The Science and Significance of Superconductivity

Parker Hix
Superconductivity

• What is it?

• History

• Phase Transitions

• Applications
What is Superconductivity?

• Zero electrical resistance (diamagnetism) and cancelation of magnetic field
• Only certain materials can be Superconductive
• Important for many different modern uses:
 • SQUIDS
 • MagLev Train
 • Hoverboard
 • MRI’s
History of Superconductivity

• Heike Kamerlingh Onnes – April 8, 1911
• Walther Meissner and Robert Ochsenfeld – Meissner Effect
• London Theory
History of Superconductivity

• Material Discoveries

• Electromagnet Advancements

• 1972 Nobel Prize (BCS Theory-1957)
Phase Transitions

• Critical Temperature

• Resistivity
Bardeen, Cooper, Schrieffer (BCS Theory)

- Cooper Pairs
- Isotope Effect
- Mean Free Path
- Flux Quantization
Type-I vs Type-II Superconductors

Diagram showing the difference in behavior of Type-I and Type-II superconductors as a function of temperature and magnetic field.

- **Type I**
 - Region below B_c: Superconductor
 - Region above B_c: Normal

- **Type II**
 - Region below B_{c1}: Mixture of normal and superconducting
 - Region between B_{c1} and B_{c2}: Mixture of normal and superconducting
 - Region above B_{c2}: Normal
Type-I vs Type-II Superconductors

Type I

\[\chi_m = -1 \]

\[B = \mu_0 H \]

Type II

\[\chi_m = -1 \]

\[B = \mu_0 H \]

Mixed state
London Equation

\[j_s = -\frac{n_s e^2}{m} A \]

- \(j_s \) = superconducting current density
- \(n_s \) = constant
- \(e \) = elementary charge
- \(m \) = mass of electron
- \(A \) = magnetic vector potential
Applicability

• Which Materials are Superconductive?
• Why are these superconductive and not others?

• Cost Efficiency and Other Practical Properties
Niobium-titanium or niobium-tin alloy is cooled by liquid helium to 4 K to produce the magnetic field.
Future Uses and Applications

• Military Weapons
• High Temp Superconductors
• Ongoing Research
Superconductivity

• Q&A time
References

• Modern Physics Second Edition
• http://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/engineering/superconductivity/content-section-0
• http://www.archive.org/details/lesprixnobel1913nobe pic
• http://hyperphysics.phy-astr.gsu.edu/hbase/solids/meis.html pic
• http://mriquestions.com/superconductivity.html pic
• http://hyperphysics.phy-astr.gsu.edu/hbase/solids/imgsol/bcrit.gif pic
• http://elektroarsenal.net/img/720/image1667.jpg pic
• http://aamof.co/wp-content/uploads/2014/05/MQkw5g1.gif gif