2) Suppose the region of interest is between two full infinite cylinders. The solution \(\Phi (s, \phi) \) must still be periodic in \(\phi \Rightarrow c_1 = 0 = c_2 = c_3 \Rightarrow \alpha = \pi \\

This time, the \(s = 0 \) axis is excluded, so the most general solution is

\[
\Phi (s, \phi) = A_0 + A'_0 \log s + \sum_{n=1}^{\infty} s^n \left[A_n \cos (n\phi) + B_n \sin (n\phi) \right] \\
+ \sum_{n=1}^{\infty} s^{-n} \left[A'_n \cos (n\phi) + B'_n \sin (n\phi) \right]
\]

The expansion coefficients \(A_0, A'_0, A_n, B_n, A'_n, B'_n \) are determined by Fourier analyzing the two bounding surfaces \(s = a, s = b \). Dirichlet boundary conditions might be:

\[
\begin{align*}
\Phi (a, \phi) &= f_1 (\phi) \\
\Phi (b, \phi) &= f_2 (\phi)
\end{align*}
\]
(2) A sector of an infinitely long circular cylinder with the following Dirichlet boundary conditions:

\[\Phi(\varphi, \beta) = \begin{cases} \text{We want a complete set of functions of } \varphi \text{ to reproduce } f(\varphi) \text{ on the boundary. } \Rightarrow \text{Type (2) solution} \\
\end{cases} \]

The boundary conditions imply: \(C_2 = 0 \) and \(\omega = \frac{\pi}{\beta} \)

\[\Phi(\varphi, \beta) = \sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi \varphi}{\beta} \right) \frac{\sin \left(\frac{n\pi \beta}{\beta} \right)}{\sin \left(\frac{n\pi}{\beta} \right)} \]

(4) A sector, but with different boundary conditions:

\[\Phi(\varphi, \beta) = g(\varphi) \]

Now we want a complete set of functions of \(\varphi \) to reproduce \(g(\varphi) \) on the boundary \(\Rightarrow \) type (3) solution

These boundary conditions imply: \(C_2 = 0 \), \(D_2 = 0 \)

\[\Phi(\varphi, \beta) = \int_0^\beta d\alpha B(\alpha) \sinh(\alpha \varphi) \sin \left(\alpha \ln \left(\frac{\beta}{a} \right) \right) \]

This is a Fourier transform rather than a Fourier series because there is no longer a restriction that \(\alpha \) must be integral. \(\alpha \) assumes all real values.
iii) Boundary conditions depend on all 3 coordinates.

Look for factorizable solutions \(F(s, q, z) = R(s) F(q) Z(z) \).

\[
\frac{\nabla^2 F}{F} = 0 = \frac{(8R')'}{8R} + \frac{1}{8^2} \frac{F''}{F} + \frac{Z''}{Z} = 0
\]

\(f(s, q) \quad g(z) \)

At first glance it does not appear that we have succeeded in separating the variables since \(s \) and \(q \) are still entangled, but notice that the first two terms together are a function of \(s \) and \(q \) alone and the last term is a function of \(z \) alone. This can only hold true if both functions are constant.

Call the first separation constant \(C \).

\[
\frac{(8R')'}{8R} + \frac{1}{8^2} \frac{F''}{F} = C \quad \frac{Z''}{Z} = -C
\]

The first equation can be rewritten as:

\[
\frac{8(8R')'}{R} - s^2 C + \frac{F''}{F} = 0
\]

\(h_1(s) \quad h_2(q) \)
The first two terms form a function of z alone and the third term is a function of ψ alone. Call the second separation constant K. The fully separated equations are:

\[Z'' + CZ = 0 \]
\[F'' + KF = 0 \]
\[\frac{s(\theta k_1)}{R} - \beta^2 C = K \]

In general, the two constants of separation are arbitrary real numbers — positive, negative, or zero. There are too many special case geometries to deal with in detail, so we will confine our discussion to one particular problem — a full circular cylinder of radius a and length L.

Since the full range of ψ is included in the problem, the solution to Laplace's equation, $\tilde{F}(\psi, \phi, z)$, must be periodic in ψ with period 2π.

For this special case $K = n^2$ where $n = 0, \pm 1, \pm 2, \ldots$

\[F'' = -n^2 F(\psi) \implies F(\psi) = a_1 \cos(n\psi) + a_2 \sin(n\psi) \]
\[a_2 = a_3 e^{i\psi} \]

\[\text{RESERVE} \]
The remaining differential equations are:

\[Z'' + C Z = 0 \quad \text{and} \quad \frac{S(R')}{}R - S^2C = n^2 \]

There are still three sub-cases to consider: the first separation constant, \(C \), can be positive, negative or zero:

1) \(C = 0 \)

\[Z'' = 0 \quad \Rightarrow \quad Z(x) = b_1x + b_2 \]

\[S(R') - n^2R = 0 \quad \Rightarrow \quad \begin{cases} n = 0, \quad R(x) = d_1x + d_2 \\ n \neq 0, \quad R(x) = c_1 \sinh(nx) + c_2 \cosh(nx) \end{cases} \]

2) \(C = -k^2 \quad \text{Kreal, positive} \)

\[Z'' - k^2Z = 0 \quad \Rightarrow \quad Z(x) = b_1e^{kt} + b_2e^{-kt} \]

\[\phi = \beta_1 \sinh(kx) + \beta_2 \cosh(kx) \]

\[\frac{1}{S} (S(R'))' + (k^2 - \frac{n^2}{S^2})R = 0 \quad \Rightarrow \quad R(x) = d_1'J_n(kx) + d_2'N_n(kx) \]

where \(J_n(u) \) is the Bessel function of integer order \(n \), and \(N_n(u) \) is the Neumann function of integer order \(n \).

\(J_n \) and \(N_n \) are complete. Any function of \(S \) can be expanded in \(J_n \) and \(N_n \).
$J_n(u)$ is also called the Bessel function of the first type. $N_n(u)$ is also called the Bessel function of the second type, or the Weber function and the symbol is sometimes written $Y_n(u)$. In Mathematica, they are denoted BesselJ and BesselY, respectively.

These functions are defined for negative integer order by:

$$J_{-n}(u) = (-1)^n J_n(u)$$

$$N_{-n}(u) = (-1)^n N_n(u)$$

$J_n(u)$ and $N_n(u)$ are oscillatory functions. Think of them as cylindrical coordinate versions of sines and cosines. They each have an infinite number of zeroes.

$$J_n(u_{ns}) = 0 \quad N_n(u_{ns}) = 0 \quad s = 1, 2, ...$$

The zeroes are labeled by s. These zeroes are tabulated or available from Mathematica.
The derivatives of these functions also oscillate and have an infinite number of zeroes,

\[J_n'(u_0) = 0 \quad N_n'(u_0) = 0 \quad n = 1, 2, \ldots \]

Asymptotically,

\[J_n(u) \xrightarrow{u \to \infty} \sqrt{\frac{2}{\pi u}} \cos \left(u - \frac{n\pi}{2} - \frac{\pi}{4} \right) \quad n \geq 0 \]

\[N_n(u) \xrightarrow{u \to \infty} -\sqrt{\frac{2}{\pi u}} \sin \left(u - \frac{n\pi}{2} - \frac{\pi}{4} \right) \quad n \geq 0 \]

The Bessel's functions of the first type are well-behaved at the origin:

\[J_n(u) \xrightarrow{u \to 0} \frac{1}{n!} \frac{u^n}{a^n} \quad n \geq 0 \]

The Neumann functions diverge at the origin:

\[N_0(u) \xrightarrow{u \to 0} -\frac{2}{\pi} \ln \left(\frac{u}{2} \right) + \frac{3}{4} y_0^2 \]

\[N_n(u) \xrightarrow{u \to 0} -\frac{1}{\pi} (n-1)! \left(\frac{3}{u} \right)^n \quad n \geq 1 \]

Hence, when the \(p=0 \) axis is included in the physical region, we must exclude the Neumann functions, \(N_n(u) \).
For \(n \neq 0 \), all the \(J_n(u) \) vanish at the origin; but the origin is not counted as one of the zeroes \(u_n \).
\(N_0(u) \) vs. \(u \)

\(N_1(u) \) vs. \(u \)
\[\text{In}[20]:= \quad \text{tmp}[u_] = (D[\text{BesselJ}[0,u], u]) \]
\[\text{Out}[20]= \quad \frac{\text{BesselJ}[-1, u] - \text{BesselJ}[1, u]}{2} \]

\[\text{In}[21]:= \quad \text{Plot}[\text{tmp}[u], \{u, 0.1, 30\}] \]

\[\frac{\text{Out}[21]}{} \quad \text{Graphics} \]

\[\text{In}[22]:= \quad \text{tmpq}[u_] = (D[\text{BesselJ}[1,u], u]) \]
\[\text{Out}[22]= \quad \frac{\text{BesselJ}[0, u] - \text{BesselJ}[2, u]}{2} \]

\[\text{In}[23]:= \quad \text{Plot}[\text{tmpq}[u], \{u, 0.1, 30\}] \]

\[\frac{\text{Out}[23]}{} \quad \text{Graphics} \]
There are enough relations among the Bessel functions to fill several texts and many courses. We will only need the following orthogonality relation:

$$ \int_0^a s \, ds \, J_n \left(U_n s \frac{\theta}{a} \right) J_n \left(U_n \frac{\theta}{a} \right) = \frac{a^2}{2} \left[J_{n+1} \left(U_n \frac{\theta}{a} \right) \right]^2 $$

Don't forget the "s" in the measure!

This is used to extract the expansion coefficients by the cylindrical analogue of Fourier's trick for sines and cosines.

--- End Lecture #12 ---