## $\triangleright$ The Sudakov factor includes the exponentiation of

$$
\mathcal{S}(\theta)_{\mathrm{LDLA}}=1-\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(\theta^{2} / 4\right)
$$

I dropped the power of 2 in the exponentiated form

$$
\frac{d \sigma}{d \tau d y d p_{T}^{2}}=\left(\frac{d \sigma}{d \tau d y}\right)_{B}\left[\frac{4 \alpha_{S}}{3 \pi} \frac{1}{p_{T}^{2}} \ln \left(Q^{2} / p_{T}^{2}\right) e^{-\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(p_{T}^{2} / Q^{2}\right)}\right]
$$

please put that in...the web will be correct...

## here's what we did...

$\triangleright$ calculated the Drell-Yan process for photons, W's, and Z's to the NLO...by cheating multiple times
$\triangleright$ noted the leading bad behavior as the unabsorbed new scale $\left(p_{T}\right)$ tends to zero
$\triangleright$ found a way to add up an infinite sum of gluons in a particular set of approximations, called Resummation.
$\triangleright$ patched up our cross sections for this feature

## immediate plans...

1. take stock of the summation ansatz

- note some shortcomings

2. make some improvements to "resum" all orders

- work in b space
- recover the lost terms from approximations


## dare we say "naïve" resummation?

$\triangleright$ not a fair characterization...but there are deficiencies on the one hand, an infinite summation of glue on the other hand

- a number of approximations
- only soft emission...no potential for a hard gluon beyond the order-alpha
- vector momentum conservation not really taken into account $\triangleright$ but, the idea: definitely worth pursuing...


## the impact of resummation

## $\triangleright$ improve by going to impact parameter space:

use the identity:

## force momentum conservation

$$
\delta^{2}\left(\sum_{i=1}^{n} \vec{k}_{T i}-\vec{p}_{T}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} b e^{-i \vec{b} \cdot \vec{p}_{T}} \prod_{i=1}^{n} e^{i \vec{b} \cdot \vec{k}_{T i}}
$$

following from before, one can imagine

$$
\begin{aligned}
& \frac{d \sigma_{n}}{d p_{T}^{2}} \sim \int d^{2} k_{T 1} \ldots d^{2} k_{T n} f\left(k_{T 1}\right) \ldots f\left(k_{T n}\right) \delta^{2}\left(\vec{p}_{T}+\vec{k}_{T 1}+\ldots+\vec{k}_{T n}\right) \\
& \text { where each of the } f\left(k_{T i}\right)=\frac{\alpha}{2 \pi} \ln \left(Q^{2} / k_{T i}^{2}\right)
\end{aligned}
$$

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d p_{T}^{2}}=\frac{1}{4 \pi^{2}} \sum_{n=0}^{\infty} \frac{1}{n!} \int d^{2} b e^{i \vec{b} \cdot \vec{p}_{T}}\left[\int d^{2} k_{T} e^{i \vec{b} \cdot \vec{k}_{T}} f\left(k_{T}\right)\right]^{\prime}
$$

## $\triangleright$ a manageable form:

from the Bessel Function identity: $\frac{i^{-n}}{2 \pi} \int_{0}^{2 \pi} e^{i(x \cos \theta+n \theta)} d \theta=J_{n}(\theta)$
can get

$$
\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d^{2} b e^{i \vec{b} \cdot \vec{p}_{T}} f(b)=\frac{1}{2} \int_{0}^{\infty} d^{2} b J_{0}\left(p_{T} b\right) f(b)
$$

so, which is amenable to computation

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d p_{T}^{2}}=\frac{1}{4 \pi} \int e^{\Delta(b)} J_{0}\left(p_{T} b\right) d^{2} b
$$

where

$$
\begin{aligned}
\Delta(b) & =\int f\left(k_{T}\right) e^{i \vec{k}_{T} \cdot \vec{b}} d^{2} k_{T} \\
& =\pi \int f\left(k_{T}\right)\left[J_{0}\left(p_{T} b\right)-1\right] d \vec{k}^{2}
\end{aligned}
$$

## late '70's-early '80's

## $\triangleright$ names associated with this approach:

Yu, Dokshitzer, Dyakonov, Troyan, (DDT) Parisi, Petronzio, Curci, Greco, Srivastava plus, anticipation of W/Z in series by Halzen, Martin, Scott, Tuite, circa 1982


1984: Collins and Soper, Altarelli, Ellis, and Martinelli had new ideas...
I'll follow Collins, Soper, and Sterman ("CSS")...

## $\triangleright$ Here's the idea: remember our exponentiation?

in powers of $\alpha_{\mathrm{s}}$, in our $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ perturbative calculation,
it went like:

$$
\alpha_{S}(A)\left[e^{\alpha_{S} B}\right] \rightarrow \alpha_{S}(A)\left[1+\alpha_{S} B+\alpha_{S}^{2} B^{2}+\ldots\right]
$$

generally, the cross section, in limit of small $p_{\mathrm{T}}$, would go like:

$$
\frac{d \sigma}{d p_{T}} \propto \frac{1}{p_{T}^{2}} \sum_{n=1}^{\infty} \sum_{m=0}^{2 n-1} \alpha_{S}^{n} \ln ^{m}\left(Q^{2} / p_{T}^{2}\right)
$$

unfold it, with $L \equiv \ln \left(Q^{2} / p_{T}^{2}\right)$ :

$$
\begin{aligned}
\propto \frac{1}{p_{T}^{2}}[ & \alpha+\alpha L+ \\
& \alpha^{2}+\alpha^{2} L+\alpha^{2} L^{2}+\alpha^{2} L^{3}+ \\
& \left.\alpha^{3}+\alpha^{3} L+\alpha^{3} L^{2}+\alpha^{3} L^{3}+\alpha^{3} L^{4}+\ldots\right]
\end{aligned}
$$

## be really clever...

$\triangleright$ and rearrange this sum, by collecting terms in a particular way...

$$
\begin{array}{rlll}
\propto \frac{1}{p_{T}^{2}}[ & \alpha(L+1)+ & \left.\alpha^{2}\left(L^{3}\right)+L^{2}\right)+ & \left.\alpha^{3}\left(L^{5}\right)+L^{4}\right)+\ldots \\
& +\alpha^{2}(L+1)+\alpha^{3}\left(L^{3}+L^{2}\right)+\ldots & \\
& +\alpha^{3}(L+1)+\ldots & & \text { here are } \\
& \vdots & \text { our LDLA terms }
\end{array}
$$

Collins and Soper took advantage of this expansion and showed that the cross section could be written in the form:
$\triangleright$ Collins, Soper, and Sterman showed that


## the "resummed piece",

## $\triangleright$ that is...

$\sim \int d^{2} b e^{i \vec{p}_{T} \cdot \vec{b}} W\left(b, Q, \xi_{a}, \xi_{b}\right)$
where Collins and Coper showed that W obeys an evolution equation...so that a renormalization group-inspired form is:

$$
S=\int \frac{d \mu^{2}}{\mu^{2}}\left[\mathbf{A} \ln \left(Q^{2} / \mu^{2}\right)+\mathbf{B}\right]
$$

with $\mathbf{A}=\sum_{j} \alpha_{S}^{j} A^{(j)} \quad \mathbf{B}=\sum_{j} \alpha_{S}^{j} B^{(j)} \quad \begin{aligned} & \text { calculable to specific } \\ & \text { order (as we'll see) } \ldots\end{aligned}$

## I'm being schematic!!

## $\triangleright$ I'm intentionally leaving out some complications...

it's very easy to get lost in the technicalities in this business.
the result: $\quad \frac{d \sigma\left(h_{1} h_{2} \rightarrow V X\right)}{d Q^{2} d Q_{T}^{2} d y}=\frac{1}{(2 \pi)^{2}} \int d^{2} b e^{i \vec{Q}_{T} \cdot b} \widetilde{W}\left(b, Q, x_{1}, x_{2}\right)+Y\left(Q_{T}, Q, x_{1}, x_{2}\right)$
the strict RG solution: $\widetilde{W}\left(Q, b, x_{1}, x_{2}\right)=e^{-s\left(Q, b, C_{1}, C_{2}\right)} \left\lvert\, \widetilde{W}\left(\frac{C_{1}}{C_{2} b}, b, x_{1}, x_{2}\right)\right.$
the Sudadov exponent: $\mathcal{S}\left(Q, b, C_{1}, C_{2}\right)=\int_{C_{1}^{2} / b^{2}}^{C_{2}^{2} Q^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[A\left(\alpha_{s}(\bar{\mu}), C_{1}\right) \ln \left(\frac{C_{C}^{2} Q^{2}}{\bar{\mu}^{2}}\right)+B\left(\alpha_{s}(\bar{\mu}), C_{1}, C_{2}\right)\right]$ the $\mathrm{Q}^{2}$-independent term factorizes:

$$
\widetilde{W}\left(\frac{C_{1}}{C_{2} b}, b, x_{1}, x_{2}\right)=\sum_{j} e_{j}^{2} \mathcal{C}_{j h_{1}}\left(\frac{C_{1}}{C_{2} b}, b, x_{1}\right) \mathcal{C}_{j h_{2}}\left(\frac{C_{1}}{C_{2} b}, b, x_{2}\right)
$$

while the $\mathrm{C}_{\mathrm{jhn}}$ functions are convolutions with pdf's

$$
\mathcal{C}_{j h}(Q, b, x)=\sum_{a} \int_{x}^{1} \frac{d \xi}{\xi} C_{j a}\left(\frac{x}{\xi}, b, \mu=\frac{C_{3}}{b}, Q\right) f_{a / h}\left(\xi, \mu=\frac{C_{3}}{b}\right)
$$

$C_{1}, C_{2}, C_{3}$ are arbitrary constants with conventional choice for later comparision with fixed order result:
$C_{1}=C_{3}=2 e_{\mathrm{E}}^{-\gamma}=b_{0}$ and $C_{2}=C_{1} / b_{0}=1$

## ahem, back to simplified life...

## $\triangleright$ suppose, we truncate at the first term:

$$
S=\int \frac{d \mu^{2}}{\mu^{2}}\left[\alpha A^{(1)} \ln \left(Q^{2} / \mu^{2}\right)+\alpha B^{(1)}\right] \propto \ln ^{2}\left(Q^{2} / \mu^{2}\right)=L
$$

you can see the LDLA coming back...

So, here's the plan:

1. expand S, order by order, to a specific order
2. compare with perturbative result, term by term
3. determine $A^{\prime}$ s and $B^{\prime}$ s specified to that particular order

## so, here's the idea:

## $\triangleright$ expand the Sudakov exponential...

$$
\begin{aligned}
S & =\int \frac{d \mu^{2}}{\mu^{2}}\left[L\left(\alpha_{S} A^{(1)}+\alpha_{S}^{2} A^{(2)} \ldots\right)+\left(\alpha_{S} B^{(1)}+\alpha_{S}^{2} B^{(2)}+\ldots\right)\right] \\
& =\int[\underbrace{[\alpha_{S} \underbrace{L A^{(1)}+B_{S}^{(1)}}_{\left[\alpha_{S} X^{(1)}\right.})}_{X^{(1)}}+\alpha_{S}^{2}\left(L A^{(2)}+B^{(2)}\right)+\alpha_{S}^{3}(\ldots)+\ldots]
\end{aligned}
$$

then...
$e^{-S} \quad \rightarrow \quad 1-S+\frac{S^{2}}{2}-\frac{S^{3}}{3!}+\ldots$
(repeating...)

$$
\begin{aligned}
e^{-S} \rightarrow & 1-S+\frac{S^{2}}{2}-\frac{S^{3}}{3!}+\ldots \\
= & \left.1-\left[\alpha_{S} X^{(1)}+\alpha_{S}^{2} X^{(2)}+\alpha_{S}^{3} X^{(3)}+\ldots .\right)\right]+ \\
& \quad+\left[\alpha_{S} X^{(1)}+\alpha_{S}^{2} X^{(2)}+\ldots\right]^{2}+\ldots
\end{aligned}
$$

an infinite series made up of grouped infinite series'

## the punchline...

$e^{-S} \rightarrow 1-\left[\alpha_{S}\left(L A^{\left(1 \underline{t}_{\underline{\underline{s}}}\right.}+B^{(1)}\right)+\alpha_{S}^{2}\left(L A^{(2)}+B^{(2)}\right)+\ldots\right]$

$$
\begin{aligned}
& +[\underbrace{\alpha S\left(L A^{(1)}\right)}+\underbrace{\alpha_{S}^{2}\left(L A^{(2)}+B^{(2)}\right)}+\ldots]^{2}-[\ldots]^{3}+\ldots \\
& \text {...etc. } \\
& e^{-S} \rightarrow 1-S+\frac{S^{2}}{2}-\frac{S^{3}}{3!}+\ldots \\
& \left.\equiv 1-\left(S_{1}\right)+S_{2}+S_{3}+\ldots\right)+\left(S_{1}+S_{2}+S_{3}+\ldots\right)^{2}+\ldots
\end{aligned}
$$

the really clever thing here is that $S_{1}$ only involves $A^{(1)}$ and $B^{(1)}$ and that each power of $S$ is attached to a power of $\alpha$
can calculate each $S_{i}$ perturbatively
....so, match them, term by term with expansion:

## match to calculate A and B

$\triangleright$ term by term...


## resummation is a lot of the total sum

## notice, this is greatly improved over the LDLA

$$
\left.\left.\left.\frac{d \sigma}{d p_{T}^{2}} \propto \frac{1}{p_{T}^{2}} \alpha(L)+1\right)+\alpha^{2}\left(L^{3}\right)+L^{2}\right)+\alpha^{3}\left(L^{5}\right)+L^{4}\right)+\ldots
$$

$$
\left.+\alpha^{2}(L+1)+\alpha^{3}\left(L^{3}+L^{2}\right)+\ldots\right]
$$

these top two "rows" are currently calculated...just numbers:

$$
\begin{aligned}
A^{(1)} & =2 C_{F}, \\
A^{(2)} & =2 C_{F}\left(N\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{10}{9} T_{R} n_{f}\right), \\
B^{(1)} & =-3 C_{F}, \\
B^{(2)} & =C_{F}^{2}\left(\pi^{2}-\frac{3}{4}-12 \zeta(3)\right)+C_{F} N\left(\frac{11}{9} \pi^{2}-\frac{193}{12}+6 \zeta(3)\right) \\
& +C_{F} T_{R} n_{f}\left(\frac{17}{3}-\frac{4}{9} \pi^{2}\right) .
\end{aligned}
$$

## there's a complication

$\triangleright$ inherent to the $b$-space formalism is integration over terra incognita:

$\int_{0}^{\infty} d b \ldots$
must integrate over large impact parameter,
small momentum transfer
$b>\frac{1}{\Lambda_{Q C D}}$ defines the long-distance region without a theory
This is handled with a regularization of sorts... and here's how data enter...

## $\triangleright$ bifurcate W:

$W(b) \rightarrow W\left(b_{*}\right) \quad$ where $\quad b_{*}=\frac{b}{\sqrt{1+b^{2} / b_{\max }^{2}}}$
this cutoff means that W is missing some integral...

the missing contribution to the integral can be reclaimed by measuring it...
$W(b) \rightarrow W\left(b_{*}\right) e^{-S_{N P}(b)}$
so-called "non perturbative function" is parameterized in terms of measurables

## immediate plans...

1. test against data

- early fit to Drell-Yan data
- predictions for W/Z
- global fitting to all Drell-Yan data

2. conclusions and outlook

- pragmatics: $M_{W}$ and $\Gamma_{W}$
- fundamentals: what does it mean for QCD?


## there have been a variety of parameterizations:

original CSS: $\quad S_{N P}^{C S S}(b)=h_{1}\left(b, \xi_{a}\right)+h_{2}\left(b, \xi_{b}\right)+h_{3}(b) \ln Q^{2}$
J. Collins and D. Soper, Nucl.Phys. B193 381 (1981);
erratum: B213 545 (1983); J. Collins, D. Soper, and G. Sterman, Nucl. Phys. B250 199 (1985).
Davies, Webber, and Stirling (DWS): $\quad S_{N P}^{D W S}(b)=b^{2}\left[g_{1}+g_{2} \ln \left(b_{\max } Q\right)\right]$
C. Davies and W.J. Stirling, Nucl. Phys. B244 337 (1984);
C. Davies, B. Webber, and W.J. Stirling, Nucl. Phys. B256 413 (1985).

Ladinsky and Yuan (LY): $\quad S_{N P}^{L Y}(b)=g_{1} b\left[b+g_{3} \ln \left(100 \xi_{a} \xi_{b}\right)\right]+g_{2} b^{2} \ln \left(b_{\max } Q\right)$
G.A. Ladinsky and C.P. Yuan, Phys. Rev. D50 4239 (1994);
F. Landry, R. Brock, G.A. Ladinsky, and C.P.Yuan, Phys. Rev. D63 013004 (2001).
"Gauss 1": $\quad S_{N P}^{\text {Gauss } 1}(b)=b^{2}\left[g_{1}+g_{1} g_{3} \ln \left(100 \xi_{a} \xi_{b}\right)+g_{2} \ln \left(b_{\max } Q\right)\right]$
F. Landry, "Inclusion of Tevatron Z Data into Global Non-Perturbative QCD Fitting", Ph.D. Thesis,

Michigan State University, 2001.
F. Landry, R. Brock, G.A. Ladinsky, and C.P.Yuan, in preparation.
" $q_{T}$ resummation": $\quad \tilde{F}^{N P}\left(q_{T}\right)=1-e^{-\tilde{a} q_{T}^{2}} \quad$ ( not in b-space...see below)
R.K. Ellis, Sinisa Veseli,_Nucl.Phys. B511 (1998) 649-669
R.K. Ellis, D.A. Ross, S. Veseli,_Nucl.Phys. B503 (1997) 309-338

## $\triangleright$ the first attempt in 1984:

from a fit to necessarily sparse data, they found:
$\mathrm{g}_{1}=0.15 \mathrm{GeV}^{2}$
$\mathrm{g}_{2}=0.4 \mathrm{GeV}^{2}$
using $b_{\max }-(2 \mathrm{GeV})^{-1}$


They used only the resummed piece...

A whole theory needs the soft and the hard parts:

## $\triangleright$ Remember the original formulation...

$$
\frac{d \sigma\left(h_{1} h_{2} \rightarrow V X\right)}{d Q^{2} d Q_{T}^{2} d y}=\frac{1}{(2 \pi)^{2}} \int d^{2} b e^{i \vec{Q}_{T} \cdot \vec{b}} \widetilde{W}\left(b, Q, x_{1}, x_{2}\right)+Y\left(Q_{T}, Q, x_{1}, x_{2}\right)
$$

## singular as

$p^{2}{ }_{T}$, in the limit of zero $p^{2}{ }_{T}$
puts back terms left out from the leading $1 / p^{2}{ }_{T}$
expansion: less singular than $1 / p^{2}{ }_{T}$
one can extract $Y$ at a particular order as = that remaining after the terms singular as $1 / p^{2}$ are subtracted at that order.
called the Asymptotic piece

$$
Y=P-A \ldots \text { at a particular order, finite. }
$$

## a match made in heaven

$\triangleright$ so, the whole cross section comes in pieces:


- the "answer" is in blue
- negative cross sections are meaningful
- $W$ heads south at about $Q / 2$
- $A$ heads south at about $Q$


## $\triangleright$ first done, to leading order, by Altarelli, Ellis, Greco, and Martinelli, 1984/5

(not strictly CSS, but a variant of the approach)

- prediction for $W / Z$ - where the $Y$ piece is necessary
- attempted to match the $W$ piece to the $Y$ piece
- and evaluate the error



## $\triangleright$ Arnold and Kauffman (and Reno) extended to NLO

- explicitly worried about an algorithm for the matching region
- estimated the error
- strict CSS
- used the DWS parameterization and fits



## $\triangleright$ Ladinsky and Yuan fit to modern Drell Yan data, 1994 <br> $\triangleright$ low $p_{\mathrm{T}}$, low mass Drell Yan data dominated all fits

included:
ISR data
fixed target Tevatron
Run 0 CDF Z's (tiny sample)
has the effect of marginalizing $g_{2}$ in 2 parameter form

$$
S_{N P}^{D W S}(b)=b^{2}\left[g_{1}+g_{2} \ln \left(b_{\max } Q\right)\right]
$$

so L-Y modified the form...to include some $\tau$ dependence - a heuristic choice
$S_{N P}^{L Y}(b)=g_{1} b\left[b+g_{3} \ln \left(100 \xi_{a} \xi_{b}\right)\right]+g_{2} b^{2} \ln \left(b_{\max } Q\right)$


## $q_{T}$ resummation

## $\triangleright$ an alternative approach in 1997 by Ellis and Velesi

fix normalization and fit for one NP parameter -

- matching is at low $p_{T}$
- no $b$-space Fourier transform, so numerically very fast

$$
\tilde{F}^{N P}\left(q_{T}\right) \text { then fills in here }
$$

$$
\text { so, matching is at low } p_{\mathrm{T}}
$$




## $\triangleright$ lately, MSU has added to fitting...

- include more modern DY fixed target data
- fixed mistake in neutron parameterization in original LY
- added new pdf's
- predicted Tevatron sensitivity
- found normalization difficulties with some low energy DY data...which matter

$$
\begin{aligned}
& \text { results } \\
& g_{1}=0.15_{-\mathbf{0 . 0 3}}^{+\mathbf{0 . 0 4}} \mathrm{GeV}^{2} \quad g_{2}=0.48_{-\mathbf{0 . 0 5}}^{\mathbf{+ 0 . 0 4}} \mathrm{GeV}^{2} \\
& g_{3}=-0.58 \pm 0.26 \mathrm{GeV}^{-1}
\end{aligned}
$$

but, with the completion of highly precise D0 and CDF $Z p_{\top}$ data, things dramatically changed


## Gauss rules?

## $\triangleright$ Quality collider data made a huge difference

 $S_{N P}^{\text {Gauss } 1}(b)=b^{2}\left[g_{1}+g_{1} g_{3} \ln \left(100 \xi_{a} \xi_{b}\right)+g_{2} \ln \left(b_{\max } Q\right)\right]$ was preferreda Gaussian fit:

- gives best quality fit
- allowed inclusion of low Q data that were rejected previously
- gave acceptable normalizations (a free parameter in the fits)
results
$g_{1}=0.21 \pm 0.01 \mathrm{GeV}^{2} \quad g_{2}=0.68 \pm 0.02 \mathrm{GeV}^{2}$
$g_{3}=-0.60_{\mathbf{- 0 . 0 4}}^{\mathbf{+ 0 . 0 5}} \mathrm{GeV}^{-1}$
- better precision in $g_{2}$
- $\chi^{2} /$ dof $=1.48$



R209 Data


CDF Z Run 1



## why is this all important?

## $\triangleright$ A fundamental test of QCD

if the theory is right, it is a universal description of 2 scale problems

- then, appropriate as a description of $p_{\mathrm{T}}$ for all sorts of reactions: $W / Z, 2 \gamma, h$, etc.
- the NP functions should apply to all
if the theory is right, is there any physical picture for the NP piece?
$\triangleright$ It's also important as a description of and predictor for EW physics...
sort of in second order...


## EW measurements

## $\triangleright$ Determination of $M_{\mathrm{W}}$ and $\Gamma_{\mathrm{W}}$ will require $p_{\mathrm{T}}$ modeling


effects of detector
$\mathrm{p}_{\mathrm{T}}(\mathrm{e})(\mathrm{GeV})$ resolution

effects of $p_{T}$ led to use of transverse mass for $M_{W}$ determination

Run1, CDF \&

pdf and $p_{\mathrm{T}}(\mathrm{W})$ uncertainties will need to be controlled to few$\mathrm{MeV} / c^{2}$ equivalent levels currently:
~10-15 \& 5-10 $\mathrm{MeV} / \mathrm{c}^{2}$

## $\triangleright$ that this is tough stuff...

Not much by way of resummation references. Here's what has helped me:

## books:

1. QCD and Collider Physics, R.K. Ellis, W.J.Stirling, and B.R.Webber, Cambridge, 1996. great book...very complete and very readable
2. Applications of Perturbative QCD, R.D.Field, Addison Wesley, 1989. very detailed and complete
3. Collider Physics, V.D.Barger and R.J.N.Phillips, Addison Wesley, 1987. everything is here...I give it to all of my students
articles:
4. "Handbook of Perturbative QCD", Sterman et al., RMP 67, 157 (1995), (http://www.phys.psu.edu/~cteq/handbook/handbook.pdf) thorough and readable...probably needs an update? George?
5. " $W$ and $Z$ Production at Next-to-Leading Order: From Large $q_{T}$ to Small", P.B. Arnold and R.P Kauffman, Nucl.Phys. B349, 381 (1991). nice pedagogical "introduction" to CSS - the only pedagogical exposition of CSS!

## $\triangleright$ Computer codes:

Legacy (Ladinsky and Yuan)
resummation code, $p_{\mathrm{T}}$ distributions for $\mathrm{W} / \mathrm{Z} / \mathrm{h} /$ production
Resbos (Balazs)
lepton generator, from legacy grids http://www.pa.msu.edu/~balazs/ResBos/
Legacy, faster and interactive (P. Nadolsky)
http://ht11.pa.msu.edu/wwwlegacy/
$q_{\mathrm{T}}$ Resummation, (Ellis and Veseli)
for example, see:
http://www-theory.fnal.gov/people/ellis/Talks/LHC.ps.gz

## Resummation is an ingeneous, very technical description of how to

- have your cake
- (account for a large fraction of an otherwise infinite sum of gluons)
- and eat it too
(yet expend calculational energy only toward perturbative results)

Run II data will further enhance the test of the universal nature of this description

- even more precise $Z$ data
- two photon data will begin to be a player
thanks for your attention...


