The Future of V Physics

Jorge G. Morfín Fermilab

We are surrounded by **Neutrinos**

- u Over 10^{14} v from the sun passing through each of us every second.
- u Over 10^3 v from cosmic ray interactions in the atmosphere passing through us every second.
- v 's are literally <u>all over the place</u>.
- u We have experimented **with** them for over 30 years.

Perhaps it would be nice to know just a little bit more about them... such as do they have mass?

- If neutrinos have even a small mass then it is sign for NEW PHYSICS beyond the Standard Model of weak/electromagnetic interactions.
- u Since there are so many neutrinos throughout the universe, even a small mass makes the neutrino a heavyweight in the mass density of the universe!
- u Are there any hints that we might be dealing with massive neutrinos?

- u There is a deficit of v_e coming from the sun verified by many experiments. (SuperK: Obs/Expt = .47±.06)
- u There are missing v_{μ} coming from cosmic ray interactions in the upper atmosphere, again verified by many experiments (SuperK: $R_{data/MC} = .67 \pm .02 \pm .05$)
- u The LSND experiment has found evidence yet to be verified for $v_{\mu} \rightarrow v_e$.

- u One possibility is that v_1 is oscillating into $v_{1'}$
- u Difference between:
 - flavor states; v_1 interacts with matter it yields a charged lepton of flavor 1 and
 - Mass states; v_1 need not be a mass eigenstate but rather a superposition of mass eigenstates, at least 3 mass eigenstates and perhaps more.

$$|v_1\rangle = \sum_m U_{lm} |v_m\rangle$$

- ^u The U_{lm} are known as the leptonic mixing matrix U.
- u If v_1 is a superposition of several mass states with differing masses which cause them to propagate differently, we have neutrino oscillations.
- u The amplitude for the transformation $v_1 \rightarrow v_{l'}$ is:

$$A(v_1 \to v_{1'}) = \sum A(v_1 \text{ is } v_m) A(v_m \text{ propagates}) A(v_m \text{ is } v_{1'})$$
$$A(v_m \text{ propagates}) = \exp\left(-i\frac{M_m^2}{2}\frac{L}{E}\right)$$

u If there are only two flavors involved in the oscillations then the U matrix takes on the following form and the probability (square of the amplitude) can be expressed as:

$$U = \begin{pmatrix} \cos\theta & e^{i\delta}\sin\theta \\ -e^{-i\delta}\sin\theta & \cos\theta \end{pmatrix} \text{ and}$$
$$P(v_1 \rightarrow v_{1'}) = \sin^2 2\theta \sin^2 \left[1.27\Delta m^2 (eV^2) \frac{L(km)}{E(GeV)} \right]$$
with $\Delta m^2 \equiv M_2^2 - M_1^2$

Current Sum of all Experimental Results

What about 3 (or more) neutrinos

- Naturally, life is more complicated, but the principle is the same u and we get the bonus of CP violations as in the quark sector $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}).$
- The components of U now involve θ_{13} , θ_{23} , θ_{12} and δ and the u probabilities involve Δm_{13} , Δm_{23} and Δm_{12} .
- Standard Theorists Scenario: $\Delta m_{23}^2 >> \Delta m_{12}^2$ u

Produce Weak Eigenstate

- u LSND will be checked by MiniBooNe: Sterile v_s ?
- u SNO, Borexino and Kamland will study the solar neutrino deficit: Know whether SMA or LMA is preferred. Gives us Δm_{12}^2 and θ_{12}
- u The Atmospheric Anomaly will be examined by accelerator experiments K2K and MINOS: Δm_{23}^2 to 10-15% and θ_{23} to 10%.
- u Tau appearance experiments at CNGS?

Remaining Questions: How to Answer Them.

- u Is θ_{13} non-zero?
- u What is the mass hierarchy?
- u Is there CP violation?
- u Are there sterile neutrinos?
- What do we need to answer them?
- u Appearance Measurements.
- u Have to Exploit Matter Effects.
 - Have to go to > 1000 km baseline.
 - Need to see v_e in the initial or final state.
- u Separate v_a and \overline{v}_a beams.
- u Best to have two a real mix of v_{μ} and v_{e} beams.

The Neutrino Factory

- Design already exists
 for a 20 GeV Storage
 Ring with 6 x 1019 m
 decays per year.
- Active working groups pushing the design with R&D projects in the U.S., Europe and Japan.

Neutrino Factory: Event Energy and Radial Distribution

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

10, 25 and 50 GeV Muons

What about LONG Baselines?

- u When a neutrino propagates through matter, rather than vacuum, its oscillation probability can be greatly enhanced!
- u Comes from coherent elastic scattering which is for v_e only.
- u These effects can determine the SIGN of a mass difference.
- u Need L > 1000 km to see this. Need ENORMOUS detectors!

- u Magnetized Steel / Scintillator MINOS
- u Liquid Ar TPC + Spectrometer ICANOE/ICARUS
- u H2O Cerenkov + Spectrometer SuperK
- u Emulsion Detector OPERA

Can any/all of these detectors help reach our goals?

- u Is θ_{13} non-zero?
- u What is the mass hierarchy?
- u Is there CP violation?
- u Are there sterile neutrinos?

Wait...there's a lot more physics to go.. Near Detector Physics

- u 10^{20} 50 GeV μ decays in the straight section yields \approx 4.5 x 10⁶ events/ kg-year within r = 10 cm.
- u Radial Distribution: 35% within r = 10 cm 85% within r = 50 cm).
- Not only is the event rate a factor 100 increase over
 NuMI but concentrated in center allowing smaller near detectors

The Vocabulary of Deep Inelastic Lepton-Hadron Scattering

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

u Standard Kinematic Variables:

The Advantages of Neutrino DIS Experiments

- u Neutrinos have the ability to directly resolve flavor of the nucleon's constituents: V interacts with d, s, \overline{u} , and \overline{c} while \overline{V} interacts with u, c, \overline{d} and \overline{s} .
- u V/∇ have **definite** spin/helicity states, which can be used to determine partonic spin contribution to the nucleon
- The V is currently a very hot topic because of possible mass and consequent oscillation phenomena tests. Very intense beams will be developed for this purpose. It's logical to use them for conventional physics also!

Although Successful v DIS Studies Can Be **Improved**

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

- 1) <u>Heavy nuclear targets</u> have been required to accumulate sufficient statistics <u>measuring v Fe not v N.</u>
- No high statistics measurement of these nuclear effects (interesting in their own right). Had to assume ν Fe same as μ/e Fe to include ν data in global fits.
 Particularly limiting for valence quark and high x parton distribution functions
- 3) Statistics and systematics have not yet reached the level to allow extraction of <u>all</u> <u>possible information</u>. Independent v and v structure functions have not yet been <u>well</u> measured.
- 4) Although CCFR/NuTeV have made great progress. Beam systematics will still be a limit for high statistics experiments.

<u>1) - 3) indicate need for more intense v & v beams</u>

while 4) suggests need for better knowledge of those beams

Global Fitting Needs

- u Improved Statistics at high x.(Fit into the resonance region?)
- u Improved estimate of s & s
- u Improved understanding of leading exponential contribution.
- u Improved understanding of nuclear corrections and/or v H_2/D_2

How Do We Address these Needs?

u NuMI

- Uses high intensity Main Injector (plus new Proton Driver ?) with 120 GeV protons and horn focussed π & K beam for v.
- A 2^{nd} generation higher energy DIS expt. could happen > 2007?
- Knowledge of beam improved over other horn-focussed beams.

u Neutrino Factory

- Uses muon storage ring with production of ν_{μ} and ν_{e} via decay of μ^{\pm}
- Entry level facility possible in 2010 2015 time frame.
- Excellent knowledge of beam.

Beam	$\leq E_v > (GeV)$	Evts/kg-year
CCFR/NuTeV	100	O(10)
NuMI (HE - configuration)	17	(.3 - 1.0) x 10 ⁴
v Factory (25 GeV µ)	17	3 x 10 ⁵

Compare Event Rates for Two Future Experiments

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

MIDIS in the NuMI Beam
 u 10²⁰⁻²¹ protons/year on the NuMI target.

u (.3 - 1.0) x 10^4 CC v or (.7 - 2.5) x 10^3 CC \overline{v} events /kg-yr (in high energy configuration)

u Know
$$\phi(E_v)$$
 and $\int \phi(E_v)$ to <2%

u First Beam 2003.HE beam run > 2007

Near Detector/50 GeV NuFact (50 m away from 800 m straight section)

- u $10^{20} \,\mu$ decays/year
- u 4.5 x 10⁶ CC v_{μ} and 1.9 x 10⁶ CC v_{e} events/kg-year (fid. vol. r < 10 cm)
- u Know $\phi(E_v)$ and $\int \phi(E_v)$ to < 1.0 %
- u First Beam 2012 1015?

What Information is yet to be Gained?

$$F_{2}^{\overline{V}N}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \Big[\mathbf{u} + \overline{\mathbf{u}} + \mathbf{d} + \overline{\mathbf{d}} + 2\overline{\mathbf{s}} + 2\mathbf{c} \Big]$$

$$F_{2}^{VN}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \Big[\mathbf{u} + \overline{\mathbf{u}} + \mathbf{d} + \overline{\mathbf{d}} + 2\mathbf{s} + 2\overline{\mathbf{c}} \Big]$$

$$\mathbf{x} F_{3}^{\overline{V}N}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \Big[\mathbf{u} + \mathbf{d} - \overline{\mathbf{u}} - \overline{\mathbf{d}} - 2\overline{\mathbf{s}} + 2\mathbf{c} \Big]$$

$$\mathbf{x} F_{3}^{VN}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \Big[\mathbf{u} + \mathbf{d} - \overline{\mathbf{u}} - \overline{\mathbf{d}} + 2\mathbf{s} - 2\overline{\mathbf{c}} \Big]$$

u What do we gain by measuring separate v and v structure functions? u Does $s = \overline{s}$ and $c = \overline{c}$ over all x? u If so..... $F_2^{\nu} - F_2^{\overline{\nu}} = 2[(s - \overline{s}) + (\overline{c} - c)]$

$$F_{2}^{\nu} - xF_{3}^{\nu} = 2(\overline{u} + \overline{d} + 2\overline{c}) = 2U + 4\overline{c}$$

$$F_{2}^{\overline{\nu}} - xF_{3}^{\overline{\nu}} = 2(\overline{u} + \overline{d} + 2\overline{s}) = 2U + 4\overline{s}$$

$$xF_{3}^{\nu} - xF_{3}^{\overline{\nu}} = 2[(s + \overline{s}) - (\overline{c} + c)] = 4\overline{s} - 4\overline{c}$$

The Challenge of d/u at High x

John Arrington - ANL

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

The extraction of F_2^n is limited by our understanding of nuclear effects in deuterium.

 u A high statistics experiment with v and v off a hydrogen target gives d/u (relatively) cleanly

$$F_{2}^{\overline{V}_{P}}(\mathbf{x}, \mathbf{Q}^{2}) = 2\mathbf{x} \left[\mathbf{u} + \overline{\mathbf{d}} + \overline{\mathbf{s}} + \mathbf{c}\right]$$
$$F_{2}^{V_{P}}(\mathbf{x}, \mathbf{Q}^{2}) = 2\mathbf{x} \left[\overline{\mathbf{u}} + \mathbf{d} + \mathbf{s} + \overline{\mathbf{c}}\right]$$
$$\mathbf{x} F_{3}^{\overline{V}_{P}}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \left[\mathbf{u} - \overline{\mathbf{d}} - \overline{\mathbf{s}} + \mathbf{c}\right]$$
$$\mathbf{x} F_{3}^{V_{P}}(\mathbf{x}, \mathbf{Q}^{2}) = \mathbf{x} \left[-\overline{\mathbf{u}} + \mathbf{d} + \mathbf{s} - \overline{\mathbf{c}}\right]$$

Near Detector for Neutrino Factory

- Liquid hydrogen/deuterium cryogenic target (followed by high A targets).
- u All targets (r = 10 cm) acquire $10^7 v_{\mu}$ events and 4 x $10^6 \overline{v}_e$ /year.
- u H₂ @ 120 cm long or D₂ @ 50 cm, C @ 3.7 cm and W @ 0.45 cm

The Complete Differential Cross Sections for High Energy Neutrinos

Jorge G. Morf n CTEQ SS2001 St. Andrews, Scotland

Physics at the Front-End of a Neutrino Factory: A Quantitative Appraisal - M.L. Mangano et al - CERN-TH/2001-131, May 15, 2001

$$\begin{split} \frac{d^2 \sigma^{\nu_N}}{dx dy} &= \frac{G_F^2 M E}{2\pi \left(1 + Q^2 / M_W^2\right)} * \\ \left[x F_1^{\nu_N}(x, Q^2) \mathbf{y^2} + F_2^{\nu_N}(x, Q^2) (\mathbf{1} - \mathbf{y}) + x F_3^{\nu_N}(x, Q^2) \mathbf{y} \left(\mathbf{1} - \frac{\mathbf{y}}{2}\right) \right] \\ \frac{d^2 \sigma^{\overline{\nu}_N}}{dx dy} &= \frac{G_F^2 M E}{2\pi \left(1 + Q^2 / M_W^2\right)} * \\ \left[x F_1^{\overline{\nu}_N}(x, Q^2) \mathbf{y^2} + F_2^{\overline{\nu}_N}(x, Q^2) (\mathbf{1} - \mathbf{y}) - x F_3^{\overline{\nu}_N}(x, Q^2) \mathbf{y} \left(\mathbf{1} - \frac{\mathbf{y}}{2}\right) \right] \end{split}$$

Expected Errors on Measured F's

- u Deuterium Target: r = 50 cm & 1 = 60 cm.
- u One year exposure.
- u Errors on F_1 betterthan 10%.
- u As x--> 1.0, $F_2 --> xF_3$

Expected Errors on Measured F's

- u Assume the Callan-Gross relationship eliminating $F_{1.}$
- u Errors now O (1%) or better over most of the xrange.

Extracting the Strange Sea

- u Current knowledge of s & \overline{s} comes from CCFR/NuTeV.
- u Closely related to the c-quark distribution.
- u We must independently measure charm or neglect it.
- u 1 year v and 1 year \overline{v} would result in these errors on $s + \overline{s}$
- Barone, Pascaud and Zomer
 (BPZ) find evidence for intrinsic strange sea at high x.

BPZ is Quite Strange!

Extracting PDFs at a Neutrino Factory

- u Generate eight sets of fake data $(F_2 \text{ and } xF_3 \text{ for } v \text{ and } \overline{v} \text{ on}$ hydrogen and deuterium) with errors as previously shown.
- u Central values from Alekhin et al charged lepton DIS.
- u Dashed lines show error from Alekhin et al analysis

NuFact-Specific Physics Topics: Polarized Target - м. Velasco

- u Sufficiently intense and compact v beam to envision reasonable statistics in O(10 kg) polarized target.
- u Recent development of an "ICE" targets which is a solid polarizable HD material ($\rho = 0.11$ g/cm³). P_H = 80 % and P_D = 50 %.
- u ICE target with r = 20 cm and l = 50 cm would accumulate 20 M events / year (10²⁰ µ).
- u Could also use more traditional polarized butanol target a la SMC with r = 6 cm and l = 60 cm would get the same statistics but with P = 0.1.

NuFact-Specific Physics Topics: Reference

- u For more details on the NuFact topics covered in this brief summary plus other topics such as:
 - Charmed Particle Production and Analysis
 - Electroweak Physics
 - Rare neutrino properties such as magnetic moment..... see
 - <u>The Potential for Neutrino Physics at Muon Colliders</u> <u>and Dedicated High Current Muon Storage Rings, I.</u> <u>Bigi et al</u>, **BNL 68106**, Jan. 2001 (submitted to Physics Reports)

SUMMARY

- u Neutrino Oscillations have become more of a <u>sure thing</u> since the SNO results.
- u Need to study the oscillations consistent with the atmospheric anomaly which will be done with <u>K2K and MINOS</u>.
- ^u The question of whether we are dealing with the SMA or LMA solar neutrino solution will come from KAMLAND if not from SNO plus BOREXINO.
- u To answer all the remaining neutrino oscillation questions we need either Superbeams or a Neutrino Factory based on a muon storage factory.
- u A Superbeam or a Neutrino Factory with a <u>near detector</u> consisting of H_2 , D_2 , and nuclear targets as well as polarized targets:
 - Extract individual pdf's for each flavor in each x Q bin.
 - Complete measurements of the partonic spin structure of nucleon.
 - High statistics charm production with "clean" final state ($E_{\mu} \ge 50 \text{ GeV}$).
 - Precision electroweak measurements; v-e scattering