ν-Nucleon Elastic Scattering

- Sensitive to strange quarks in form factors
- \(J_\mu = <N|G_a \gamma_\mu \gamma_5 + F_1 \gamma_\mu + F_2 \sigma_{\mu\nu} q^\nu|N> \)
- EMC polarized DIS \(\rightarrow \) ”spin crises” and strange quarks may carry some of proton’s spin, \(\Delta s \)
- \(G_a(q^2) = g_a \tau_3/(1+q^2/M_a^2)^2 + G_a^s(q^2) \)
- \(G_a^s(q^2 \rightarrow 0) = \Delta s \)
- BNL 735 (1986) measured ν-p cross sec. Error in \(M_a \) hindered extraction of \(G_a^s \)
- LSND (Los Alamos) measured ν-p to ν-n ratio but had background problems.
Parity V. Electron Scattering probes vector currents

- HAPPEX (JLAB) forward angle e-p finds $F_1^s(q^2=0.5\text{GeV}^2)$ is small.
- SAMPLE (MIT BATES) back angle e-p and e-d finds F_2^s consistent with zero and large radiative correction or anapole moment.

- Also large anapole seen in Cs atomic parity nonconservation
Can make definitive (elastic) strange quark measurement

- Control systematic errors and sensitivity to M_a by measuring ratio of neutral current to charged current.
- \[R = \frac{\sigma(\nu p \rightarrow \nu p)}{\sigma(\nu n \rightarrow \mu p)} \]
- Measuring R to 5% gives Δs to ~ 0.03 [BNL 735 measured R to 11% averaged over q^2.]
- Also measure R for anti-ν. Combination gives both G_a^s and F_2^s independent of P.V. radiative corrections.