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Pointlike? 
< 10-18 m 

1-15 x 10-15 m 

~ 10-15 m 

~few 10-10 m 

1898 

1992-2007 

. 
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Feynman’s QPM explanation of DIS : the nucleon is made 
up of point-like, spin-1/2, non-interacting constituents – the 
quarks as partons.  DIS is the incoherent sum of elastic 
scattering from these quarks. 

Furthermore, the probability f(x) for the quark f to carry a 
fraction x of the nucleon momentum is an intrinsic property 
of the nucleon and is process independent. 

We now know that QCD describes quark interactions with 
the addition of another “parton” - the gluon (QCD-improved 
QPM). 

- Nucleons are just a “beam of partons” (incoherent). 
- The f(x)s, the “beam parameters”, could be measured 
  in some other process (process independent). 
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Momentum has to add up to 1 (“momentum sum rule”) : 

Quantum numbers of the nucleon have to be right : 
So for a proton : 

u(x) :  up quark distribution 
u(x) :  up anti-quark distribution 

etc. (d,s,c,b,t) and 
g(x) : gluon (spin-1)  

 ∫x[u(x)+u(x)+d(x)+d(x)+s(x)+s(x)+…+g(x)]dx = 1 

∫[u(x)-u(x)]dx=2 ∫[d(x)-d(x)]dx=1 

∫[s(x)-s(x)+……]dx=0 

# uval # dval 

“sea” quark contribution 
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proton in “∞” momentum frame 

√s = ep cms energy 
Q2 = -q2 = 4-momentum transfer squared = sxy 
                 (or virtuality of the “photon”) 

No transverse 
momentum 

x = fractional longitudinal 
      momentum carried by 
      the struck parton 

0 ≤ x ≤ 1 

ep scattering 

y = fractional energy transfer 
0 ≤ y ≤ 1 
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Q2 = -q2 = -(k-k’)2 = 2EeE’e(1+cosθe) 

x = Q2/2p•q =  

Initial electron energy 

Final electron energy 

Initial proton energy 

Electron scattering angle 

ep scattering 

Ee    E’e (1+cosθe) 

EP  2Ee-E’e(1-cosθe) 

Ee’, θe :  electron method 
Eh, γh :  Jacquet-Blondel method (energy, angle of struck quark) 
θe, γh :  Double-Angle method (angles of scattered electron, struck quark) 
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Fixed target : 
SLAC, FNAL and CERN 
completed ~10-20 years 
ago 

HERA collider : 
H1 and ZEUS 
1992 – 2007  
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920 GeV 27.5 GeV 

Rear Endcap 

Forward 
Endcap Barrel 

Barrel 
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y = 0.1 

key = 27.5 GeV 

struck 
quark 

scattered 
electron 

Q2 = 1000 GeV2 

Q2 = 100 GeV2 

Q2 = 10 GeV2 

Q2 = 1 GeV2 

Q2 = 50 GeV2 
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Y± = (1 ± (1 – y)2), the inelasticity parameter 

The structure functions of the proton are : 
F2(x,Q2) = x ∑q eq

2 (q(x,Q2) + q(x,Q2)) 
- the sum of the quark and anti-quark densities 

xF3(x,Q2) = x ∑q eq
2 (q(x,Q2) - q(x,Q2)) 

- the difference of the quark and anti-quark densities, 
small for Q2 << MZ

2 

FL(x,Q2) ~ F2 - xg(x,Q2) 
- the longitudinal structure function which vanishes at 
LO in QCD and is damped by y2 in the cross section 



June 24, 2009 S. R. Magill - 2009 CTEQ 
Summer School 

11 From C. Gwenlan 



June 24, 2009 S. R. Magill - 2009 CTEQ 
Summer School 

12 

The partons are point-like and incoherent - F2 should be 
independent of Q2. 
 Bjorken scaling : F2 has no Q2 dependence. 

We will start with the structure function F2 :  
IF, proton was made of 3 quarks each with 1/3 of proton’s 
momentum: 

F2 = x∑qeq
2 (q(x) + q(x)) 

no anti-quark! 

q(x)=δ(x-1/3) 

or with some  
smearing  

Does the data support this?  

F2 

1/3 x 
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νW2 

x = 0.125 
Bjorken Scaling? Partons! 
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F2 

Bjorken scaling is …. NOT seen at all x! 
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At high x : 

At low x : 

Gluon splitting enhances quark density 
           F2 rises with Q2 

Gluon radiation shifts quark to lower x 
            F2 falls with Q2 
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•   Distance scale r at which proton 
is probed : 

r ≈ hc/Q = 0.2fm/Q[GeV] 

•   Because the virtual photon is 
absorbed in a time much shorter 
than the characteristic time of 
parton-parton interactions (Impulse 
Approximation), the DIS cross 
section factorizes as : 

σDIS ~ ƒp(x) ⊗ σ 
ƒp(x) : (universal) parton density functions in the proton 
σ : hard scattering partonic cross section  pQCD 

r 
γ*(Q2) 

e 

e’ 

~1.6 fm 

proton 
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Higher the resolution (i.e. 
higher the Q2) more branchings 
to lower x we “see”. 

So what do we expect F2 as a function of x at 
a fixed Q2 to look like? 

F2 
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1/3 

1/3 

1/3 

F2(x) 

F2(x) 

F2(x) 

x 

x 

x 

Three quarks with 1/3 of total  
proton momentum each. 

Three quarks with some momentum 
smearing. 

The three quarks radiate partons 
 at low x. 
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Q2 dependence 
quantitatively  
described by :  

Dokshitzer-
Gribov-Lipatov-
Altarelli-Parisi 
(DGLAP) 
equations 

From R. Yoshida 
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The evolution of the parton densities with Q2 is given by the 
DGLAP equations : 

∂ƒp / ∂lnQ2 ~ ƒp ⊗ P 

First, P represents the four “splitting functions” : 

z z z z 

1-z 1-z 1-z 1-z 

Pba(z) : probability that parton a will radiate a parton 
b with the fraction z of the original momentum 
carried by a. 

Pgg(z) Pqg(z) Pgq(z) Pqq(z) 
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So, the DGLAP equations, ∂ƒp / ∂lnQ2 ~ ƒp ⊗ P for quarks 
and gluons are :  

Σ(x,Q2) = ∑i (qi(x,Q2) + qi(x,Q2)) 

_ 

∂ 
∂lnQ2 

Σ(x,Q2) = αs(Q2) 
2π 

([Σ ⊗ Pqq] + [g ⊗ 2nfPqg]) 

∂ 
∂lnQ2 

g(x,Q2) = αs(Q2) 
2π 

([Σ ⊗ Pgq] + [g ⊗ Pgg]) 

where                                                                is the quark 
density summed over all (active) flavors 

And for the gluon : 
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DGLAP fit (or QCD fit) extracts the parton distributions from 
measurements.   

(Lectures on Friday and Saturday by Pavel Nadolsky) 

The Cliffs Notes version :  
Step 1: parametrize the parton momentum density 
f(x) at some Q2 ->  

     uv(x)   u-valence  
     dv(x)   d-valence 
     g(x)    gluon 
     S(x)    sum of all “sea” (non valence) quarks 

Step 2:  find the parameters (p1 -> p5) by fitting to 
DIS (and other) data using the DGLAP equations to 
evolve f(x) in Q2. 

“The original three quarks” 

f(x)=p1xp2(1-x)p3(1+p4√x+p5x) PDFs from DGLAP fits 
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Sea PDF 

x 

xS 

At x<<1/3, quarks and (anti-quarks) are all “sea”. 
Since F2 = eq

2∑ x(q + q),  xS is very much like F2 

Fractional 
uncertainty 
bands 
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Gluon PDF 

x 

xg 

The gluon pdf is determined from scaling violations, dF2/
dlnQ2 via the DGLAP equations. 

Uncertainties are 
larger than for 
quarks 

Scaling violations 
couple αs and 
gluon g 

Fit with αs also 
a free parameter 

Fractional 
uncertainty 
bands 
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Summarizing so far: 

    F2 ~ ∑(q+q) ≈ S (sea quarks)    measured directly in  
                                                       NC DIS 

 Scaling violations 

    dF2/dlnQ2  ~  αs•g    Scaling violations gives gluons 
                                     (times αs).    DGLAP equations. 

What about valence quarks? 

    ∑(q-q)  = uv + dv      can we determine them separately? 

Can we decouple  αs and g ? 
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Back to the NC cross section : 

Y± = (1 ± (1 – y)2), the inelasticity parameter 

xF3 = ∑i(qi(x,Q2) - qi(x,Q2)) x Bq     ~The valence quarks! 

Bq = -2eqaqaexz + 4vqaqveaexz
2 xz ∝ Q2/(Mz

2+Q2) 
-> xF3 small if Q<MZ 

γ-Z interference Z-exchange 

eq: electric charge of a quark 
aqvq: axial-vector and vector couplings of a quark 
aeve: axial-vector and vector couplings of an electron 
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σNC± 

x σNC± = F2(x,Q2)   (Y-/Y+)xF3(x,Q2) ± 

Note the change of 
sign from e+p to e-p 
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γZ interference term larger than Z exchange 
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dσCC(e±p)     GF
2     MW

2   
dxdQ2       2πx  MW

2+Q2  =        [           ]2σCC± 

σCC+ = x [u + c + (1 - y)2(d + s)]   ~ d 
σCC- = x [u + c + (1 – y)2(d + s)]   ~ u 

charm 
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σCC± 

x 

σCC+ ~ d  

σCC- ~ u 
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x 

xf 

The momenta from valence quarks are producing gluons and 
sea quarks at low x 
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Sensitive to αs 

Sensitive to gluon 
  ~10-3 < x < ~10-2 Sensitive to quarks 

    ~10-2 < x < ~10-1 

complementary 
to gluon from F2 

Same range as NC and CC 

σjet ~ αs•f(x)  
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Some definitions : 
+z from IP in proton direction – Target Region 
-z from IP in γ* direction – Current Region 
γ* has 4-vector q = (0,0,0,-Q) 
Struck quark in QPM carries away momentum –Q/2 

QPM 

LO QCDC (final state) 

LO QCDC (initial state) 

LO BGF 

Hard Scale Q = Et Hard Scale Et (>Q) 
 High Q2  Low Q2 

No ET! 
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Gluon distributions 

x x 
Using only HERA (ZEUS) 
data including NC,CC and jets 

Using HERA (ZEUS) F2 data 
and FNAL, CERN fixed tgt 
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Combine the measured 
H1 and ZEUS cross 
sections.  Double statistics 
and take advantage of 
complementary 
measurement techniques 
which result in reduced 
systematic uncertainties. 

Sample of NC e+p data 
showing the ZEUS and H1 
data and the combined 
data as a result of the 
averaging procedure 

Statistical errors shown 
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Understanding DGLAP equations – pdf evolution : 

But now parton densities must be “evolved” in Q2. 

                  An example for future analyses  

The “incoherence” of the original parton model 
is preserved. i.e. a parton doesn’t know anything 
about its neighbor. 

never happens 

The “process independent” partons also survive. 
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A parton at x at Q2 is a source of partons at 
x’ < x at Q’2 > Q2. 

x 

Q2 

Q’2 

x’ 

In fact, any parton at 
x > x’ at Q2 is a source. 

To know the parton density 
at x’, Q’2 it’s necessary 
(and sufficient) to 
know the parton density 
in the range: x’ ≤ x ≤ 1 
at some lower Q2.  

1 

measured 

known 

What does this mean for the LHC?  

If you know the partons in range x’ ≤ x ≤ 1 at some Q2, 
then you know the partons in the range x’ ≤ x ≤ 1 for all 
Q’2 > Q2. 
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Fixed target 
DIS 

HERA DIS 

Tevatron jets 

~safe Q2 

“known” 
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2 4 

parton1(x1) + parton2(x2)  State with mass M 

LHC (or hadron-hadron) parton kinematics 

x1= (M/√s) exp (y) x2= (M/√s) exp (-y) 

y=   ln(        ) 
1     E+PZ 
2     E-PZ 

rapidity: 

pseudo-rapidity: 

η=-ln tan(θ/2) 

angle wrt beam 



June 24, 2009 S. R. Magill - 2009 CTEQ 
Summer School 

44 

2 4 

So if I want to predict Z or W production 
cross-section at LHC at some rapidity y, say, -4: 

q,q(x1=10-4,Q2=MW,Z) q,q(x2=0.3,Q2=MW,Z) 

need 

2 2 

and 

σ(ppW,Z+X) ~ q,q(x1,MW,Z) × q,q(x2,MW,Z) × σ(qqW,Z) 
2 2 
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HERAPDF0.2 has factor of 2 smaller uncertainty than 0.1 (more data) at low x 
Available soon in LHAPDF 
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With DIS data up to now : 

    F2 ~ ∑(q+q) ≈ S (sea quarks)    measured in NC DIS   

 From scaling violations in F2 

    dF2/dlnQ2  ~  αs•g    sensitive to gluons (times αs) 

    xF3 ~ ∑(q-q)  = uv + dv   valence quarks 

Use jet cross sections to decouple αs and g 

DGLAP fits with all of the above -> precise predictions at 
LHC 

Now, for the last piece – the longitudinal structure function 
FL to give us direct access to the gluons -> 

_ 

_ 
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FL=(Q2/4π2α) σL 
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