3-D Infinite Potential Well

Use conservation of energy

\[E = KE + V = \frac{p^2}{2m} + V \]

+ expand \(p^2 \) given operator definition \(\hat{p}_i = -i\hbar \frac{\partial}{\partial x_i} \), we get

\[\frac{-\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V \psi = E \psi \]

- or -

\[\frac{-\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi \]

Interpretation of \(\psi \):

\[\psi^* \psi = \text{Probability density} \]

\[\text{Volume} \]

Normalization in 3-D:

\[\int \psi^* \psi \, dV = 1 \]
To arrive at a solution, take the approach of separation of variables, i.e.

$$\psi(x, y, z) = F(x)G(y)H(z)$$

We will use this technique a bit later for the hydrogen atom potential. For 3-D infinite potential well, Cartesian coordinates are sensible.

$$\psi(\mathbf{r}) = A_x \sin(k_x x) A_y \sin(k_y y) A_z \sin(k_z z)$$

General notation:

$$A \sin(k_x x) A \sin(k_y y) A \sin(k_z z)$$

for 3-D vector.

As in 1-D case, $$\psi = 0$$ at:

- $$x = 0$$ and $$x = L$$;

$$k_i L = n_i \pi$$

for $$i = 1, 2, 3 \ldots$$

and independently:

3-D means 3 quantum numbers.
3.8 Infinite Potential Well:

\[V = \begin{cases} 0 & 0 < x < L_x, \ 0 < y < L_y, \ 0 < z < L_z \\ \infty & \text{everywhere else} \end{cases} \]
Energy levels turn out to be

\[E = \frac{n_1^2 \hbar^2}{2mL^2} \left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{L_2^2} + \frac{n_3^2}{L_3^2} \right) \]

would define quantum state by \(n_i \):

<table>
<thead>
<tr>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

If \(L_1 = L_2 = L_3 \), then

\[E_n = \frac{n_1^2 \hbar^2}{2mL^2} (n_1^2 + n_2^2 + n_3^2) \]

cases B, C & D above termed 'degenerate' different quantum states give same energy
Hydrogen Atom

In 3-D, the Coulomb Potential is

\[V(r) = \frac{-e^2}{4\pi\epsilon_0 r} \]

Spherically symmetric potential

Will be very painful to solve Schröd. e.g. in Cartesian coordinates

\[\Rightarrow \text{convert to spherical coordinates} \]
Spherical Coordinates 101

We talk about 'polar' (θ) and 'azimuthal' (φ) angles around the axis.

Some useful conversions:

\[r = \sqrt{x^2 + y^2 + z^2} \]
\[\theta = \cos^{-1} \frac{2}{r} = \cos^{-1} \left(\frac{2}{\sqrt{x^2 + y^2 + z^2}} \right) \]
\[\phi = \tan^{-1} \frac{y}{x} \]
Schrödinger Eq. in polar coordinates:

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} - \frac{2m}{\hbar^2} (\varepsilon - V(r)) \psi = 0
\]

Multiplying both sides by \(r^2 \) and substituting \(\psi(r) = R(r) \Theta(\theta) \Phi(\phi) \) to perform separation of variables,

\[
\Theta \Phi \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Theta}{\partial r} \right) + R \Phi \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{R \Theta}{\sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = -\frac{2m r^2}{\hbar^2} (\varepsilon - V(r)) R \Phi \Theta
\]

Divide by \(\Theta \Phi R \) and rearrange:

\[
\frac{1}{\Omega} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Omega}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \Omega}{\partial \phi^2} = -\frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Omega}{\partial r} \right) - \frac{2m r^2}{\hbar^2} (\varepsilon - V(r))
\]

Since both sides depend on different variables, they must each equal a constant:

\[
-\frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Omega}{\partial r} \right) - \frac{2m r^2}{\hbar^2} (\varepsilon - V(r)) = C
\]

Radial Equation
Separating Angular Variables

We know
\[\frac{1}{\Theta \sin \Theta} \frac{\partial}{\partial \Theta} \left(\frac{2}{\sin \Theta} \frac{\partial \Theta}{\partial \Theta} \right) + \frac{1}{\sin^2 \Theta} \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \Phi^2} = C \]

Multiply both sides by \(\sin^2 \Theta \) and rearrange:
\[\sin \Theta \frac{\partial}{\partial \Theta} \left(\frac{2}{\sin \Theta} \frac{\partial \Theta}{\partial \Theta} \right) - C \sin^2 \Theta = - \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \Phi^2} \]

Again, both sides must equal a constant

\[\sin \Theta \frac{\partial}{\partial \Theta} \left(\frac{2}{\sin \Theta} \frac{\partial \Theta}{\partial \Theta} \right) - C \sin^2 \Theta = \lambda \]

Polar Equation

\[- \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial \Phi^2} = \lambda \]

Azimuthal Equation
Azimuthal Equation

\[\frac{d^2 \Phi}{d\phi^2} = -D \Phi(\phi) \]

If \(D < 0 \): exponential solution
- not physical since \(\phi \) is an angular variable & \(\Phi \) must come back to itself

If \(D > 0 \): sinusoidal solution
- has proper behavior for \(\Phi \) to repeat every \(2\pi \)

 when
 \[JD = m = 0, \pm 1, \pm 2, \pm 3, \ldots \]

 - and -
 \[\Phi(\phi) = e^{im\phi} \]

\(m \) is a quantum \# associated with azimuthal degree of freedom

\[\frac{d^2 \Phi(\phi)}{d\phi^2} = -m^2 \Phi(\phi) \]
What is physical property quantized?

Ψ is a standing wave

m_ℓ indicates

ℓ fits in circumference when consider real part of wave function (i.e. $2\pi r = m_\ell\ell$)

ℓ can be related to angular momentum

$$L_\ell = mL = \frac{m_\ell h}{2\pi r} r = m_\ell \frac{h}{2\pi}$$

So m_ℓ is associated with the angular momentum in z-direction.

m_ℓ termed "magnetic quantum number."
Polar Equation

\[
\frac{\sin \theta}{\theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\theta}{d\theta} \right) - c \sin^2 \theta = 0
\]

\[
\lambda \sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\theta}{d\theta} \right) - c \sin^2 \theta = \lambda \theta^2
\]

Solution is complicated but again considering boundary conditions

\[c = \text{negative integer} = 0, -2, -6, -12, \ldots \]

Express this as

\[c = -\lambda (l+1) \] where \(l = 0, 1, 2, \ldots \)

Quantum number \(l \) associated with polar angle \(\theta \) dimension. It's quantization corresponds to standing wave conditions in \(\theta \).

It turns out \(m \) and \(l \) are connected

\[m = 0, \pm 1, \pm 2, \ldots \pm l \]
What does it quantize?

Go back to the Angular Eq.

\[\frac{1}{\Theta \sin \Theta} \frac{d}{d\Theta} \left(\Theta \sin \Theta \frac{d \Phi}{d\Theta} \right) + \frac{1}{\sin^2 \Theta} \frac{d^2 \Phi}{d\theta^2} = \xi \]

Substituting for \(\xi \) and multiplying by \(\Theta \Phi \),

\[\frac{1}{\sin \Theta} \frac{d}{d\Theta} \left(\sin \Theta \frac{d \Phi}{d\Theta} \right) \Theta \Phi + \frac{1}{\sin^2 \Theta} \frac{d^2 \Phi}{d\theta^2} = -\xi (l+1) \]

we can think of an angular momentum operator \(\hat{L} \) such that

\[\hat{L}^2 = -\frac{\hbar^2}{\sin \Theta} \frac{d}{d\Theta} \left(\sin \Theta \frac{d}{d\Theta} \right) - \frac{\hbar^2}{\sin^2 \Theta} \frac{d^2}{d\theta^2} \]

The angular differential Eq. would then be

\[\hat{L}^2 \ Y_{l,m}(\theta, \phi) = \xi (l+1) \hbar^2 \ Y_{l,m}(\theta, \phi) \]

where \(Y_{l,m}(\theta, \phi) = \Theta \Phi \) and are called "spherical harmonics". We get

\[|\xi| = \sqrt{l(l+1) \hbar^2} \]

\(l = 0, 1, 2, \ldots \)

So \(l \) quantizes the total angular momentum, \(\hat{L} \).
Space Quantization

Since \(|m_\ell| = \ell \) and

\[
L_2 = m_\ell \hbar \quad \text{and} \quad |L| = \ell (\ell + 1) \hbar
\]

\(L_2 \) is always less than \(|L| \).

Also, \(L_2 / |L| \) takes on discrete ratios for a given \(\ell \).

Example

If \(\ell = 3 \), what is the smallest polar angle?

\(\theta \) minimized by maximizing \(L_2 \).

\[
\therefore m_\ell = +3
\]

\[
\cos \theta = \frac{L_2}{|L|} = \frac{3\hbar}{\sqrt{3(3+1) \hbar}} = \frac{3}{\sqrt{12}}
\]

\[
\theta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = 30^\circ
\]
The Radial Equation

Substituting for L and rearranging,

$$-\frac{\hbar^2}{2m} \frac{d}{dr} \left(r^2 \frac{d\psi}{dr} \right) + \frac{\hbar^2}{2m r^2} (\ell+1) \psi - \frac{\hbar^2}{2mr^2} + U(r) \psi = \epsilon \psi$$

KE

rad

KE

By supposition, considering other terms:

- KE corresponding to motion toward or away from nucleus.

If use Coulomb potential:

$$U(r) = \frac{-e^2}{4\pi\epsilon_0 r}$$

only see physical results when

$$\epsilon = \frac{-m \epsilon_0^4}{2(4\pi\epsilon_0 \hbar^2)} \frac{1}{n^2}$$

$n = 1, 2, 3, \ldots$

and l is constrained as

$l = 0, 1, 2, \ldots, n-1$
Solutions to Radial Eq.

When \(l = 0 \), no angular momentum
- 2nd term \((K\Sigma_{l=0}) \rightarrow 0 \)

Wave function

Spherically symmetric wave function

\[R(r) = A e^{-r/a_0} \rightarrow a_0 = \frac{\sqrt{\hbar^2}}{m e^2} \]

Bohr radius!

Ground state energy

\[E = -\frac{\hbar^2}{2m a_0^2} = -E_0 = -13.6 \, eV \]

Ground state energy of Bohr atom!

Fact that \(n \) comes from radial Eq. indicating some relation between "size of shell" \(e^- \) harbors +\(\Sigma n \)
- lower \(n \), smaller orbits, more tightly bound \(e^- \)
Quantum #5

\[n > 0 \quad \rightarrow \quad E_n \]
\[l < n \quad \rightarrow \quad l \pm 1 \]
\[|m| \leq l \quad \rightarrow \quad l_s \]

Example: what are quantum #s for \(n = 4 \) state?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(l)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>-1, 0, +1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-2, -1, 0, +1, +2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-3, -2, -1, 0, +1, +2, +3</td>
</tr>
</tbody>
</table>

Terminology

\(l = 0, 1, 2, 3, 4, 5 \)

Spectroscopic notation:

- \(n = 2, l = 1 \): "2p state"
- \(n = 4, l = 2 \): "4d state"