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Hard scattering cross sections
Why NLO?

W production

MCFM

One loop integrals

⋆ Reduction to basis set
⋆ Passarino Veltman Decomposition of tensor integrals

Combining NLO corrections and parton showers

⋆ MC@NLO
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Why NLO?
The benefits of higher order calculations are:-

Less sensitivity to unphysical input scales (eg. renormalization and factorization
scales)

First prediction of normalization of observables at NLO

⋆ Hence more accurate estimates of backgrounds for new physics searches.

⋆ Confidence that cross-sections are under control for precision measurements.

It is a necessary prerequisite for other techniques matching with resummed
calculations, (eg. MC@NLO, see later).

More physics
⋆ Parton merging to give structure in jets.
⋆ Initial state radiation.
⋆ More species of incoming partons enter at NLO.
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Influence of new processes at NLO
Campbell, Ellis, Rainwater, hep-ph/0308195

⋆ Consider the process pp → Wbb̄ at LHC

(a) (b) (c)

Diagrams by MadGraph
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new classes of gluon induced dia-
grams at NLO lead to large effects.
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Next-to-leading order: Initial state

The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

"
u

t
+

t

u
+

2Q2s

ut

#
= g2CF

"“1 + z2

1 − z

”“−s

t
+

−s

u

”
− 2

#

where z = Q2/s, s + t + u = Q2.

Note that the real diagrams contain collinear singularities, u → 0, t → 0 and soft
singularities, z → 1.

The coefficient of the divergence is the unregulated branching probability P̂qq(z).

Ignore for simplicity the diagrams with incoming gluons.
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Control the divergences by continuing the dimensionality of space-time,
d = 4 − 2ǫ, (technically this is dimensional reduction). Performing the phase space
integration, the total contribution of the real diagrams is

σR =
αS

2π
CF

 
µ2

Q2

!ǫ

cΓ

"“ 2

ǫ2
+

3

ǫ
− π2

3

”
δ(1 − z) − 2

ǫ
Pqq(z)

− 2(1 − z) + 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

with cΓ = (4π)ǫ/Γ(1 − ǫ).

The contribution of the virtual diagrams is

σV = δ(1 − z)

"
1 +

αS

2π
CF
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c′Γ = cΓ + O(ǫ3)
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Adding it up we get in dim-reduction

σR+V =
αS

2π
CF
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Q2

!ǫ
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"“2π2

3
− 6
”
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ǫ
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+ 4(1 + z2)
h ln(1 − z)

1 − z

i

+
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#

The divergences, proportional to the branching probability , are universal.

We will factorize them into the parton distributions. We perform the mass
factorization by subtracting the counterterm

2
αS

2π
CF

"
−cΓ

ǫ
Pqq(z) − (1 − z) + δ(1 − z)

#

(The finite terms are necessary to get us to the MS-scheme).

σ̂ =
αS

2π
CF
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Similar correction for incoming gluons.
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Application toW,Z production

Agreement with NLO theory is good.

LO curves lie about 25% too low.

NNLO results are also known and lead to a further modest (4%) increase at the
Tevatron.
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General calculational method for NLO
Direct integration is good for the total cross section, but for differential distributions,
(to which we want to apply cuts), we need a Monte Carlo method.

We use a general subtraction procedure at NLO.

at NLO the cross section for two initial partons a and b and for m outgoing partons,
is given by

σab = σLO
ab + σNLO

ab

where

σLO
ab =

Z

m

dσB
ab

σNLO
ab =

Z

m+1
dσR

ab +

Z

m

dσV
ab

the singular parts of the QCD matrix elements for real emission, corresponding to
soft and collinear emission can be isolated in a process independent manner
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Calculational method (cont)
One can use this the construct a set of counterterms

dσct =
X

ct

Z

m

dσB ⊗
Z

1
dVct

where dσB denotes the appropriate colour and spin projection of the Born-level
cross section, and the counter-terms are independent of the details of the process
under consideration.

these counterterm cancel all non-integrable singularities in dσR, so that one can
write

σNLO
ab =

Z

m+1
[dσR

ab − dσct
ab] +

Z

m+1
dσct

ab +

Z

m

dσV
ab

The phase space integration in the first term can be performed numerically in four
dimensions.
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Matrix element counter-event forW production

In the soft limit p5 → 0 we have

|M1(p1, p2, p3, p4, p5)|2 = g2CF
p1 · p2

p1 · p5 p2 · p5
|M0(p1, p2, p3, p4)|2

Eikonal factor can be associated with radiation from a given leg by partial
fractioning

p1 · p2

p1 · p5 p2 · p5
= [

p1 · p2

p1 · p5 + p2 · p5
][

1

p1 · p5
+

1

p2 · p5
]

including the collinear contributions, singular as p1 · p5 → 0, the matrix element for
the counter event has the structure

|M1(p1, p2, p3, p4, p5)|2 =
g2

xap1 · p5
P̂qq(xa)|M0(xap1, p2, p̃3, p̃4)|2

where 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2 and P̂qq(xa) = CF (1 + x2)/(1 − x)
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Subtraction method for NLO
For event q(p1) + q̄(p2) → W+(ν(p3) + e+(p4)) + g(p5) with p1 + p2 =

P5
i=3 pi

generate a counter event q(xap1) + q̄(p2) → W+(ν(p̃3) + e+(p̃4)) and

xap1 + p2 =
P4

i=3 p̃i with 1 − xa = (p1 · p5 + p2 · p5)/p1 · p2.

A Lorentz transformation is performed on all j final state momenta
p̃j = Λµ

ν pν
j , j = 3, 4 such that p̃µ

j → pµ
j for p5 collinear or soft.

The longitudinal momentum of p5 is absorbed by rescaling with x.

The other components of the momentum, p5 are absorbed by the Lorentz
transformation.

In terms of these variables the phase space has a convolution structure,

dφ(3)(p1, p2; p3, p4, p5) =

Z 1

0
dx dφ(2)(p2, xp1; p̃3, p̃4)[dp5(p1, p2, x)]

where

[dp5(p1, p2, xa)] =
ddp5

(2π)3
δ+(p2

5)Θ(x)Θ(1 − x)δ(x − xa)
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If ki is the emitted parton, and p1, p2 are the incoming momenta, define the shifted
momenta

ekµ
j = kµ

j − 2kj · (K + eK)

(K + eK)2
(K + eK)µ +

2kj · K
K2

eKµ ,

where the momenta Kµ and eKµ are,

Kµ = pµ
1 + pµ

2 − pµ
i , eKµ = epµ

1i + pµ
2 .

Since 2
P

j kj · K = 2K2 and 2
P

j kj · (K + eK) = 2K2 + 2K · eK = (K + eK)2,

K2 = eK2, the momentum conservation constraint in the m + 1-parton matrix

pµ
1 + pµ

2 −
X

j

kµ
j − pµ

i = 0 .

implies

epµ
1i + pµ

2 −
X

j

ekµ
j = 0 .
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Note also that the shifted momenta can be rewritten in the following way:

ekµ
j = Λµ

ν(K, eK) kν
j ,

Λµ
ν(K, eK) = gµ

ν − 2(K + eK)µ(K + eK)ν

(K + eK)2
+

2 eKµKν

K2
,

the matrix Λµ
ν(K, eK) generates a proper Lorentz transformation on the final-state

momenta.

If the emitted parton has zero transverse momenta, the Lorentz transformation

reduces to the identity, because Kµ = eKµ
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MCFM overview John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in αS

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z

pp̄ → W± + γ pp̄ → W±/Z + H

pp̄ → W± + g⋆ (→ bb̄) pp̄ → Zbb̄

pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + X

pp → t + W

⊕ less sensitivity to µR, µF , rates are better normalized, fully differential
distributions.

⊖ low particle multiplicity (no showering), no hadronization, hard to model
detector effects
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MCFM:examples
(W+2 jet)/(W+1 jet)
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An experimenter’s wishlist
Run II Monte Carlo Workshop

Single Boson Diboson Triboson Heavy Flavour

W+ ≤ 5j WW+ ≤ 5j WWW+ ≤ 3j tt̄+ ≤ 3j

W + bb̄ ≤ 3j W + bb̄+ ≤ 3j WWW + bb̄+ ≤ 3j tt̄ + γ+ ≤ 2j

W + cc̄ ≤ 3j W + cc̄+ ≤ 3j WWW + γγ+ ≤ 3j tt̄ + W+ ≤ 2j

Z+ ≤ 5j ZZ+ ≤ 5j Zγγ+ ≤ 3j tt̄ + Z+ ≤ 2j

Z + bb̄+ ≤ 3j Z + bb̄+ ≤ 3j ZZZ+ ≤ 3j tt̄ + H+ ≤ 2j

Z + cc̄+ ≤ 3j ZZ + cc̄+ ≤ 3j WZZ+ ≤ 3j tb̄ ≤ 2j

γ+ ≤ 5j γγ+ ≤ 5j ZZZ+ ≤ 3j bb̄+ ≤ 3j

γ + bb̄ ≤ 3j γγ + bb̄ ≤ 3j single top
γ + cc̄ ≤ 3j γγ + cc̄ ≤ 3j

WZ+ ≤ 5j

WZ + bb̄ ≤ 3j

WZ + cc̄ ≤ 3j

Wγ+ ≤ 3j

Zγ+ ≤ 3j
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A more realistic list
Les Houches workshop 2005

process relevant for
(V ∈ {Z, W, γ})

1. pp → V V jet tt̄H, new physics
2. pp → tt̄ bb̄ tt̄H

3. pp → tt̄ + 2 jets tt̄H

4. pp → V V bb̄ VBF→ H → V V , tt̄H, new physics
5. pp → V V + 2 jets VBF→ H → V V

6. pp → V + 3 jets various new physics signatures
7. pp → V V V SUSY trilepton

State of art
⋆ Many calculations have been performed. for a list see,

http://www.cedar.ac.uk/hepcode/

⋆ MCFM is an attempt to collect together many results in a common framework
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W+2 jet production
Campbell, Ellis,hep-ph/0202176

Included in MCFM

Calculated using analytic virtual matrix elements
(Bern,Dixon,Kosower,hep-ph/9708239)

Results for W + 2 jets at the Tevatron
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Higgs + 2 jets
Campbell, Ellis, Zanderighi hep-ph/0608194

H

H

H H

W +/Z0

W−/Z0

(a) (b)

(c) (d)

sample diagrams representing the production of a Higgs boson at the LHC

Process (d) is the expected to be the most significant discovery mode at the LHC
for 115 < mh < 160.

Process (c) represents a ’background’, at least from the stand point of measuring
the coupling of the Higgs boson to the W, Z bosons.

We can calculate process (c) using an effective coupling of the Higgs boson to
gluons, which represents a top quark loop in the limit of infinite top quark mass.

Leff =
1

4
A(1 + ∆)HGa

µνGa µν ,

We have evaluated the QCD virtual corrections, using a semi-numerical method
for the one-loop diagrams.
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Vector boson fusion cuts
Higgs mass 115 GeV 160 GeV

σLO [pb] 3.50 2.19

σNLO [pb] 4.03 2.76

σWBF [pb] 1.77 1.32

LO and NLO cross sections for the
gluon-fusion process with the ba-
sic inclusive cuts, together with the
weak boson fusion cross section
at NLO.

Higgs mass 115 GeV 160 GeV

σLO [fb] 271 172

σNLO [fb] 346 ± 5 236 ± 3

σWBF [fb] 911 731

LO and NLO cross sections with
the weak boson fusion search cuts

|ηj1 − ηj2 | > 4.2, ηj1 · ηj2 < 0 .

0. 6 7 1 . 0 0 1 . 5 01 5 02 0 02 5 03 0 03 5 04 0 04 5 05 0 0 N L O fa cN L Or e nL O fa cL Or e n

V B F cu ts, H ig g s m a s s 1 1 5 Ge V# / mh

cr o ss+ secti on [f b ]
0. 5 0 2. 0 0

Scale dependence with vector boson fusion cuts
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One loop integrals
Scalar box, triangles, bubbles and tadpoles give a complete basis. Once these
integrals are known, all others can be derived,

This is a great advantage since the scalar integrals are complicated objects, with
analytic structure, branch cuts etc, as a function of invariants.

Scalar pentagon integral can be reduced to a sum of five boxes, corresponding to
the five pinchings of the propagators. Scalar hexagon integral can be reduced to a
sum of six hexagons etc.

Higher leg processes are important, eg. W=4 jets requires virtual corrections to a
seven point process. This process is an important background for tt̄ production.
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Example: reduction of scalar hexagon
Four dimensional scalar hexagon integral can be reduced to a sum of six pentagon
integrals

Consider a hexagon integral

Z
d4l

1

N0N1N2N3N4N5
where Ni = (l + qi)

2 − m2
i , N0 = l2 − m2

0

Take the Schouten identity

ǫq1q2q3q4 lµ = ǫµq2q3q4 l.q1 + ǫq1µq3q4 l.q2 + ǫq1q2µq4 l.q3 + ǫq1q2q3µl.q4

vµ
1 = ǫµq2q3q4 , vµ

2 = ǫq1µq3q4 , vµ
3 = ǫq1q2µq4 , vµ

4 = ǫq1q2q3µ, a = vi.qi = ǫq1q2q3q4 .

l.qi = 1
2
(Ni − N0 − ri), ri = q2

i − m2
i + m2

0

Contracting Schouten identity with q5

a l.q5 =
X

i

vi.q5 l.qi

0 =

Z
d4l

P
i rivi.q5 − ar5 + aN5 + N0(

P
i q5.vi − a) −

P
i Nivi.q5

N0N1N2N3N4N5
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Tensor loop integrals
Tensor loop can be reduced to sums scalar integrals using Passarino-Veltman
decomposition.

As an example consider the form factor decomposition of a simple rank 1 triangle
diagram.

Z
dnl

(2π)n

lµ

l2(l + p)2(l + q)2
=
“

pµ qµ
” C1

C2

!

We can solve for C1, C2 by contracting with the external momenta, p, q.

 
R1

R2

!
=

 
[2l · p]

[2l · q]

!
= G

 
C1

C2

!
≡
 

2p · p 2p · q
2p · q 2q · q

! 
C1

C2

!

where the notation is [2l · p] =
R

dnl
(2π)n

2l·p

l2(l+p)2(l+q)2

by expressing 2l · p, (2l · q) as a sum of denominators 2l · p = (l + p)2 − l2 − p2

we can express R1, R2 as a sum of scalar integrals

Solving we get
 

C1

C2

!
= G−1

 
R1

R2

!
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Tensor loop integrals II
G is the Gram matrix

G =

 
2p · p 2p · q
2p · q 2q · q

!
, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2)

G−1 =

 
2q · q −2p · q
−2p · q 2p · p

!

∆2(p, q)

Thus the solution is C = G−1R

This solution appears to have a problem when p ‖ q and the Gram determinant
vanishes; the original tensor integral had no special problems when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT ,
D = diag{λ+, λ−}
Defining modified form factors C′ and inhomogeneous terms, R′ by the
transformations C′ = OT C, R′ = OT R, we have the solution:-

 
C′

1

C′
2

!
=

 
1/λ+ 0

0 1/λ−

! 
R′

1

R′
2

!

In the singular region one of the eigenvalues, say λ− will vanish
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Singular region
Now consider the approach to the singular region by setting qµ = κpµ + δµ and
keeping only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2)

λ− vanishes like O(δ2)

The matrix of eigenvectors is

O ∼ 1√
1 + κ2

 
1 − κδ.p

p2(1+κ2)
κ + κδ.p

p2(1+κ2)

κ + κδ.p

p2(1+κ2)
−1 + κδ.p

p2(1+κ2)

!
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Singular region II

Z
dnl

(2π)n

lµ

l2(l + p)2(l + q)2
=
“

p′µ q′µ

” C′
1

C′
2

!

=
“

p′µ q′µ

” 1/λ+ 0

0 1/λ−

! 
R′

1

R′
2

!

The momentum corresponding to the singular eigenvalue is

q′µ = −δµ +
δ · pκ(1 + κ)

p2(1 + κ2)
= O(δ)

R′
2 ∼ κ[2l · p] − [2l · q] ∼ O(δ)

As expected the result for the tensor integral is finite in the limit δ → 0, but the
vanishing of R′

2 is not manifest; it is realized as a property of a combination of
scalar integrals.

This can cause numerical instabilities, which have to be protected against.
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Limitations of parton level programs
No resummation of large corrections, (soft, collinear, threshold) at phase space
boundaries

Only one additional parton

Not a good description of more exclusive observables

event weights can be negative

Only parton level events

Some of these limitations are overcome by shower Monte Carlo event generators. We

shall now illustrate a procedure to combine NLO calculations with parton showers.
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MCFM example
Production of a mH = 120 GeV Higgs, using effective Lagrangian HGµνGµν ,
obtained in heavy top limit.

Cross sections for Higgs+anything or Higgs+1 jet+anything are the same.

Radiation probability is one, and NLO is clearly inadequate.

what is needed is a combination of NLO and shower Monte-Carlo, (MC@NLO)
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t tbar + jet production
S. Dittmaier, P. Uwer, S. Weinzierl hep-ph/0703120

LO (CTEQ6L1)
NLO (CTEQ6M)

pT,jet > 20GeV

√
s = 1.96TeV

pp̄ → tt̄+jet+X

µ/mt

σ[pb]

1010.1

6

5

4

3

2

1

0

Stability of jet + tt̄ cross section

Cross section of similar order to inclusive cross section, σtt̄ ∼ 6 pb

Virtual corrections calculated by improved Passarino-Veltman decomposition.
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Asymmetry in top production Frixione,Nason,Webber

MC@NLO, Basic processes are Drell-Yan +variants, Vector boson pairs, single top
production, and QQ̄ production

Example of tt̄-production using MC@NLO

NLO curve (in blue, dotted).
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NLO: Schematic description
A schematic description of a NLO calculation is as follows.

 
dσ

dx

!

B

= Bδ(x)

 
dσ

dx

!

V

= a

 
B

2ǫ
+ V

!
δ(x)

 
dσ

dx

!

R

= a
R(x)

x

In terms of the above the calculation of any observable O can written as

〈O〉 = lim
ǫ→0

Z 1

0
dxx−2ǫO(x)

" 
dσ

dx

!

B

+

 
dσ

dx

!

V

+

 
dσ

dx

!

R

#
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Subtraction method
We can isolate the divergent part of the real radiation contribution

〈O〉
R

= aBO(0)

Z 1

0
dx

x−2ǫ

x
+ a

Z 1

0
dx

O(x)R(x) − BO(0)

x1+2ǫ
.

The second term does not contain singularities so we can set ǫ = 0

〈O〉
R

= −a
B

2ǫ
O(0) + a

Z 1

0
dx

O(x)R(x) − BO(0)

x
.

The NLO prediction using the subtraction method is

〈O〉
sub

= BO(0) + a

»
V O(0) +

Z 1

0
dx

O(x)R(x) − BO(0)

x

–
.
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Toy Monte Carlo
Frixione-Webber

Rewrite the basic NLO formula in a different which allows simpler matching with
the Monte Carlo:

〈O〉
sub

=

Z 1

0
dx

»
O(x)

aR(x)

x
+ O(0)

„
B + aV − aB

x

«–
.

Introduce Sudakov form factor for the toy model

∆(x1, x2) = exp

»
−a

Z x2

x1

dz
Q(z)

z

–
,

where Q(z) is a radiation function with the following general properties:

0 ≤ Q(z) ≤ 1, lim
z→0

Q(z) = 1, lim
z→1

Q(z) = 0.

If xs is the energy of the system before the first branching occurs, then ∆(x, xs) is
the probability that no photon be emitted with energy z such that x ≤ z ≤ xs.
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Matching NLO and MC
„

dσ

dO

«

MC@LO

= BIMC(O, 1).

„
dσ

dO

«

naive

=

Z 1

0
dx

"
IMC(O, xM(x))

aR(x)

x
+ IMC(O, 1)

„
B + aV − aB

x

«#
.

This equation suggests the following procedure:

Pick at random 0 ≤ x ≤ 1.

Generate an MC event with xM(x) as maximum energy available to the photon in
the first branching; attach to this event the weight wEV = aR(x)/x.

Generate another MC event (a “counter-event”) with xM = 1; attach to this event
the weight wCT = B + aV − aB/x.

Repeat the first three steps N times, and normalize with 1/N .

This procedure fails, since the weights wEV and wCT diverge as x → 0.
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Modified subtraction method

„
dσ

dO

«

msub

=

Z 1

0
dx

"
IMC(O, xM(x))

a[R(x) − BQ(x)]

x

+IMC(O, 1)

„
B + aV +

aB[Q(x) − 1]

x

«#
.

We subtract and add the quantities

IMC(O, 1)
aBQ(x)

x
, IMC(O, xM)

aBQ(x)

x

The two terms involving Q(x) are not identical, so this is not a subtraction in the
usual sense of an NLO computation.

The two terms do not contribute to the observable O at O(a), because they are
compensated by terms in the parton shower BIMC(O, 1)
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Expansion toO(αS)
Expansion of Monte Carlo piece is

IMC = (1 − a

Z 1

x0

dt
Q(t)

t
δ(O − O(0)) + a

Z 1

x0

dt
Q(t)

t
δ(O − O(t)) + O(a2)

Insertion of this piece in the modified Monte-Carlo formula gives

„
dσ

dO

«

msub

=

Z 1

0
dx

"
δ(O − O(x))

a[R(x) − BQ(x)]

x

+δ(O − O(0))

„
B + aV − aB

x

«

+aBδ(O − O(0))

„
Q(x)

x
−
Z 1

x0

dt
Q(t)

t

«

+aB

Z 1

x0

dtδ(O − O(t))
Q(t)

t

#
+ O(a2).

NLO tools and MCFMLecture II – p.38/39



Expansion (continued)
Collecting terms we obtain the starting formula for a NLO correction, plus power
suppressed terms which are anyway not controlled in the Monte Carlo

„
dσ

dO

«

msub

=

Z 1

0
dx

"
δ(O − O(x))

aR(x)

x
+ δ(O − O(0))

„
B + aV − aB

x

«#

+ aB

Z x0

0
dx

Q(x)

x

h
δ(O − O(0)) − δ(O − O(x))

i
+ O(a2).

It can also be shown that the normal summation of branching logarithms is not
compromised by this procedure.
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