplier win-
dow decreases with increasing frequency, i.e. shorter wavelength. The
range of efficiency can only be extended to shorter wavelengths by using
UV-transparent quartz windows.

The dynodes must have a high secondary-electron emission coeffi-
cient (BeO or Mg–O–Cs). For electron energies from around 100 eV up
to 200 eV, which correspond to typical acceleration voltages between



Particle Detectors

Chapters to study:
Ch.5, Main physical phenomena used for particle detection and basic 
counter types
• Cherenkov counters (of deep UV photons), mostly for particle ID

- Need a tracker to know the trajectory of the particle
- Need a photon detector to measure the ring and then !"

- Not always a ring is measured. There is also the threshold type

• Transition-radiation detectors (TRD), particle ID at high energy
- Radiation emitted when particles pass boundary between media with 

different dielectrics.

5

142 5 Main physical phenomena used for particle detection

photosensor – the so-called silicon photomultiplier. Such a device consists
of a set of pixel Geiger APDs with a size of 20–50 µm built on a common
substrate with the total area of 0.5–1 mm2. When the total number of
photons in a light flash is not too large, the output pulse is proportional
to this number with a multiplication coefficient of ≈ 106 [137].

5.6 Cherenkov counters

A charged particle, traversing a medium with refractive index n with a
velocity v exceeding the velocity of light c/n in that medium, emits a char-
acteristic electromagnetic radiation, called Cherenkov radiation [138, 139].
Cherenkov radiation is emitted because the charged particle polarises
atoms along its track so that they become electric dipoles. The time vari-
ation of the dipole field leads to the emission of electromagnetic radiation.
As long as v < c/n, the dipoles are symmetrically arranged around the
particle path, so that the dipole field integrated over all dipoles vanishes
and no radiation occurs. If, however, the particle moves with v > c/n, the
symmetry is broken resulting in a non-vanishing dipole moment, which
leads to the radiation. Figure 5.39 illustrates the difference in polarisation
for the cases v < c/n and v > c/n [140, 141].

The contribution of Cherenkov radiation to the energy loss is small
compared to that from ionisation and excitation, Eq. (1.11), even for
minimum-ionising particles. For gases with Z ≥ 7 the energy loss by
Cherenkov radiation amounts to less than 1% of the ionisation loss of
minimum-ionising particles. For light gases (He,H) this fraction amounts
to about 5% [21, 22].
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Fig. 5.39. Illustration of the Cherenkov effect [140, 141] and geometric
determination of the Cherenkov angle.
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The angle between the emitted Cherenkov photons and the track of
the charged particle can be obtained from a simple argument (Fig. 5.39).
While the particle has travelled the distance AB = tβc, the photon has
advanced by AC = t · c/n. Therefore one obtains

cos θc =
c

nβc
=

1
nβ

. (5.76)

For the emission of Cherenkov radiation there is a threshold effect .
Cherenkov radiation is emitted only if β > βc = 1

n . At threshold, Cheren-
kov radiation is emitted in the forward direction. The Cherenkov angle
increases until it reaches a maximum for β = 1, namely

θmax
c = arccos

1
n

. (5.77)

Consequently, Cherenkov radiation of wavelength λ requires n(λ) > 1.
The maximum emission angle, θmax

c , is small for gases (θmax
c ≈ 1.4◦ for

air) and becomes large for condensed media (about 45◦ for usual glass).
For fixed energy, the threshold Lorentz factor depends on the mass of

the particle. Therefore, the measurement of Cherenkov radiation is well
suited for particle-identification purposes.

The number of Cherenkov photons emitted per unit path length with
wavelengths between λ1 and λ2 is given by

dN

dx
= 2παz2

∫ λ2

λ1

(
1 − 1

(n(λ))2β2

)
dλ

λ2 , (5.78)

for n(λ) > 1, where z is the electric charge of the particle producing
Cherenkov radiation and α is the fine-structure constant.

Neglecting the dispersion of the medium (i.e. n independent of λ)
leads to

dN

dx
= 2παz2 · sin2 θc ·

(
1
λ1

− 1
λ2

)
. (5.79)

For the optical range (λ1 = 400 nm and λ2 = 700 nm) one obtains for
singly charged particles (z = 1)

dN

dx
= 490 sin2 θc cm− 1 . (5.80)

Figure 5.40 shows the number of Cherenkov photons emitted per unit
path length for various materials as a function of the velocity of the
particle [142].

The photon yield can be increased by up to a factor of two or three if the
photons emitted in the ultraviolet range can also be detected. Although
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5.7 Transition-radiation detectors (TRD) 147

Fig. 5.42. Illustration of the production of transition radiation at boundaries.

The energy loss by transition radiation represents only a negligibly small
contribution to the total energy loss of charged particles.

A charged particle moving towards a boundary forms together with its
mirror charge an electric dipole, whose field strength varies in time, i.e.
with the movement of the particle (Fig. 5.42). The field strength vanishes
when the particle enters the medium. The time-dependent dipole electric
field causes the emission of electromagnetic radiation.

The emission at boundaries can be understood in such a way that
although the electric displacement D⃗ = εε0E⃗ varies continuously in
passing through the boundary, the electric field strength does not
[154–156].

The energy radiated from a single boundary (transition from vacuum
to a medium with dielectric constant ε) is proportional to the Lorentz
factor of the incident charged particle [157–159]:

S =
1
3
αz2!ωpγ , !ωp =

√
4πNer3

emec
2/α , (5.85)

where Ne is the electron density in the material, re is classical electron
radius, and !ωp is the plasma energy . For commonly used plastic radiators
(styrene or similar materials) one has

!ωp ≈ 20 eV . (5.86)

The radiation yield drops sharply for frequencies

ω > γωp . (5.87)

The number of emitted transition-radiation photons with energy !ω
higher than a certain threshold !ω0 is

Nγ(!ω > !ω0) ≈ αz2

π

[(
ln

γ!ωp

!ω0
− 1

)2

+
π2

12

]
. (5.88)



Particle Detectors
Chapters to study:
Ch.7, Track detectors
• Multiwire proportional chamber (MWPC)

• Readout and spatial resolution ~0.5 mm
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7.1 Multiwire proportional chambers 187

cathodes

d anode wires

L

Fig. 7.1. Schematic layout of the construction of a multiwire proportional
chamber.

Fig. 7.2. Field and equipotential lines in a multiwire proportional chamber. The
effect of a minor displacement of one anode wire on the field quality is clearly
visible [5, 6].

When the coordinates of the wires are y = 0, x = 0,±d, ±2d, . . . the
potential distribution is approximated by an analytical form [6]:

U(x, y) =
CV

4πε0

{
2πL

d
− ln

[
4

(
sin2 πx

d
+ sinh2 πy

d

)]}
, (7.1)

where L and d are defined in Fig. 7.1, V is the anode voltage, ε0 the
permittivity of free space (ε0 = 8.854 ·10−12 F/m), and C the capacitance
per unit length given by the formula

C =
4πε0

2
(

πL
d − ln 2πri

d

) , (7.2)

where ri is the anode-wire radius.
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where ri is the anode-wire radius.

188 7 Track detectors

Avalanche formation in a multiwire proportional chamber proceeds
exactly in the same way as in proportional counters. Since for each anode
wire the bulk charge is produced in its immediate vicinity, the signal orig-
inates predominantly from positive ions slowly drifting in the direction of
the cathode, see Eq. (5.41) and Fig. 5.8. If the anode signal is read out
with a high-time-resolution oscilloscope or with a fast analogue-to-digital
converter (flash ADC), the ionisation structure of the particle track can
also be resolved in the multiwire proportional chamber.

The time development of the avalanche formation in a multiwire propor-
tional chamber can be detailed as follows (Fig. 7.3). A primary electron
drifts towards the anode (a), the electron is accelerated in the strong
electric field in the vicinity of the wire in such a way that it can gain
a sufficient amount of energy on its path between two collisions so that
it can ionise further gas atoms. At this moment the avalanche formation
starts (b). Electrons and positive ions are created in the ionisation pro-
cesses essentially in the same place. The multiplication of charge carriers
comes to an end when the space charge of positive ions reduces the exter-
nal electric field below a critical value. After the production of charge
carriers, the electron and ion clouds drift apart (c). The electron cloud
drifts in the direction of the wire and broadens slightly due to lateral dif-
fusion. Depending on the direction of incidence of the primary electron,
a slightly asymmetric density distribution of secondary electrons around
the wire will be formed. This asymmetry is even more pronounced in
streamer tubes. In this case, because of the use of thick anode wires and
also because of the strong absorption of photons, the avalanche formation
is completely restricted to the side of the anode wire where the electron
was incident (see also Figs. 5.7 and 5.13) (d). In a last step the ion cloud
recedes radially and slowly drifts to the cathode (e).

In most cases gold-plated tungsten wires with diameters between 10 µm
and 30 µm are used as anodes. A typical anode-wire distance is 2 mm. The
distance between the anode wire and the cathode is on the order of 10 mm.
The individual anode wires act as independent detectors. The cathodes
can be made from metal foils or also as layers of stretched wires.
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Fig. 7.3. Temporal and spatial development of an electron avalanche.

190 7 Track detectors

For a reliable operation of MWPCs it is also important that the wires
do not sag too much gravitationally due to their own mass [13]. A sag of
the anode wire would reduce the distance from anode to cathode, thereby
reducing the homogeneity of the electric field.

A horizontally aligned wire of length l stretched with a tension T would
exhibit a sag due to the pull of gravity of [14] (see also Problem 7.5)

f =
πr2

i
8

· ϱ · g
l2

T
=

mlg

8T
(7.7)

(m, l, ϱ, ri – mass, length, density and radius of the unsupported wire, g –
acceleration due to gravity, and T – wire tension [in N]).

Taking our example from above, a gold-plated tungsten wire (ri =
15 µm; ϱW = 19.3 g/cm3) would develop a sag in the middle of the wire
of

f = 34 µm , (7.8)

which would be acceptable if the anode–cathode distance is on the order
of 10 mm.

Multiwire proportional chambers provide a relatively poor spatial res-
olution which is on the order of ≈ 600 µm. They also give only the
coordinate perpendicular to the wires and not along the wires. An
improvement in the performance can be obtained by a segmentation of
the cathode and a measurement of the induced signals on the cathode
segments. The cathode, for example, can be constructed of parallel strips,
rectangular pads (‘mosaic counter’) or of a layer of wires (Fig. 7.4).

In addition to the anode signals, the induced signals on the cathode
strips are now also recorded. The coordinate along the wire is given by
the centre of gravity of the charges, which is derived from the signals
induced on the cathode strips. Depending on the subdivision of the cath-
ode, spatial resolutions along the wires of ≈ 50 µm can be achieved, using

point of
particle
passage

anode wires

y
cathode strips

x
anode signals cathode signals

Fig. 7.4. Illustration of the cathode readout in a multiwire proportional
chamber.



Particle Detectors
Chapters to study:
Ch.7, Track detectors
• More readout
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7.2 Planar drift chambers 191
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Fig. 7.5. Illustration of the resolution of ambiguities for two-particle detection
in a multiwire proportional chamber.

this procedure. In case of multiple tracks also the second cathode must
be segmented to exclude ambiguities.

Figure 7.5 sketches the passage of two particles through a multiwire pro-
portional chamber. If only one cathode were segmented, the information
from the anode wires and cathode strips would allow the reconstruction
of four possible track coordinates, two of which, however, would be ‘ghost
coordinates’. They can be excluded with the help of signals from a second
segmented cathode plane. A larger number of simultaneous particle tracks
can be successfully reconstructed if cathode pads instead of cathode strips
are used. Naturally, this results also in an increased number of electronic
channels.

Further progress in the position resolution of MWPCs as well as in
the rate capability has been achieved with the development of gaseous
micropattern chambers. These detectors are discussed in Sect. 7.4 .

7.2 Planar drift chambers

The principle of a drift chamber is illustrated by Fig. 7.6 . The time ∆t
between the moment of the particle passage through the chamber and the
arrival time of the charge cloud at the anode wire depends on the point
of passage of the particle through the chamber. If v− is the constant drift
velocity of the electrons, the following linear relation holds:

x = v− · ∆t (7.9)

Currently I am developing a pad 
readout. Join in me if you like to 
build a prototype, and develop a 
detector out of that.

MWC is very rather economical 
when large detectors are needed.



Particle Detectors

Chapters to study:
Ch.7, Track detectors
• Planar drift chambers: need constant drift velocity

- Resolution can be ~0.05 mm
- Variations, TEC (time expansion chamber), separate 

drift volume and gas amplification region. 
• Cylindrical wire chambers

8

192 7 Track detectors

Fig. 7.6. Working principle of a drift chamber.

or, if the drift velocity varies along the drift path,

x =
∫

v−(t) dt . (7.10)

In order to produce a suitable drift field, potential wires are introduced
between neighbouring anode wires.

The measurement of the drift time allows the number of anode wires in
a drift chamber to be reduced considerably in comparison to an MWPC
or, by using small anode-wire spacings, to improve significantly the spatial
resolution. Normally, both advantages can be achieved at the same time
[15]. Taking a drift velocity of v− = 5 cm/µs and a time resolution of the
electronics of σt = 1 ns, spatial resolutions of σx = v−σt = 50 µm can
be achieved. However, the spatial resolution has contributions not only
from the time resolution of the electronics, but also from the diffusion
of the drifting electrons and the fluctuations of the statistics of primary
ionisation processes. The latter are most important in the vicinity of the
anode wire (Fig. 7.7 [5, 16]).

For a particle trajectory perpendicular to the chamber, the statistical
production of electron–ion pairs along the particle track becomes impor-
tant. The electron–ion pair closest to the anode wire is not necessarily
produced on the connecting line between anode and potential wire. Spatial
fluctuations of charge-carrier production result in large drift-path differ-
ences for particle trajectories close to the anode wire while they have only
a minor effect for distant particle tracks (Fig. 7.8).

Naturally, the time measurement cannot discriminate between particles
having passed the anode wire on the right- or on the left-hand side. A
double layer of drift cells where the layers are staggered by half a cell
width can resolve this left–right ambiguity (Fig. 7.9).

Drift chambers can be made very large [17–19]. For larger drift volumes
the potential between the anode-wire position and the negative potential
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are used. Naturally, this results also in an increased number of electronic
channels.

Further progress in the position resolution of MWPCs as well as in
the rate capability has been achieved with the development of gaseous
micropattern chambers. These detectors are discussed in Sect. 7.4 .

7.2 Planar drift chambers

The principle of a drift chamber is illustrated by Fig. 7.6 . The time ∆t
between the moment of the particle passage through the chamber and the
arrival time of the charge cloud at the anode wire depends on the point
of passage of the particle through the chamber. If v− is the constant drift
velocity of the electrons, the following linear relation holds:

x = v− · ∆t (7.9)
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p of charged particles is calculated from the axial magnetic field and the
bending radius of the track, ρ, to be (see Chap. 11)

p [GeV/c] = 0.3 B [T] · ρ [m] . (7.11)

7.3.1 Cylindrical proportional and drift chambers

Figure 7.15 shows the principle of construction of a cylindrical drift cham-
ber . All wires are stretched in an axial direction (in the z direction, the
direction of the magnetic field). For cylindrical drift chambers a poten-
tial wire is stretched between two anode wires. Two neighbouring readout
layers are separated by a cylindrical layer of potential wires. In the most
simple configuration the individual drift cells are trapezoidal where the
boundaries are formed by eight potential wires. Figure 7.15 shows a pro-
jection in the rϕ plane, where r is the distance from the centre of the
chamber and ϕ is the azimuthal angle. Apart from this trapezoidal drift
cell other drift-cell geometries are also in use [35].

In the so-called open trapezoidal cells every second potential wire on
the potential-wire planes is left out (Fig. 7.16).

The field quality can be improved by using closed cells (Fig. 7.17) at
the expense of a larger number of wires. The compromise between the
aforementioned drift-cell configurations is a hexagonal structure of the
cells (Fig. 7.18). In all these configurations the potential wires are of
larger diameter (∅ ≈ 100 µm) compared to the anode wires (∅ ≈ 30 µm).

potential wire
anode wire

Fig. 7.15. Schematic layout of a cylindrical drift chamber. The figure shows a
view of the chamber along the wires.
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Fig. 7.21. Multitrack events of electron–positron interactions measured in the
PLUTO central detector [44].
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Fig. 7.22. Cylindrical configuration of thin-wall straw-tube chambers [45, 47].

Fig. 7.23. Schematic representation of a multiwire drift module. In this hexag-
onal structure each anode wire is surrounded by six potential wires. Seventy drift
cells are incorporated in one container of 30 mm diameter only, which is made
from carbon-fibre material [55].

Fig. 7.24. Calculated electric field and equipotential lines in one individual
hexagonal drift cell of the multiwire drift module [55].
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drift cathode

backing electrode

anode (~5 µm)
cathode (~60 µm)

approx. 3 mm gas
(Ar + vapour)200 µm

Fig. 7.35. Schematic arrangement of a microstrip gas detector.

[78, 79]. At present the class of micropattern gaseous detectors is already
rather wide and many new promising devices are under study [80–82].

These microstrip gaseous chambers (MSGCs) are miniaturised multi-
wire proportional chambers, in which the dimensions are reduced by about
a factor of 10 in comparison to conventional chambers (Fig. 7.35). The typ-
ical pitch is 100–200 µm and the gas gap varies between 2–10 mm. This has
been made possible because the electrode structures can be reduced with
the help of electron lithography. The wires are replaced by strips which are
evaporated onto a thin substrate. Cathode strips arranged between the
anode strips allow for an improved field quality and a fast removal of pos-
itive ions. The segmentation of the otherwise planar cathodes in the form
of strips or pixels [83, 84] also permits two-dimensional readout. Instead
of mounting the electrode structures on ceramic substrates, they can also
be arranged on thin plastic foils. In this way, even light, flexible detec-
tors can be constructed which exhibit a high spatial resolution. Possible
disadvantages lie in the electrostatic charging-up of the insulating plas-
tic structures which can lead to time-dependent amplification properties
because of the modified electric fields [85–90].

The gain of an MSGC can be up to 104. The spatial resolution of
this device for point-like ionisation, measured with soft X rays, reaches
20–30 µm rms. For minimum-ionising charged particles crossing the gap,
the resolution depends on the angle of incidence. It is dominated by
primary ionisation statistics [91].

The obvious advantages of these microstrip detectors – apart from their
excellent spatial resolution – are the low dead time (the positive ions
being produced in the avalanche will drift a very short distance to the
cathode strips in the vicinity of the anodes), the reduced radiation damage
(because of the smaller sensitive area per readout element) and the high-
rate capability.

Microstrip proportional chambers can also be operated in the drift mode
(see Sect. 7.2).

However, the MSGC appeared to be prone to ageing and discharge dam-
ages [92]. To avoid these problems many different designs of micropattern
detectors were suggested. Here we consider two of them, Micromegas [93]

214 7 Track detectors
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particle
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~1 kV/cm

Fig. 7.36. The layout of the Micromegas detector [11, 95].

and GEM [94] detectors, widely used now by many groups. Both of them
demonstrate good performance.

The Micromegas design is shown in Fig. 7.36. Electrons released by
charged particles in the conversion gap of 2–5 mm width drift to the mul-
tiplication gap. This gap of 50–100 µm width is bordered by a fine cathode
mesh and an anode readout strip or pad structure. A constant distance
between cathode and anode is kept with dielectric pillars with a pitch of
≈ 1 mm.

A high electric field in the multiplication gap (30–80 kV/cm) provides
a gain up to 105. Since most of the ions produced in the avalanche
are collected by the nearby cathode, this device has excellent timing
properties [96] and a high-rate capability [97].

Another structure providing charge multiplication is the Gas Electron
Multiplier (GEM). This is a thin (≈ 50 µm) insulating kapton foil coated
with a metal film on both sides. It contains chemically produced holes of
50–100 µm in diameter with 100–200 µm pitch. The metal films have dif-
ferent potential to allow gas multiplication in the holes. A GEM schematic
view and the electric field distribution is presented in Figs. 7.37 and 7.38.
A GEM-based detector contains a drift cathode separated from one or sev-
eral GEM layers and an anode readout structure as shown in Fig. 7.37.
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drift space

particle

readout board

∆VGEM

Fig. 7.37. Detailed layout of a GEM detector.

214 7 Track detectors

eÐ

particle

HV
micromesh

readout strips~100 µm

~3 mm

~40 kV/cm

~1 kV/cm

Fig. 7.36. The layout of the Micromegas detector [11, 95].

and GEM [94] detectors, widely used now by many groups. Both of them
demonstrate good performance.

The Micromegas design is shown in Fig. 7.36. Electrons released by
charged particles in the conversion gap of 2–5 mm width drift to the mul-
tiplication gap. This gap of 50–100 µm width is bordered by a fine cathode
mesh and an anode readout strip or pad structure. A constant distance
between cathode and anode is kept with dielectric pillars with a pitch of
≈ 1 mm.

A high electric field in the multiplication gap (30–80 kV/cm) provides
a gain up to 105. Since most of the ions produced in the avalanche
are collected by the nearby cathode, this device has excellent timing
properties [96] and a high-rate capability [97].

Another structure providing charge multiplication is the Gas Electron
Multiplier (GEM). This is a thin (≈ 50 µm) insulating kapton foil coated
with a metal film on both sides. It contains chemically produced holes of
50–100 µm in diameter with 100–200 µm pitch. The metal films have dif-
ferent potential to allow gas multiplication in the holes. A GEM schematic
view and the electric field distribution is presented in Figs. 7.37 and 7.38.
A GEM-based detector contains a drift cathode separated from one or sev-
eral GEM layers and an anode readout structure as shown in Fig. 7.37.

eÐ

• Vdrift

drift space

particle

readout board

∆VGEM

Fig. 7.37. Detailed layout of a GEM detector.

7.5 Semiconductor track detectors 215

Fig. 7.38. Electric field distribution in a GEM detector [11, 94].

The electrons are guided by the electric drift field to the GEM where they
experience a high electric field in the GEM channels thereby starting ava-
lanche formation in them. Most of these secondary electrons will drift to
the anode while the majority of ions is collected by the GEM electrodes.
One GEM only can provide a gain of up to several thousand which is suf-
ficient to detect minimum-ionising particles in the thin gaseous layer. By
using two or three GEM detectors on top of each other, one can obtain a
substantial total gain while a moderately low gain at each stage provides
better stability and a higher discharge threshold [95, 98, 99].

7.5 Semiconductor track detectors

Basically, the semiconductor track detector is a set of semiconductor
diodes described in Sect. 5.3. The main features of detectors of this family
are discussed in various reviews [100–102].

The electrodes of the solid-state track detectors are segmented in the
form of strips or pads. Figure 7.39 shows the operation principle of a
silicon microstrip detector with sequential cathode readout [103].

A minimum-ionising particle crossing the depletion gap produces on
average 90 electron–hole pairs per 1 µm of its path. For a typical detector
of 300 µm thickness this resulted in a total collected charge well above the
noise level of available electronics. The optimal pitch is determined by the
carrier diffusion and by the spread of δ electrons which is typically 25 µm.

GEM and THGEM. A rich field of 
detector development and 
complementary to silicon pixel 
detector, especially when large area is 
needed. 
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8.1 Electromagnetic calorimeters

8.1.1 Electron–photon cascades

The dominating interaction processes for spectroscopy in the MeV energy
range are the photoelectric and Compton effect for photons and ionisa-
tion and excitation for charged particles. At high energies (higher than
100 MeV) electrons lose their energy almost exclusively by bremsstrahlung
while photons lose their energy by electron–positron pair production [1]
(see Sect. 1.2).

The radiation losses of electrons with energy E can be described by the
simplified formula:

−
(

dE

dx

)

rad
=

E

X0
, (8.1)

where X0 is the radiation length. The probability of electron–positron
pair production by photons can be expressed as

dw

dx
=

1
λprod

e−x/λprod , λprod =
9
7
X0 . (8.2)

A convenient measure to consider shower development is the distance
normalised in radiation lengths, t = x/X0.

The most important properties of electron cascades can be understood
in a very simplified model [2, 3]. Let E0be the energy of a photon incident
on a bulk of material (Fig. 8.1).

After one radiation length the photon produces an e+e− pair; electrons
and positrons emit after another radiation length one bremsstrahlung
photon each, which again are transformed into electron–positron pairs. Let
us assume that the energy is symmetrically shared between the particles at

0

E 0 /2

E0

E 0/4 E 0/8 E 0/16

1 2 3 4 5 6 7 8 t [X0]

Fig. 8.1. Sketch of a simple model for shower parametrisation.

X0 is the radiation length
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Fig. 8.4. Longitudinal shower development of electromagnetic cascades. Top:
approximation by Formula (8.7 ). Bottom: Monte Carlo simulation with EGS4 for
10 GeV electron showers in aluminium, iron and lead [11].

Figure 8.6 shows the longitudinal and lateral development of a 6 GeV
electron cascade in a lead calorimeter (based on [12, 13]). The lateral width
of an electromagnetic shower increases with increasing longitudinal shower
depth. The largest part of the energy is deposited in a relatively narrow
shower core. Generally speaking, about 95% of the shower energy is con-
tained in a cylinder around the shower axis whose radius is R(95%) = 2RM
almost independently of the energy of the incident particle. The depen-
dence of the containment radius on the material is taken into account by
the critical energy and radiation length appearing in Eq. (8.11).

A simplified view 
of an EM shower
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each step of the multiplication. The number of shower particles (electrons,
positrons and photons together) at depth t is

N(t) = 2t , (8.3)

where the energy of the individual particles in generation t is given by

E(t) = E0 · 2−t . (8.4)

The multiplication of the shower particles continues as long as E0/N >
Ec. When the particle energy falls below the critical value Ec, absorp-
tion processes like ionisation for electrons and Compton and photoelectric
effects for photons start to dominate. The position of the shower maximum
is reached at this step of multiplication, i.e. when

Ec = E0 · 2−tmax . (8.5)

This leads to

tmax =
ln(E0/Ec)

ln 2
∝ ln(E0/Ec) . (8.6)

Let us take as an example the shower in a CsI crystal detector initiated by
a 1 GeV photon. Using the value Ec ≈ 10 MeV we obtain for the number
of particles in the shower maximum Nmax = E0/Ec = 100 and for the
depth of the shower maximum to be ≈ 6.6X0.

After the shower maximum electrons and positrons∗ having an energy
below the critical value Ec will stop in a layer of 1 X0. Photons of the
same energy can penetrate a much longer distance. Figure 8.2 presents
the energy dependence of the photon interaction length in CsI and lead.
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Fig. 8.2. Photon interaction length in lead and CsI [4].

∗ Throughout this chapter both electrons and positrons are referred to as electrons.
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Fig. 8.6. Longitudinal and lateral development of an electron shower (6 GeV)
in lead shown in linear and logarithmic scales (based on [12, 13]).

small. Heisenberg’s uncertainty principle therefore requires that the inter-
action must take place over a long distance, which is called the formation
zone. If the electron is disturbed while travelling this distance, the photon
emission can be disrupted. This can occur for very dense media, where
the distance between scattering centres is small compared to the spatial
extent of the wave function. The Landau–Pomeranchuk–Migdal effect pre-
dicts that in dense media multiple scattering of electrons is sufficient to
suppress photon production at the low-energy end of the bremsstrahlung
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zone. If the electron is disturbed while travelling this distance, the photon
emission can be disrupted. This can occur for very dense media, where
the distance between scattering centres is small compared to the spatial
extent of the wave function. The Landau–Pomeranchuk–Migdal effect pre-
dicts that in dense media multiple scattering of electrons is sufficient to
suppress photon production at the low-energy end of the bremsstrahlung

The actual shower development is usually simulated by GEANT4, 
and can be parameterized as 
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a difficult task. Earlier, large efforts were undertaken to develop an analyt-
ical approach [5]. At present, due to the increase of the computer capacity,
an accurate description is obtained from Monte Carlo simulations.

The longitudinal distribution of the energy deposition in electromag-
netic cascades is reasonably described by an approximation based on the
Monte Carlo programme EGS [6, 7],

dE

dt
= E0b

(bt)a−1 e−bt

Γ(a)
, (8.7)

where Γ(a) is Euler’s Γ function, defined by

Γ(g) =
∫ ∞

0
e−xxg−1 dx . (8.8)

The gamma function has the property

Γ(g + 1) = g Γ(g) . (8.9)

Here a and b are model parameters and E0 is the energy of the incident
particle. In this approximation the maximum of the shower development
is reached at

tmax =
a − 1

b
= ln

(
E0

Ec

)
+ Cγe , (8.10)

where Cγe = 0.5 for a gamma-induced shower and Cγe = −0.5 for an
incident electron. The parameter b as obtained from simulation results is
b ≈ 0.5 for heavy absorbers from iron to lead. Then the energy-dependent
parameter a can be derived from Eq. (8.10).

The experimentally measured distributions [8– 10] are well described by
a Monte Carlo simulation with the code EGS4 [1, 6]. Formula (8.7) pro-
vides a reasonable approximation for electrons and photons with energies
larger than 1 GeV and a shower depth of more than 2 X0, while for other
conditions it gives a rough estimate only. The longitudinal development
of electron cascades in matter is shown in Figs. 8.4 and 8.5 for various
incident energies. The distributions are slightly dependent on the mate-
rial (even if the depth is measured in units of X0) due to different Ec, as
shown in Fig. 8.4, bottom.

The angular distribution of the produced particles by bremsstrahlung
and pair production is very narrow (see Chap. 1). The characteristic angles
are on the order of mec2/Eγ. That is why the lateral width of an electro-
magnetic cascade is mainly determined by multiple scattering and can be
best characterised by the Molière radius

RM =
21 MeV

Ec
X0 {g/cm2} . (8.11)
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- Homogeneous calorimeter: absorber = detector (the whole volume is sensitive to energy deposition)
- Detectors: scintillators, ionization detectors (example: liquid noble elements, diamond, Ge, Si/PN), 

Cherenkov light detector (lead glass).
- Energy resolution
!"#$%&' = !)*$+,-$' + !./%.+&/%0' + !&%$/.%&+&/%0' + !12#$#-+&/%0'

a: photoelectron statistics (the stochastic term)
b: electronics noise
c: calibration, crystal non-uniformity, etc, (the constant term)

- Position resolution: usually no longitudinal segmentation
(information). Photon angles measured by center of gravity of energy.
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where Ep is the energy corresponding to the peak, σ = FWHM/2.35, η
the asymmetry parameter and s0 can be written as

s0 =
2
ξ

arsinh
(

ηξ

2

)
, ξ = 2.35 . (8.18)

When η → 0, the distribution becomes Gaussian.
Various approximations were used to describe the energy dependence

of the resolution of calorimeters. Figure 8.8 shows the energy resolution
of a calorimeter made of 16 X0 CsI crystals for photons in the range
from 20 MeV to 5.4 GeV [24]. The light readout was done with two 2 cm2

photodiodes per crystal. The energy resolution was approximated as

σE

E
=

√(
0.066%

En

)2

+
(

0.81%
4
√

En

)2

+ (1.34%)2 , En = E/GeV ,

(8.19)
where the term proportional to 1/E stands for the electronics-noise
contribution.
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Fig. 8.8. The energy resolution as a function of the incident-photon energy [24].
The solid line is the result of an MC simulation. For the Belle data a cluster of
5 × 5 crystals at a threshold of 0.5 MeV was used.
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radius (2.19 cm), fast scintillation emission and high radiation hardness.
However, the relatively low light output, ≈ 50 photons/MeV for full-size
crystals, imposes hard constraints on the readout scheme. The crystal
size is 22 × 22 × 230 mm3 (1 RM × 1 RM × 26 X0) for the barrel and
30×30×220 mm3 for the endcaps. The light readout in the barrel part is
performed by two 5 × 5 mm2 avalanche photodiodes (APDs). The APDs
were chosen for readout because in addition to their intrinsic gain (in CMS
a gain of 50 is used) APDs are compact and insensitive to magnetic fields;
they also show a low nuclear counter effect and exhibit a high radiation
resistance. For CMS a special optimised device has been developed [27].
Since the radiation background in the endcaps is much higher than that
in the barrel, a vacuum phototriode (VPT) was chosen as photodetector
for the endcap modules.

The energy resolution of the CMS electromagnetic calorimeter can be
approximated as

σE

E
=

a√
E

⊕ b

E
⊕ c , (8.20)

where a stands for photoelectron statistics (sometimes called stochastic
term), b for the electronics noise, and c appears due to the calibration
uncertainty and crystal non-uniformity (the symbol ⊕ means summa-
tion in quadrature). The design goals for the barrel (endcap) are a =
2.7% (5.7%), b = 155 MeV (205 MeV), c = 0.55% (0.55%). This was
confirmed by tests with a prototype [28].

A disadvantage of crystal calorimeters is the high cost of the scintil-
lation crystals and limitations in the production of large volumes of this
material. To circumvent these constraints, lead-glass blocks can be used
in homogeneous calorimeters instead of crystals. The properties of typi-
cal lead glass (Schott SF-5 or Corning CEREN 25) are: density of about
4 g/cm3, radiation length of X0 ≈ 2.5 cm and refractive index of n ≈ 1.7.
The Cherenkov-radiation threshold energy for electrons in this glass is
quite low, T e

ct ≈ 120 keV implying that the total number of Cherenkov
photons is proportional to the total track length of all charged particles
in a shower developing in the lead-glass absorber. Since the energy depo-
sition in the electron–photon shower is provided by the ionisation losses
of electrons, which is also proportional to the total track length, one can
assume that the total number of Cherenkov photons is proportional to
the deposited energy.

However, the amount of Cherenkov light is much less (by, roughly, a fac-
tor of 1000) compared to that of conventional scintillators. This results in
a large contribution of photoelectron statistics to the energy resolution of
lead-glass calorimeters. The OPAL experiment at CERN [29], which used
lead glass for the endcap calorimeter, reported an energy resolution of

240 8 Calorimetry

where Ep is the energy corresponding to the peak, σ = FWHM/2.35, η
the asymmetry parameter and s0 can be written as

s0 =
2
ξ

arsinh
(

ηξ

2

)
, ξ = 2.35 . (8.18)

When η → 0, the distribution becomes Gaussian.
Various approximations were used to describe the energy dependence

of the resolution of calorimeters. Figure 8.8 shows the energy resolution
of a calorimeter made of 16 X0 CsI crystals for photons in the range
from 20 MeV to 5.4 GeV [24]. The light readout was done with two 2 cm2

photodiodes per crystal. The energy resolution was approximated as

σE

E
=

√(
0.066%

En

)2

+
(

0.81%
4
√

En

)2

+ (1.34%)2 , En = E/GeV ,

(8.19)
where the term proportional to 1/E stands for the electronics-noise
contribution.

CLEO II (beam test)
CLEO II (real experiment)
Crystal Barrel

0

1

2

3

4

5

6

7

102 103

E γ (MeV)

σ E
 /E

 (%
)

BELLE (beam test)

Fig. 8.8. The energy resolution as a function of the incident-photon energy [24].
The solid line is the result of an MC simulation. For the Belle data a cluster of
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Chapters to study:
Ch.8, Calorimetry
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- Sampling calorimeter: absorber + detector. For practical reasons (example: need a large inner tracker, the 
energy of the particle to be stopped is high) when a homogenous calorimeter is not economically 
feasible. 

- Price on the resolution: additional term from sampling fluctuation.
- An empirical expression: 

18
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Here we neglected the fact that, because of multiple scattering, the shower
particles have a certain angle θ with respect to the shower axis. The effec-
tive sampling thickness is therefore not d, but rather d/cos θ. However,
the average value ⟨1/cos θ⟩ is not large; it is in the range between 1 and
1.3 depending on the energy Eγ.

Using Poisson statistics the sampling fluctuations limit the energy
resolution to

[
σ(Eγ)

Eγ

]

samp
=

√
Ec · d

F (ξ) · Eγ · X0 · cos θ
. (8.32)

As can be seen from Eq. (8.32), the energy resolution of a sampling
calorimeter for a fixed given material improves with

√
d/Eγ. However,

Formula (8.32) does not take into account the correlations which are
induced by electrons penetrating through two or several counter planes.
These correlations become quite important when d ≪ 1 X0 and limit the
improvement of the resolution at small d.

A more accurate and simpler expression is suggested in [11] for the
sampling fluctuations of calorimeters with counters based on condensed
material:

σsamp

E
=

2.7%√
E [GeV]

√
s [mm]
fsamp

. (8.33)

Here s is the thickness of the sensitive layer and fsamp is the so-called sam-
pling fraction, which is the ratio of ionisation losses of minimum-ionising
particles in the sensitive layer to the sum of the losses in the sensitive
layer and absorber. Figure 8.11 presents the energy resolution of some
calorimeters versus the value

√
s/fsamp [11]. Anyway, these empirical for-

mulae are only used for a preliminary estimate and general understanding
of the sampling-calorimeter characteristics, while the final parameters are
evaluated by a Monte Carlo simulation.

As sensitive elements of sampling calorimeters, gas-filled chambers,
liquid-argon ionisation detectors, ‘warm’ liquids (e.g. TMS) and scintilla-
tors are used. Energy depositions from large energy transfers in ionisation
processes can further deteriorate the energy resolution. These Landau
fluctuations are of particular importance for thin detector layers. If δ is
the average energy loss per detector layer, the Landau fluctuations of the
ionisation loss yield a contribution to the energy resolution of [36, 37]

[
σ(E)

E

]

Landau fluctuations
∝ 1√

N ln(k · δ)
, (8.34)

where k is a constant and δ is proportional to the matter density per
detector layer.

s is the thickness of the detector
fsamp is the sampling ratio
This ratio benefits from the density
of the detector medium, a reason 
we usually see liquids and solids, 
but not gases to be used as the 
samplers. 
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Fig. 8.11. The energy resolution of some sampling calorimeters. The solid line
is approximation (8.33) [11]. (The energy is measured in GeV and the ordinate
values are given in per cent.)

Since fluctuations of the ionisation losses are much higher in gases than
in dense materials, the energy resolution for calorimeters with gaseous
counters (σE/E ≈ 5%–20% at 1 GeV) is worse compared to that for liquid
argon or scintillator sampling.

In streamer-tube calorimeters tracks are essentially counted, at least
as long as the particles are not incident under too large an angle with
respect to the shower axis, which is assumed to be perpendicular to the
detector planes. For each ionisation track exactly one streamer is formed –
independent of the ionisation produced along the track. For this reason
Landau fluctuations have practically no effect on the energy resolution for
this type of detector [9].

In general, the energy resolution of scintillator or liquid-argon sampling
calorimeters is superior to that achievable with gaseous detectors. The
layers in the liquid-argon sampling calorimeters can be arranged as planar
chambers or they can have a more complex shape (accordion type). The
achieved energy resolution with LAr calorimeters is 8%–10% at 1 GeV
[38, 39].

If, as is the case in calorimeters, a sufficient amount of light is available,
the light emerging from the end face of a scintillator plate can be absorbed
in an external wavelength-shifter rod. This wavelength shifter re-emits
the absorbed light isotropically at a larger wavelength and guides it to a
photosensitive device (Fig. 8.12).

It is very important that a small air gap remains between the scintilla-
tor face and the wavelength-shifter rod. Otherwise, the frequency-shifted,
isotropically re-emitted light would not be contained in the wavelength-
shifter rod by internal reflection. This method of light transfer normally
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19ATLAS Liquid Argon Calorimeters (LAr)
One module, accordion type
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serial link to the data acquisition system.
The constant term of PAMELA’s energy resolution has been measured to be ⇡ 5.5% for

electromagnetic showers.

2.3.6 Comparison of Calorimeter Performance

The high pseudorapidity region where FoCal is expected to work, will require an ability to
separate electromagnetic showers which are located no more than 1 cm apart to identify high
energy neutral pions. ATLAS’s FCal, CMS’s endcaps or LHCb’s ECAL cannot separate close-
by showers well enough to allow a satisfactory discrimination of ⇡0 from direct photons at
high energy due to their insu�cient granularity. While the very high positional and angular
resolution can be achieved through the use of high granularity silicon strip layers such those
used in PAMELA’s calorimeter, another option is to evolve PAMELA’s design and use very
high granularity silicon pixel sensors.

Table 2.2: A comparison of the material composition, depth, Moliere radius, granularity and resolu-
tion of the electromagnetic calorimeters at ATLAS, CMS, ALICE, LHCb and PAMELA.

ATLAS CMS ALICE LHCb PAMELA

Materials
Cu-LAr PbWO4 Pb-PS Pb-PS W-Si

used

Detector Depth
27.6 25.8 20.1 25 16.3

(X0)

RM 1.9 2.2 3.2 3.5 2.02
(cm)

Granularity
3.0 2.2 6.0 2.02 0.24

(cm)

Designed Resolution
28.5 2.8 10 10 5.5

(%/
p
E)

While the energy resolution is an important requirement in the design of FoCal, it is of
secondary importance compared to the positional resolution. This is caused by the di↵erences
in the contribution to the total error of from the accuracies in measurement of the energy
and angle. Because the pT of a particle can be expressed as a function of its momentum p
and angle ✓ in the following way:

pT = p · sin ✓ , (2.38)

the error in pT of the particle depends in the following way on the experimental observables:

✓
�pT

pT

◆2

=

✓
�p

p

◆2

+
⇣ �✓

tan ✓

⌘2
. (2.39)

Due to the very strong dependence on the angle of the 1/ tan ✓ term in the region ✓ ⇡ 0,
the contribution of the error in the measurement of the angle is greatly enhanced. For
example, take a particle with pT = 5GeV at ⌘ = 4, which correspond to p = 135GeV/c and
✓ = 0.037. In determining the error on the measurement on pT , a resolution on the energy
measurement of 20%/

p
E will give a contribution of 1.7%. To achieve the same contribution
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ATLAS Tile Calorimeters 
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- Beam tests on one module, with particles (!, #, $, %±, etc) and known energy (momentum)

- With known physics processes
pion or keon decays
'( ) decays

Z decays

24
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The absorption (average nuclear interaction length)
The shows from a hadron contains particles interact electromagnetically or hadronically

25

8.2 Hadron calorimeters 249

multicladding ones. The cladding-fibre light guides can be glued to the
scintillator without any air gap.

A normal sampling calorimeter of absorber plates and scintillator
sheets can also be read out by wavelength-shifter rods or fibres running
through the scintillator plates perpendicularly [42–44]. The technique of
wavelength-shifter readout allows to build rather compact calorimeters.

The scintillation counters used in calorimeters must not necessar-
ily have the form of plates alternating with absorber layers. They can
also be embedded as scintillating fibres, for example, in a lead matrix
[45, 46]. In this case the readout is greatly simplified because the
scintillating fibres can be bent rather strongly without loss of inter-
nal reflection. Scintillating fibres can either be read out directly or via
light-guide fibres by photomultipliers (spaghetti calorimeter). The energy
resolution of the scintillation-fibre-based calorimeter of the KLOE detec-
tor achieved a value of σE/E = 5.7%/

√
E [GeV]. In addition to high

energy resolution, this calorimeter provides precise timing for photons
(σt ≈ 50 ps/

√
E [GeV]) due to the short decay time of the light flash

of the plastic scintillator [46]. Recently, even a better energy resolution,
4%/

√
E [GeV], was reported for a ‘shashlik ’-type sampling calorimeter

developed for the KOPIO experiment [43].
The scintillator readout can also be accomplished by inserting

wavelength-shifting fibres into grooves milled into planar scintillator
sheets (tile calorimeter) [47–49].

8.2 Hadron calorimeters

In principle, hadron calorimeters work along the same lines as electron–
photon calorimeters, the main difference being that for hadron calorim-
eters the longitudinal development is determined by the average nuclear
interaction length λI, which can be roughly estimated as [1]

λI ≈ 35 g/cm2A1/3 . (8.35)

In most detector materials this is much larger than the radiation length
X0, which describes the behaviour of electron–photon cascades. This
is the reason why hadron calorimeters have to be much larger than
electromagnetic shower counters.

Frequently, electron and hadron calorimeters are integrated in a single
detector. For example, Fig. 8.14 [50] shows an iron–scintillator calorimeter
with separate wavelength-shifter readout for electrons and hadrons. The
electron part has a depth of 14 radiation lengths, and the hadron section
corresponds to 3.2 interaction lengths.

250 8 Calorimetry

wavelength
shifter

14 X0 electron shower readout

3.2 λ a hadron shower readout

photomultiplier

40
 c

m

40.5
cm

Fig. 8.14. Typical set-up of an iron–scintillator calorimeter with wavelength-
shifter readout [50].
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Fig. 8.15. Sketch of a hadron cascade in an absorber.

Apart from the larger longitudinal development of hadron cascades,
their lateral width is also sizably increased compared to electron cascades.
While the lateral structure of electron showers is mainly determined by
multiple scattering, in hadron cascades it is caused by large transverse
momentum transfers in nuclear interactions. Typical processes in a hadron
cascade are shown in Fig. 8.15.

Different structures of 250 GeV photon- and proton-induced cascades in
the Earth’s atmosphere are clearly visible from Fig. 8.16 [51]. The results
shown in this case were obtained from a Monte Carlo simulation.

HCAL is usually behind the smaller ECAL. While 
electrons and photons are fully contained in the 
ECAL which is calibrated to these particles, a 
hadron show is in both ECAL and HCAL, making 
the calibration more difficult. The EM part of the 
show inside the ECAL will stay inside the ECAL. 
The fluctuation of the EM components and their 
locations inside a hadron shower contribute to 
the energy resolution of hadron show 
measurement. A typical formula

! "
" = $

" GeV
Where a is around 40-50%
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• Efforts to improve resolution: measure each secondary particle – a digital calorimeter, usually with Si pixel 

sensors. Other sensors such as RPC, for example in the Cornel DHCAL, are also under R&D. Recent trend 
also includes the HGC (CMS) and HGTD (ATLAS). Timing information from a calorimeter, or, as an added 
information to a calorimeter is the newest direction in particle detectors.
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     Table 1 shows the comparison of the parameters of shashlik EE and PbWO4 EE. The shashlik 
modules have shorter length and smaller transverse size resulting in a larger number of modules. The 
modules also have smaller Moliere radius and radiation length. There are also substantial differences 
in terms of the light yield and temperature dependence. 
 

 
Figure 5. Design of the basic shashlik module. 
 
Table 1. Parametric comparison of the shashlik EE and PbWO4 EE. 
 

 
 
  
     The major advantages of LYSO are brightness and density. Stability of the scintillation mechanism 
and material costs are the outstanding R&D issues. Other crystals, in particular CeF3, are being 
investigated.  The merits of CeF3 include its lighter components that lead to less hadronic radiation 
damage at a given dose and recovery from hadronic radiation damage (unlike LYSO in which 
hadronic radiation damage is cumulative). In addition, the scintillation time constant is shorter (below 
30 ns versus 40 ns for LYSO); the peak emission is in the ultraviolet (310-340 nm versus 430 nm for 
LYSO) and so will require a different wavelength shifter that emits in the 400 to 500 nm range. 
Finally, CeF3 is relatively more insensitive to temperature compared to LYSO. 
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