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• Challenge: use AF in observables

(cross sections (σ) (also some amplitudes . . . ))

that are not infrared safe

• Possible if: σ has a short-distance subprocess.

Separate IR Safe from IR: this is factorization

• IR Safe part (short-distance) is calculable in pQCD

• Infrared part – example: parton distribution –

measureable and universal

• Infrared safety – insensitive to soft gluon emission

collinear rearrangements



• Just like Parton Model except in Parton Model

the infrared safe part is σBorn ⇒ f(x) normalized uniquely

• In pQCD must define parton distributions

more carefully: the factorization scheme

• Basic observation: virtual states not truly frozen.

Some states fluctuate on scale 1/Q . . .
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Long-lived states ⇒ Collinear Logs (IR)
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Short-lived states ⇒ ln(Q)



RESULT: FACTORIZED DIS

F γq
2 (x,Q2) =

∫ 1

x

dξ Cγq
2

(

x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

)

× fq/q(ξ, µF , αs(µ))

≡ Cγq
2

(

x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

)

⊗ fq/q(ξ, µF , αs(µ))

• f has ln(µF/ΛQCD) . . .

• C has ln(Q/µ), ln(µF/µ)

• Often pick µ = µF and often pick µF = Q. So often see:



F γq
2 (x,Q2) = Cγq

2

(

x

ξ
, αs(Q)

)

⊗ fq/q(ξ,Q
2)

• But we still need to specify what we really

mean by factorization: scheme as well as scale

• For this, compute F γq
2 (x,Q)

• Keep µ = µF for simplicity



• “Compute quark-photon scattering” – What does this mean?

• Must use an IR-regulated theory

• Extract the IR Safe part then take away the regularization

• Let’s see how it works . . .

– At zeroth order – no interactions:

– Cγqf(0) = Q2
f δ(1 − x/ξ)

(Born cross section; parton model)

– f
(0)
qf/qf ′

(ξ) = δff ′ δ(1 − ξ)

(at zeroth order, momentum fraction conserved)



F
γqf (0)

2 (x,Q2) =

∫ 1

x

dξ C
γqf (0)

2

(

x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

)

× f
(0)
qf/qf

(ξ, µF , αs(µ))

= Q2
f

∫ 1

x

dξ δ(1 − x/ξ) δ(1 − ξ)

= Q2
f x δ(1 − x)

– On to one loop . . .



F γq AT ONE LOOP: FACTORIZATION SCHEMES

• Start with F2 for a quark:

+

2

+ 2 Re ( )*( )+

Have to combine final states with different phase space . . .



“Plus Distributions”:

∫ 1

0

dx
f(x)

(1 − x)+
≡

∫ 1

0

dx
f(x) − f(1)

(1 − x)
∫ 1

0

dx f(x)

(

ln(1 − x)

1 − x

)

+

≡

∫ 1

0

dx ( f(x) − f(1) )
ln(1 − x)

(1 − x)

and so on . . . where

• f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1 − x

• f(1) term: virtual, with elastic kinematics



A Special Distribution

DGLAP “evolution kernel” = “splitting function”

P (1)
qq (x) = CF

αs

π

[

1 + x2

1 − x

]

+

• Will see: Pqq a probability per unit log kT



Expansion and Result:

F γq
2 (x,Q2) =

∫ 1

x

dξ Cγq
2

(

x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

)

× fq/q(ξ, µF , αs(µ))

F
γqf
2 (x,Q2) = C

(0)
2 f (0)

+
αs

2π
C(1) f (0)

+
αs

2π
C(0) f (1) + . . .



F
γqf
2 (x,Q2) = Q2

f

{

x δ(1 − x)

+
αs

2π
CF

[

1 + x2

1 − x

(

ln(1 − x)

x

)

+
1

4
(9 − 5x)

]

+

+
αs

2π
CF

∫ Q2

0

dk2
T

k2
T

[

1 + x2

1 − x

]

+

}

+ . . .

F
γqf
1 (x,Q2) =

1

2x

{

F
γqf
2 (x,Q2) − CF α

αs

π2
2x
}



Factorization Schemes

MS

f
(1)
q/q(x, µ2) =

αs

π2
Pqq(x)

∫ µ2

0

dk2
T

k2
T

With kT -integral “IR regulated”.

Advantage: technical simplicity; not tied to process.

C(1)(x)MS = (αs/2π) Pqq(x) ln(Q2/µ2)+ µ-independent

DIS:

fq/q(x, µ2) =
αs

π2
F γqf(x, µ2)

Absorbs all uncertainties in DIS into a PDF.

Closer to experiment for DIS.

C(1)(x)DIS = (αs/2π) Pqq(x) ln(Q2/µ2) + 0



Using the Regulated Theory

and

Getting Parton Distributions for Real Hadrons

• IR-regulated QCD is not REAL QCD

• BUT it only differs at low momenta

• THUS we can use it for IR Safe functions: Cγq
2 , etc.

• This enables us to get PDFs for real hadrons . . .



• Compute F γq
2 , F γG

2 . . .

• Define factorization scheme; find IR Safe C’s

• Use factorization in the full theory

F γN
2 =

∑

a=qf ,q̄f ,G

Cγa ⊗ fa/N

• Measure F2; then use the known C’s to derive fa/N

• Multiple flavors and cross sections

complicate technicalities; not logic (Global Fits)

NOW HAVE fa/N(ξ, µ2)

USE IT IN ANY OTHER PROCESS THAT FACTORIZES



EVOLUTION

– Q2-dependence

– In general, Q2/µ2 dependence still in Ca

(

x/ξ,Q2/µ2, αs(µ)
)

Choose µ = Q

F γA
2 (x,Q2) =

∑

a

∫ 1

x

dξ Cγa
2

(

x

ξ
, 1, αs(Q)

)

fa/A(ξ, µ2)

Q ≫ ΛQCD → compute C’s in PT.

Cγa
2

(

x

ξ
, 1, αs(Q)

)

=
∑

n

(αs

π

)n

Cγa
2

(n)

(

x

ξ

)

But still need PDFs at µ = Q: fa/A(ξ,Q2)



– Remarkable result: EVOLUTION

Can use fa/A(x,Q2
0) to determine

fa/A(x,Q2) and hence F1,2,3(x,Q2)

for any Q !

So long at αs(Q) is still small



– Illustrate by a ‘nonsinglet’ distribution

F γNS
a = F γp

a − F γn
a

F γNS
2 (x,Q2) =

∑

a

∫ 1

x

dξ CγNS
2

(

x

ξ
,
Q

µ
, αs(µ)

)

fNS(ξ, µ
2)

Gluons, antiquarks cancel

At one loop: CNS
2 = CγN

2



– ‘Mellin’ Moments and Anomalous Dimensions

f̄(N) =

∫ 1

0

dx xN−1 f(x)

– Reduces convolution to a product

f(x) =

∫ 1

x

dy g

(

x

y

)

h(y) → f̄(N) = ḡ(N) h̄(N + 1)



– Moments applied to NS structure function:

F̄ γNS
2 (N,Q2) = C̄γNS

2

(

N,
Q

µ
,αs(µ)

)

f̄NS(N,µ2)

(Note fNS(N,µ2) ≡
∫ 1

0
dξξNf(ξ, µ2) here.)

– F̄ γNS
2 (N,Q2) is PHYSICAL

⇒ µ
d

dµ
F̄ γNS

2 (N,Q2) = 0



– ‘Separation of variables’

µ
d

dµ
ln f̄NS(N,µ2) = −γNS(N,αs(µ))

γNS(N,αs(µ)) = µ
d

dµ
ln C̄γNS

2 (N,αs(µ))

– Because αs is the only variable held in common!



µ
d

dµ
ln f̄NS(N,µ2) = −γNS(N,αs(µ))

γNS(N,αs(µ)) = µ
d

dµ
ln C̄γNS

2 (N,αs(µ))

– Only need to know C’s ⇒ γn from IR regulated theory!

⇓

Q-DEPENDENCE DETERMINED BY PT

EVOLUTION



THIS WAS HOW WE FOUND OUT QCD IS ‘RIGHT’

THIS IS HOW QCD PREDICTS PHYSICS

AT NEW SCALES



γNS AT ONE LOOP

Hint: (1 − x2)/(1 − x) = 1 + x . . . (1 − xk)/(1 − x) =
∑k−1

i=0 xk



γNS(N,αs) = µ
d

dµ
ln C̄γNS

2 (N,αs(Q))

= µ
d

dµ

{

(αs/2π) P̄qq(N) ln(Q2/µ2) + µ indep.
}

= −
αs

π

∫ 1

0

dx xN−1 Pqq(x)

= −
αs

π
CF

∫ 1

0

dx

[

(

xN−1 − 1
) 1 + x2

1 − x

]

= −
αs

π
CF

[

4
N
∑

m=2

1

m
− 2

2

N(N + 1)
+ 1

]

≡ −
αs

π
γ

(1)
NS



SOLUTION: SCALE BREAKING

µ
d

dµ
f̄NS(N,µ2) = −γNS(N,αs(µ)) f̄NS(N,µ2)

f̄NS(N,µ2) = f̄NS(N,µ2
0)× exp

[

−
1

2

∫ µ2

µ2
0

dµ′2

µ′2
γNS(N,αs(µ))

]

⇓

f̄NS(N,Q2) = f̄NS(N,Q2
0)

(

ln(Q2/Λ2
QCD)

ln(Q2
0/Λ

2
QCD)

)−2γ
(1)
N

/β0



Hint:

αs(Q) =
4π

β0 ln(Q2/Λ2
QCD)

So also:

f̄NS(N,Q2) = f̄NS(N,Q2
0)

(

αs(Q
2
0)

αs(Q2)

)−2γ
(1)
N

/β(1)



f̄NS(N,Q2) = f̄NS(N,Q2
0)

(

αs(Q
2
0)

αs(Q2)

)−2γ
(1)
N

/β(1)

– Mild’ scale breaking

– For αs → α0 6= 0, get a power Q-dependence:

(

Q2
)γ(1)αs

2π

– QCD’s consistency with the Parton Model (73-74)



µ
d

dµ
f̄NS(N,µ2) = −γN(αs(µ)) f̄NS(N,µ2)

⇓

µ
d

dµ
f̄NS(N,µ2) =

∫ 1

x

dξ

ξ
PNS(ξ, αs(µ)) f̄NS(ξ, µ

2)

Splitting function ↔ Moments

∫ 1

0

dx xN−1 Pqq(x, αs) = γqq(N,αs)



BEYOND NONSINGLET

COUPLED EVOLUTION

µ
d

dµ
f̄b/A(N,µ2) =

∑

b=q,q̄,G

∫ 1

x

dξ

ξ
Pab(ξ, αs(µ)) f̄b/A(ξ, µ2)

Physical Contxt of Evolution

– Parton Model: fa/A(x) density of parton a with

momentum fraction x, assumed independent of Q

– PQCD: fa/A(x, µ): same density, but

with transverse momentum ≤ µ



– If there were a maximum transverse momentum Q0,

f(x,Q0) would freeze for µ ≥ Q0

– Not so in renormalized PT

– Scale breaking measures the change in the density

as maximum transverse momentum increases

– Cross sections we compute still depend on our

choice of µ through uncomputed “higher orders” in C

and evolution



– Evolution in DIS (with CTEQ6 fits)



IV. SUMMARY

• Specific problems for perturbation theory in QCD

1. Confinement

∫

e−iq·x〈0|T [fa(x) . . . ] |0〉

has no q2 = m2 pole for fa that

transforms nontrivially under color (confinement)

2. The pole at p2 = m2
π
∫

e−iq·x〈0|T [π(x) . . . ] |0〉

is not accessible to perturbation theory



• Response: use infrared safety & asymptotic freedom:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n

cn(Q2/µ2) αs
n(µ) + O (1/Qp)

=
∑

n

cn(1) αs
n(Q) + O (1/Qp)

• What can we really calculate? PT for color singlet operators

–
∫

e−iq·x〈0|T [J(x)J(0) . . . ] |0〉 for color singlet currents

e+e− total . . . no QCD in initial state



– Jet cross sections are from matrix elements also:

lim
R→∞

∫

dx0

∫

dn̂ S(n̂) e−iq·y〈0|J(0)T [n̂iΘ0i(x0, Rn̂)J(y)] |0〉

Where the operator Θ0i measures momentum flow

“Weight” S(n̂) introduces no new dimensional scale

Short-distance dominated if all dkS/dn̂k bounded

Individual final states have IR divergences, but these

cancel in sum over collinear splitting/merging and

soft parton emission because they respect energy flow

But what of the initial state? (viz. parton model)



• Factorization

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp)

– µ = factorization scale; m= IR scale (m may be perturbative)

– New physics in ωSD; fLD = f and/or D “universal”

– ep DIS inclusive, pp → jets, QQ̄, π(pT ) . . .

– Exclusive limits: e+e− → JJ as mJ → 0



• Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln(f or D)

dµ
= −P (αs(µ)) = −µ

d ln ω

dµ

PDF f or Fragmentation D

• Wherever there is evolution there is resummation

lnσphys(Q,m) = exp

{

∫ Q

q

dµ′

µ′
P (αs(µ

′))

}



• Basis of Factorization proofs:

– (1) ωSD incoherent with long-distance dynamics

– (2) Mutual incoherence when vrel = c:

Jet-jet factorization.

– (3) Wide-angle soft radiation sees only total color flow:

jet-soft factorization.

– (4) Dimensionless coupling and renormalizability

⇔ no worse that logarithmic divergence in the IR:

suppression even by a fractional power ⇒ finiteness



– Why Factorization? Heuristic, classical argument:

x,y,z,t

q
β 1

x , y , z , t

x    ~  cβt  3

∆ ≡ βct′ − x′
3



x,y,z,t

q
β 1

x , y , z , t

x    ~  cβt  3

field x frame x′ frame

scalar q
|~x|

q

(x2
T+γ2∆2)1/2

gauge (−) A−(x) = q
|~x| A′−(x′) = qγ(1+β)∆

(x2
T+γ2∆2)1/2

field strength E3(x) = q
|~x|2

E′
3(x

′) = −qγ∆

(x2
T+γ2∆2)3/2



– Classical: Lorentz contracted fields of incident particles

don’t overlap until the moment of the scattering,

creation of heavy particle, etc.!

– Initial-state interactions decouple from the hard process

– Summarized by multiplicative factors:

parton distributions

– Evolution of partons to jets/hadrons too late

to know details of the hard scattering

– Summarized by multiplicative factors:

fragmentation functions

– “Left-over” cross section for hard scattering is IR safe


