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The aim of these lectures

e How can we understand the evolution of a parton

shower? What is the underlying physics?
e | will concentrate on evolution equations.
e My analysis follows work with Zoltan Nagy:

o | will say little about computer algorithms to
implement these equations.

» In fact, the general shower evolution equation is
beyond what one can efhiciently implement.




What do parton shower event
generators do?

e An “event” is a list of particles (pions, protons, ...) with
their momenta.

e The MCs generate events.

e The probability to generate an event is proportional to
the (approximate!) cross section for such an event.

e Alternatively, cross section could be a weight given by
the program times the probability to generate the
event.




The description of an event is a bit tricky...

1. Incoming hadron (gray bubbles)
= Parton distribution function

2. Hard part of the process @

= Matrix element calculation at LO,
NLQO, ... level

3. Radiation (red graphs)
= Parton shower calculation
= Matching to the hard part

4. Underlying event (blue graphs)
= Models based on multiple
interaction

5. Hardonization (green bubbles)
= Universal models




Compare this to a
perturbative cross section

1. Incoming hadron (gray bubbles)
= Parton distribution
function

2. Hard part of the process

= \atrix element calculation
at LO, NLO, ... level




Why do we need parton

e We need predictions for
events at LHC and
‘lTevatron.

e L.O and NLO perturbation
theory can give predictions
for very inclusive cross
sections.

e We use parton showers to get predictions for the complete
final state approximately right.




Matching

— —

LCD Matchlng

Tree
calculations

HON - Tgvely Loop
Shower NLO Matchlng calculations

—— —

One can match the parton shower calculation to
exact tree level 2— n cross sections for small values
of n.

One can, with difficulty; also do this with loop level
2 —»n perturbative calculations.

I omit discussion of these important topics.

Instead, I discuss just lowest order parton showers.




A simple illustration

e Use an example in which partons carry momenta,
but no flavor, color, or spin.

o ¢°theory in six dimensions works for this.

e Also, just consider the evolution of the final state, as
in electron-positron annihilation.




States

e For a generic description of shower MCs, use a
notation adapted to classical statistical mechanics.

e State with m final state partons with momenta p

{p}tm) = {p1,p2,- ... pm})

o General state |p)

e Cross section for the state to have m partons with
definite momenta ({P}m|p)

e Completeness relation

1= [1d{phn) [{phn)({}nl




Measurement functions

e Measurement function (F|

e Cross section for I

olF) = Y [dphal (Flphn) ({phnl)

= (Flp)

o Totally inclusive measurement function (1|

(L{pim) =1




Evolution

e State evolves in resolution scale 7.

® = (: hard; increasing f means softer.
e Evolution follows a linear operator
p(t)) = U(t, ') |p(t))

e Evolution does not change the cross section

(LA (¢, 1) |p(t)) = (L]p(t"))




Structure of evolution

3
U(ts, 1) :N(tg,t1)+/ dty U(ts, 1) Hi(ts) N (ta, 1)
t1

Hi(t) = splitting operator
N (t',t) = no change operator

Nt t){ptm) = A, 5 {p}m) {P}m)

) )




Probability conservation

3
U(ts, t1) = N(ts, t1) +/ dto U(ts,ta) Hi(ta) N (ta,t1)
t1

(Ll (t,t") = (1] and N, 8){ptm) = AR 5 {p}tm){P}m)

L= A(ts, t1: {phm) + / dty (1 Ha(t2) | {phn) Altas tr: ()

ditg Alts, ti;{ptm) = —(1}H1(t3)‘{p}m) A(ts, t1;1P}m)

Alts.tr: {pho) = exp <_ /: dr (1\H1(7)\{p}m)>




Summary

3
U(tg,tl):N(tg,t1)+/ dto U(ts,to) Hi(to) N (ta,t1)

t1

Nt t)[{ptm) = A, 5 {p}m) {P}m)

Inclusive probability

to split in time dr
AL

A(t3,t1;1ptm) = exp (

S

Probability not to split
between times ¢; and t5




Splitting

g
2]3l . ﬁm—l— 1

M({pymt1) = M({pjm) X




Kinematics

e The details are not important, but it is important
to know that there are details.
e Parton [ splits into partons [ and m + 1.

e Before the splitting, momenta are p;,.

o After the splitting, momenta are p;.

p
o=

e We need p7 = 0, but then p; # p; + Prms1-




One choice

e Total momentum of final state partons ()

e Lightlike reference vector n
2
n=_q ¢

D1
2p; - Q
e Splitting variables:

Pi
* Virtuality variable y — Dy
+* Momentum fraction z

x 'Iransverse unit vector u |

_ 2]5fr77,—|—1 | ﬁl
2p; - @

* Y




e Use shorthand A = /(1 + )2 — 4yQ?%/(2p; - Q).

P Pm+1

Kﬁl

e Then define p,,+1 and p; in terms of the splitting variables.

I+ A4y
2

2y
+ (1 — 2 ni +1/2z(1 — z2)y u

L+ A4y L 2y
o P T T INFy

ﬁm—|—1 — X

n; —/22(1 — 2)y uy

ﬁl:(l—Z)

e Note that p,,.1 + p; 1s not exactly p;.
e Maintain momentum conservation with a Lorentz
transformation of the spectator momenta.

Di = Apz‘




Summary of splitting

e Using y, 2z, u, ‘
({P}m+1 ‘Hl(t) ‘P)

Pi

- (1108 (B N[22 (w1l

e y is fixed by .

e The p; are given by the p; and the splitting variables.
e The splitting probability, including a jacobian factor, is

proportional to

dt z(1 — z)dz du




Solution of evolution

e Evolution equation

—/ —/

o generates (either analytically or in computer code)

T EIRyiEaT




Difterential equation

e U{(t,t") obeys a simple differential equation.
e Define V(t) by

V(E){ptm) = v(t, {ptm){P}m)

v(t, {ptm) = (HH1(6)[{pim)
e Then

d AN /
EN(t,t)——V(t)N(t,t)




d . ,
UL ) = [Hi(t) = VLU, t)

e Proof. Suppose that U(t,t") obeys this equation and define

é?(t, t) =N(t,t) + /th U, 7) Hi(T) N (7, t)

Then

~ ~

S U ) = [Ha(t) = VOIU(t,t)

Also -
Ut =ui,t
Thus

~

Ut =U(t,t)




Connection with
perturbation theory

d, .. /
UL ) = [Hi(t) = VLUt 1)

implies

(Fled(tr,0)|p(0)) = (F|p(0))—|—/0fdt (FHi(t) — V(t)|p(0)) + - -




The corresponding graphs

e Born hard scattering graph

(
(F|p(0)) < >

)

e Approximate real emission with virtuality cutoft

>




e Approximate virtual graphs with virtuality cutoft

/0 dt (FIV(1)]p(0)) «‘f

O

)
e The true virtual graphs obey

(1 Virue(£)|p(0)) — (1[H1()|p(

e Our approximation shares this

>

J

)) — 0 for t— oo.

property since

(1V(1)]p(0)) = (1[H1(2)]p(0)) = 0

e But the approximation is not exact for finite ¢.

e This allows us to preserve the hard scattering

cross section exactly. (1|U(t,t") = (1




Partons in the initial state

e State with m final state partons with momenta p;
and two initial state partons with momentum

fractions n,, Ny

{P}m) = [{Mas b, P1, P2, - -, Pm })




—

1
2
3
4

b

e General state |p) so that cross section is

olF) =Y - [ [awhn] (FI B} ({9}l

e |p) includes the parton distributions

fa(ma)fe(m)
2MabPA * DB

({p}m|p) : ‘M({p}m)‘Q




Factorization




Splitting operator

2 fa(ma)fB(nn)
27a1bPA " DB

({p}m‘p) — ‘M({p}m)

) 8=

1% namo £ (71a) £5 (i)
| Nafifa(a)fB(mb) ({p}m])




Shower time

Showers develop in “hardness” time.

t

Real time picture Shower time picture




QCD

e QCD is more complicated than scalar field theory.

e In typical parton shower algorithms, the main
approximation is collinear or soft splitting.

o | will first sketch the structure of evolution with just
this approximation.

e Then I will describe further approximations related
to color, spin, and quantum interference for soft
gluons.




The matrix element

e The basic object is the quantum matrix element
Ca,CbsC1l4....Ciy,
M({p7 f}m)sa,sb,sl,...,sm
e This is a function of the momenta and flavors and

carries color and spin indices. Consider it as a vector
in color and spin space

M({p, fIm))




The cross section

The cross section with a measurement function F is then

O'[F] — Z%/ [Cl{p, f}m] fa/A(Ua,,uF) fb/B(nba,UF)

4ne(a)ne(b) 2n.nupa - pB
< (M{p, fY)|F{ps £3m) | M {ps F1m))

e ¢ and b are the flavors of the incoming partons.

® fu/a(Ma, i) is a parton distribution function.

e n.(a) is the number of colors for flavor a.




The density matrix

olF) = 3" — [ [, ] Telolp. 1) P, )

where

p({p, f}m)
B fara(Ma, %) fo,8 (M0, 17)
= 1M (P, fm)) Anc(a)nc() 2namnpa-ps M{AP, fYm)

— Z Z ‘{37 C}m> p({p, f, 8, ¢, s,¢hm) <{8/’ Cl}m|

/ /
s,c s’,c




Density matrix in “classical”
notation

p({pa f7 3/7 Cl? S, C}m) = ({p7 fv 8,7 Clv S, C}m|p)

e For QCD, partons have momenta and flavors.

e Furthermore, there are two sets of spin indices and
sets of color indices.

e There are lots of indices, but the general formalism
is the same as sketched earlier.




Splitting

this 1s an exact
Feynman graph

Dl
~ ﬁl + pm—l—l
approximation is here,
the kinematics is an m

body configuration




Soft gluon emission

Splitting includes interference graphs.

A soft gluon approximation is used for the splitting function.

Here you may think of 1 and 3 as a “dipole” that
radiates 2 coherently.




Evolution equation

e The structure of the evolution is the same as before:

3
U(ts,t1) = N(ts, t1) +/ dto U(ts,ta) Hi(te) N (t2,t1)

TI— i
E/\/(t,t)_ —V(t)N(t,t")
(1|(t) = (1| Ha(t)

e V(1) leaves the number of particles, their momenta,
flavors, and spins unchanged.

e Unfortunately, it is not diagonal in color.




Spin approximation

e One commonly averages over
the spin states of a parton that
is about to split and sums over
the spin states of the daughter
partons.

This eliminates angular
correlations that arise from the
spin states.

For sufhiciently inclusive
observables, it should be a
pretty good approximation.




Yt
®
Ve—
®,
@«

e One can use a set of “string” basis states for color.

imple.

is, splitting is s

ith this bas




Color approximation

e Shower programs usually use a large N. approximation.

An interference diagram, to be
decomposed in basis states.

The leading contribution A subleading contribution.




Simplified evolution equation

e The structure of the evolution is still:

3
U(ts,t1) = N(ts, t1) +/ dto U(ts,ta) Hi(te) N (t2,t1)

t1

d A /
E/\/(t,t)——)}(t)/\/(t,t)

e V(1) leaves the number of particles, their momenta,

flavors, and colors unchanged. Spin has been eliminated.

e This is approximately the organization of Pythia.




Angular ordering

e There is an alternative way of organizing a parton
shower, used in Herwig.

e To understand it, consider the splitting of a quark
into a quark + a gluon at a small angle, followed by
the emission of a soft gluon from the two sister

partons.




—

® Uy, U2, and u, are unit three vectors o< pi, p2, and q.

e ¢ is the polarization vector for the soft gluon.

o If / 1-2 is much smaller than £ ¢-1 and £ ¢-2

then the two factors are the same




e This includes the color factor.

e It is as if the soft gluon were emitted from a lightlike line

in the p1 + ps direction.




e Consider the sum

o If we add the graphs when 1 — 4, - u; < 1 — 1, - U,
we get approximately




o If we add the graphs when 1 — 4, - 4o < 1 — 4, - Uy,
we get approximately




o If we add the graphs when 1 — u; -ty < 1 — 1, - Uy,

we get approximately




* For the graph

it is as if the soft, wide-angle gluon were emitted first,
from an on-shell quark.

e This suggests omitting interference graphs and
ordering the splittings in order of emission angles,
treating daughter partons as on-shell.

e Impose lower limit on virtuality of these splittings, say

1 GeV.

e This gives an angle-ordered shower, as in Herwig.




Summary

e There are two ways to construct parton showers.

e Avirtuality ordered shower puts the hardest
interactions first, based on the hard-soft
factorization of Feynman graphs.

- Actually; transverse momentum is usually used in
place of virtuality:.

- One needs to include interference graphs.

e Alternatively, one can skip the interference graphs
and use an angle ordered shower.




