Lecture 1: b quarks at Hadron Colliders

CTEQ Summer School Rhodes, Greece - July 2006 Franco Bedeschi, Istituto Nazionale di Fisica Nucleare Pisa, Italy

Discovery of b quark

E288/CFS experiment at Fermilab

- Search of lepton pairs
 - $\blacksquare p+Nucleus \rightarrow \mu^+\mu^- + X$
- 1977: narrow resonance in μ pair mass spectrum
- S. W. Herb et Al., Phys. Rev. Lett. 39, 252 255 (1977).
 - Final of the J/ ψ case this new particle, Υ , can be interpreted as a bb bound state

Rhodes, July 2006

b-production around the world

B-production at e+e-

Production on $\Upsilon(4s)$ resonance

- **>** σ ~ 1.1 nb
- ≻ S/N ~ 1/5
- **B**'s are at rest or have small βγ in asymmetric B factories (~ 0.6)
- Produce only Bu or Bd in coherent QM state
 - Don't know which is which until decay
- (Z resonance production: LEP)
 - **>** σ ~ 6.5 nb
 - **≻** S/N ~ 1/5
 - B's have large boost and are monochromatic
 - Produce all kinds of B's

B-production in e+e-

Typical event properties
 Low charged multiplicity

 ~11
 Collisions/crossing <1

B-production at hadronic machines

B-production at hadronic machines

Typical Tevatron event

- Large charged multiplicity
 ~ 40
- Multiple interactions per crossing ~ 1-10
- Very demanding trigger to exploit efficiently the large sample potentially available

F. Bedeschi, INFN-Pisa

Tevatron for Run II

New Main Injector:

 Improve p-bar production

 Recycler ring:

 Additional storage and cooling of p-bars

 Rhodes, July 2006

9/44 **Tevatron Run II 2001-2009** Run II (low) Run II (high) **Run** I Tevatron 980 GeV **Energy/beam 980 GeV 900 GeV** parameters 2.9×10^{32} 1.6×10^{31} 1.6×10^{32} **Peak Luminosity Number of bunches** 36 6 36 $10^{32} \text{ cm}^{-2}\text{s}^{-1} =$ **Bunch spacing** 3500 nsec **396 nsec 396 nsec** 10⁻⁴ pb⁻¹s⁻¹ **Interactions/crossing** 2.8 8.5 5 **Run period** 1992-96 2001-06 2007-09 Recycler 8 fb⁻¹ 118 pb⁻¹ 2 fb⁻¹ **Integral Luminosity**

Tevatron

Photo courtesy of Fermilab

Main Injector
Photo courtesy of Fermilab

Tevatron performance

- Tevatron delivered more than 1.5 fb⁻¹ up to Feb 2006
- Recorded 1.4 fb⁻¹(CDF) / 1.2 fb⁻¹ (DØ)
- Now ~ 1.0 fb⁻¹ reconstructed and under analysis

10/44

a

Tevatron Detectors

DØ
Extended tracking and muon coverage
Good electron/mu identification

CDF

- Excellent mass and impact parameter measurement
- Good ability of lepton identification

11/44

Limited PID capability

Rhodes, July 2006

Key detector features for b physics

Electron/muon identification

> Identify semi-leptonic B decays or decays involving $\psi \rightarrow \mu^+ \mu^-$

Secondary vertices

- Identify decay vertex
 - Requires high resolution tracking (silicon vertex detector)

Powerful tracker

Find all decay tracks with high efficiency

Trigger:

- \succ Identify leptons and detached tracks in times ~ 5 20 µs
- Only way to collect large samples of hadronic B decays
 Currently implemented only at CDF

L2 SVT trigger

8 VME crates Find tracks in Si in 20 μs with offline accuracy

Secondary VerTex L2 trigger
Online fit of primary Vtx
Beam tilt aligned
Observed D resolution
48 µm (33 µm beam spot transverse size)

Rhodes, July 2006

Example of b production event

Rhodes, July 2006

b quark interest

b is only 3rd generation particle being produced in abundance

- Fundamental probe of SM
 - CKM in particular (see later)
 - Couplings to γ and Z extensively studied at LEP
 - Strong coupling to SM Higgs
- M_b >> Λ_{QCD} improves accuracy of many theory predictions
 No time to explore all of them!

This lecture:

- Production x-section/correlations
 - Test QCD
- **>** B^0 mixing, $\Delta \Gamma$, CPV in mixing
 - Many new recent results

Rhodes, July 2006

◆ Big gluon x-section/flux → large NLO contribution
 ◆ Large b-mass provides natural cut-off, but introduces additional scale (and potential divergences) in calculations (see Carlo's lectures)

Rhodes, July 2006

CKM matrix (1)

CKM matrix describes flavor mixing in weak charged current transitions

All up-type quarks (u, c, t) can couple with any downtype quarks with a strength modulated by the elements of the CKM matrix

Rhodes, July 2006

Basic Theory (1)

1 state effective theory:

$$H = m - \frac{i\gamma}{2}$$

$$i\frac{d|B(t)>}{dt} = H|B(t)>$$

$$|B(t)> = e^{-imt}e^{-\frac{\gamma t}{2}}|B(0)>$$

$$B(0)|B(t)>|^{2} = e^{-\gamma t}$$

$$H = M - \frac{i\Gamma}{2}$$

$$M = \begin{pmatrix} m & m_{12} \\ m^{*} & m \end{pmatrix} \begin{pmatrix} |B(t)> \\ \downarrow \\ |D(t)> \rangle$$

 γ_{12}

 γ

 γ_{12}^{*}

2 state effective theory:

M, Γ hermitian CPT invariance: $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$

Solution reduces to 1 state case after diagonalization of H

Eigenvalues:

$$\lambda_{\pm} = (m \pm \Delta m) - \frac{i}{2}(\gamma \pm \Delta \gamma)$$

$$= m - \frac{i}{2}\gamma \pm \sqrt{(m_{12} - \frac{i}{2}\gamma_{12})(m_{12}^* - \frac{i}{2}\gamma_1^*)}$$
Eigenstates:

$$B_{\pm} \ge \frac{1}{|m|^2 + |m|^2}(p|B \ge \pm q|\bar{B} \ge)$$

 $|\mathbf{q}|$

|P|

Rhodes, July 2006

$$\frac{2544}{Basic Theory (2)}$$

$$\Rightarrow Time \text{ evolution of } |B(0)> \text{ and } \overline{|B}(0)>$$

$$\Rightarrow Assume \Gamma_{12} << m_{12}$$

$$|B(t)> = e^{-imt}e^{-\frac{\Gamma t}{2}} \left[\cos\left(\frac{\Delta mt}{2}\right) |B(0)> -i\frac{q}{p}\sin\left(\frac{\Delta mt}{2}\right) |\overline{B}(0)> \right]$$

$$|\overline{B}(t)> = e^{-imt}e^{-\frac{\Gamma t}{2}} \left[\cos\left(\frac{\Delta mt}{2}\right) |\overline{B}(0)> -i\frac{p}{q}\sin\left(\frac{\Delta mt}{2}\right) |B(0)> \right]$$

$$\frac{p}{q} \approx \frac{m_{12} - \frac{i}{2}\Gamma_{12}}{|m_{12}|} \approx \frac{m_{12}}{|m_{12}|} = e^{-2i\beta(s)}$$

$$\frac{p}{q} \left|^{2} \approx 1 + \mathcal{I}m\left(\frac{\Gamma_{12}}{m_{12}}\right) \approx 1 + \mathcal{O}(10^{-3} - 10^{-5})$$

$$\frac{p}{B} = \frac{1}{2} \left|^{2} = 1 + \mathcal{I}m\left(\frac{\Gamma_{12}}{m_{12}}\right) \approx 1 + \mathcal{O}(10^{-3} - 10^{-5})$$

Rhodes, July 2006

Mixing theory

Neutral mesons time evolution with mixing can be easilty derived from the equations of previous slide:

$$\begin{split} P_{B\to B}(t) &= |\langle B|B(t) \rangle|^2 = e^{-\Gamma t} \left[\cos^2 \left(\frac{\Delta m t}{2}\right) \right] = \frac{e^{-\Gamma t}}{2} \left(1 + \cos\Delta m t\right) \\ P_{B\to \overline{B}}(t) &= |\langle \overline{B}|B(t) \rangle|^2 = e^{-\Gamma t} \left[\sin^2 \left(\frac{\Delta m t}{2}\right) \right] = \frac{e^{-\Gamma t}}{2} \left(1 - \cos\Delta m t\right) \end{split}$$

◆ Bd mixing well established ∆m_d = 0.507±0.004 ps⁻¹
 > Measurements from LEP, Tevatron and B-Factories

 ■ Accuracy dominated by BaBar and Belle
 ◆ Bs mixing much harder

> Less signal and much faster (~ x $1/\lambda^2$) oscillation

Tevatron has first results NOW!

Mixing measurements

Steps needed to measure mixing:

Select signal in flavor specific final states

- Identify B type at production: FLAVOR TAG
- Measure proper decay time and its resolution
- Parameterize background contributions
- Fit time dependence

 $\#\sigma$ significance of oscillation

Significance from Fourier like analysis

F. Bedeschi, INFN-Pisa

27/44

Rhodes, July 2006

CDF Signal Sample for Δm_s

Huge Control Signals

★ Hadronic decays:
> B⁺ (J/\u03cc K⁺, D⁰\u03cb, D⁰3\u03cc): ~ 50 k events
> B⁰(J/\u03cc K^{*}, D⁻\u03cc, D^{*-}\u03cc, D^{*-}3\u03cc): ~ 60 k events
★ Semileptonic decays:
> ID⁰ (D⁰ → K\u03cc): ~ 540 k events
> ID^{*-} (D^{*-} → D⁰\u03cc): ~ 74 k events
> ID⁻ (D⁻ → K\u03cc \u03cc): ~ 300 k events

OST tagger calibration

Dilution calibration

- Use the large control samples of B+ and B0
- Works only for OST
 - SST different for every B type. Must use MC

Bd mixing by-product and cross-check

hadronic: $\Delta m_d = 0.536 \pm 0.028 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$ semileptonic: $\Delta m_d = 0.509 \pm 0.010 \text{ (stat)} \pm 0.016 \text{ (syst) ps}^{-1}$ world average: $\Delta m_d = 0.507 \pm 0.004 \text{ ps}^{-1}$

Rhodes, July 2006

F. Bedeschi, INFN-Pisa

proper decay-length [cm]

Rhodes, July 2006

Flavor tag summary

	εD ² Hadronic (%)	εD ² Semileptonic (%)	
Muon	0.48 ± 0.06 (stat)	0.62± 0.03 (stat)	
Electron	0.09 ± 0.03 (stat)	0.10 ± 0.01 (stat)	
JQ/Vertex	0.30 ± 0.04 (stat)	0.27 ± 0.02 (stat)	
JQ/Prob.	0.46 ± 0.05 (stat)	0.34 ± 0.02 (stat)	
JQ/High p _T	0.14 ± 0.03 (stat)	0.11 ± 0.01 (stat)	
Total OST	1.47 ± 0.10 (stat)	1.44 ± 0.04 (stat)	
SSKT	3.42 ± 0.06 (stat)	4.00 ± 0.04 (stat)	
• Operation of the Total $\varepsilon D^2 \sim 5\%$			

Opposite side: use combination of tags

Same side/OST combination assumes independent tagging information

Rhodes, July 2006

Rhodes, July 2006

Bs proper time resolution

Average σ_t ~ 87 fs Good sensitivity for Δm_s~20 ps⁻¹

Putting all together

Amplitude scan

Fit e^{-t/τ}(1±A(ω) Dcos ωt)⊗G(t) for various values of ω
A(ω) = 1 for ω = Δm
Similar to a Fourier transform

- Test amplitude scan on Bd
 - ► A=1 at the correct value
 - Shape consistent with model expectations

Rhodes, July 2006

Measurements of $\Delta\Gamma/\Gamma$

• $\Delta \Gamma_d$ very hard

Limits from LEP and B-factories consistent with SM value

$\Delta \Gamma_s$ feasible at Tevatron with several techniques:

> Combined lifetime/transversity (angular) analysis of Bs $\rightarrow \psi \phi$ decay

Found to be ~ 19% CP-odd

> Measurement of BR(Bs $\rightarrow D_s^{+(*)} D_s^{-(*)}$)

■ Mostly CP-even (theory expectations > 95%)

➤ Combination of flavor specific and CP specific lifetime measurements (e.g. Bs→lvDs and Bs→K+K-)

DØ transversity analysis

Update of published analysis with 800 pb⁻¹

Combined $\Delta \Gamma_s$ Results

F. Bedeschi, INFN-Pisa

Rhodes, July 2006

CPV in mixing

$lp/q \neq 1 \rightarrow CPV$

Measure asymmetry $A = \frac{N(BB) - N(\bar{B}\bar{B})}{N(BB) + N(\bar{B}\bar{B})} = \frac{N(l^+l^+) - N(l^-l^-)}{N(l^+l^+) + N(l^-l^-)}$ Expect: $N(BB) = N(B \to B)(\bar{B} \to B) = \left(e^{-\Gamma t}\cos^2\left(\frac{\Delta mt}{2}\right)\right) \left(\left|\frac{p}{q}\right|^2 e^{-\Gamma t'}\sin^2\left(\frac{\Delta mt'}{2}\right)\right)$ $N(\bar{B}\bar{B}) = N(\bar{B} \to \bar{B})(B \to \bar{B}) = \left(e^{-\Gamma t}\cos^2\left(\frac{\Delta mt}{2}\right)\right) \left(\left|\frac{q}{p}\right|^2 e^{-\Gamma t'}\sin^2\left(\frac{\Delta mt'}{2}\right)\right)$ $A = \frac{1 - \left|\frac{q}{p}\right|^4}{1 + \left|\frac{q}{p}\right|^4} \approx Im\left(\frac{\Gamma_{12}}{m_{12}}\right)$

SM prediction: Bd: 9x10⁻⁴, Bs: 1x10⁻⁵
Bd avg: -0.0030±0.0078 (LEP, CLEO, Belle, BaBar)
Bs avg: 0.0013±0.0014 (D0 2006)

 $|p/q| = 1 \rightarrow Mass eigenstates = CP eigenstates$

Rhodes, July 2006

Summary of lecture 1

- B-quark hadrons have been studied for about 30 years
- +e+e- storage rings and hadronic machines have complemented each other
 - Now B-factories and Tevatron
- b-hadron production and their basic properties are now known with an unprecedented level of detail
 - Their study has helped develop and test QCD, even in nonperturbative regimes
- Detailed measurements of neutral B meson mixing have become recently available for both species
 - Find overall consistency with Standard Model
 - In conjunction with CP violation measurements (next lecture) further confirm SM and limit possible new physics

Rhodes, July 2006