Lecture #1
Read Mauer Ch. 1

def scalar - a quantity that does not change when the coordinate system is rotated (reflections later), e.g. \(T, P, m, \# \text{ oranges, ..., t, } 1/t, \alpha, \beta \)

\(x \) to my right, \(y \) in front of me, standing at origin \(T \) at student position, now turn, new \(T' \) is the same.

def vector - a quantity that changes like displacement \(\overrightarrow{F} \) under a rotation of coordinates.

\(\text{student is at } \overrightarrow{r} = (x, y) = (0, 3) \text{ meters, now turn, } \overrightarrow{r}' = \overrightarrow{r} \)

e.g. other vectors: \(\overrightarrow{x} = \overrightarrow{F} \) (\(\overrightarrow{x} \) is Mauer's notation)
\(\overrightarrow{v} = \frac{\partial \overrightarrow{F}}{\partial t} \), \(\overrightarrow{\rho} \), ... \n\[\text{[not } \overrightarrow{r} \text{ angular momentum, see reflections]} \]

Notation
\[\overrightarrow{F} = \begin{pmatrix} F_x \\ F_y \end{pmatrix} = \begin{pmatrix} \frac{\partial F_x}{\partial x} \\ \frac{\partial F_y}{\partial y} \end{pmatrix} \text{ Cartesian} \]
\[\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \text{ column} \]
\[\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \text{ row} \]
\[v_i \text{ one index } \]
\# indices \(\equiv \) rank

Vectors are rank 1 objects, scalars have rank 0.

\(i = 1, \ldots, d \) where \(d \) = dimension of "space" (\(i = 3 \) for now).

\[\text{Not } \overrightarrow{3 \text{ oranges}} \text{ does not change like } \overrightarrow{F} \text{ under coordinate rotations } \Rightarrow \text{ not a vector.} \]
def rank n tensor - a quantity that changes like the exterior product of n position vectors

T_{ij} changes under rotations like R_{ij} (or R_{ij})

Rank 2

T_{ij} = R_{ij}, $i, j = 1, \ldots, 3$ (in general)

T_{ij} can be represented as a matrix, but not all matrices are rank 2 tensors. In particular, the transformation matrix that relates \mathbf{r} to \mathbf{r}' is not a tensor.

E.g. (10) identity matrix is not a rank 2 tensor.

proof:

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}
\]

$r_{11} = 1$ $\Rightarrow r_{1}, \neq 0$

$r_{22} = 1$ $\Rightarrow r_{2}, \neq 0$

but $r_{12} = 0$. Impossible.

E.g. rank 2 tensors: δ_{ij} energy-momentum tensor

T_{ij} moment of inertia tensor

(by the way, I = mass, I_i = displacement vector at I_i = center of mass

ρ = mass density

ϵ_{ij} dielectric tensor

T_{ijk} changes like $\mathbf{r}_i \mathbf{r}_j \mathbf{r}_k$

Rank 3

Hold it! I thought that the moment of inertia about the center of mass for a disk (for example) was $\frac{1}{2} m R^2$. How is this a tensor?

\[
\begin{align*}
I_{xx} & = I_{yy} = \frac{1}{2} m R^2 \\
I_{xx} & = I_{yy} \neq 0 \\
I_{xy} & = 0 \\
I_{x} & = 0 \\
I_{y} & = 0 \\
I_{z} & = 0
\end{align*}
\]
Examples:

\(I = \int \rho \, dV = \text{mass} = m \)

\(I_i = \int x_i \rho \, dV = m \langle x_{\text{cm}} \rangle_i \)

\(\mathbf{I} = \int \mathbf{x} \rho \, dV = \int \mathbf{r} \rho \, dV = m \langle \mathbf{x}_{\text{cm}} \rangle \)

\(I_{ij} = \int x_i x_j \rho \, dV \)

\(\mathbf{I} \) is not standard notation

\(I_i \) is not standard notation

\(\mathbf{I} \) is not standard notation

\(I_{ij} \) is standard notation for moment of inertia tensor