Two Lectures on Heavy Ion Physics

Peter Steinberg Brookhaven National Laboratory Upton, NY

CTEQ Summer School July 2, 2009 Madison, WI, USA

CTEQ

The Big Bang

Relativistic Heavy Ion Collider (RHIC)

RHIC Experiments to Scale

RHIC program has large <u>and</u> small detectors, sufficient overlap to make cross-checks. Billions of events since 2000: p+p, d+Au, Cu+Cu, Au+Au, 19.6-200 GeV

Heavy Ion Collisions: Soft Physics

Peter Steinberg Brookhaven National Laboratory Upton, NY

CTEQ Summer School July 2, 2009 Madison, WI, USA

CTEQ

RHIC Physics in a Nutshell

Collisions of lons

1000's of Particles

RHIC physics takes place in **space-time** Need to "rewind" dynamical evolution to study QCD at high temperature and density Bottom line: The most-perfect fluid?

We say RHIC collisions behave like a "**perfect liquid**" (or at least a "near perfect fluid")

local thermalization: **strong coupling** \rightarrow low viscosity These conclusions originally emerged from "soft" physics

- From wikipedia (via Dam Son), shear viscosity is the flow of momentum between adjacent fluid layers
 - Deviation from local equilibrium
 - Frictional (i.e. dissipative) force

- Simple way to think of it is as presence of a fundamental length scale in the dynamical evolution
 - Scale over which energy/momentum can "escape" from a fluid cell
 - Ideal gas has infinite shear viscosity! $\eta = \rho v l$ $l = rac{1}{n\sigma}$ $\eta \sim rac{1}{\sigma}$

Viscosity Illustrated

en.wikipedia.org/Viscosity

The least-perfect fluid

The Pitch Drop Experiment: http://www.physics.uq.edu.au/pitchdrop/pitchdrop.shtml

AdS/CFT calculations put a black hole in the 5th dimension (thermalization)

"unwrap" the spheres for clarity...

Explanation from Clifford Johnson, USC

"QCD" in AdS/CFT is a string trailing into the bulk

And scatters off of the black hole

Viscous Hydrodynamics

Viscosity introduces new dimensions to hydrodynamic phenomena

Dynamical Regimes of Hot QCD

Strong Blackbody Radiation

It is often overlooked that the spectra of particles emerging from a heavy ion collision is nearly blackbody but with <u>hadrons</u> instead of photons: **thermal system**

Hagedorn Tempera

Rolf Hagedorn predicted bound state spectrum rises indefinitely → Singularity at <u>limiting temperature</u> T_H~170 MeV

 $ho(m) \sim m^a e^{m/T_0}$

Fig. 3.1: The predicted and the experimental mass spectrum as it evolved from 1964 to 1967.

Strong Blackbody Radiation

200 GeV ¹⁹⁷Au + ¹⁹⁷Au central collision

All hadron species apparently emitted from a <u>thermal</u> source $T_{ch} = 163 \pm 4$, $\mu_B = 24 \pm 4$

System decouples @ $T_{ch} \sim T_H$

The Hagedorn Limit

Heating up a Hagedorn gas excites higher-mass resonances \rightarrow T_H is the "limit" temperature

Nominally, no way to ever reach higher temperatures in a strongly-interacting system!

Quark Gluon Plasma

Lattice predicts a phase transition at T_c~170 MeV~T_H (ϵ_c ~700 MeV/fm³ > ϵ_N ~500 MeV/fm³) from hadronic degrees of freedom to quark/gluon

Quark Gluon Plasma

CTEQ

Lattice predicts a phase transition at $T_c \sim 170 \text{ MeV} \sim T_H$ ($\epsilon_c \sim 700 \text{ MeV/fm}^3 > \epsilon_N \sim 500 \text{ MeV/fm}^3$) from hadronic degrees of freedom to quark/gluon

Probing Heavy Ion Dynamics with Soft Physics CTEQ

Initial Collisions (Nuclear geometry, Baryon stopping)

Initial Boundary Conditions (Space-time)

Multiplicities

Dynamical evolution τ~O(R)

 $\partial_{\mu}T^{\mu\nu}=0 \\ p(\epsilon) \text{ (e.g. lattice)}$

Spectra, Flow

Freezeout (Hadronization)

Final Boundary Conditions (Local)

 $T = T_H \text{ or } T_{th}$

Yields, Correlations

Nuclear Geometry

Knowing collision geometry is essential for all heavy ion results

Transverse and longitudinal scales are quite different: spatial, temporal, momentum (via $\Delta p=h/\Delta R$)

The Initial State

"Glauber model" is used to establish initial state (energy or entropy density) at one impact parameter, and evolve to other impact parameters

> $n_{part}(\vec{x}, b)$ $n_{coll}(\vec{x}, b)$

more on this in the next <u>lecture</u>

Hydrodynamic Expansion

laser flash photography of trapped Li ions (J. Thomas, Duke)

Hydrodynamic evolution is very general: initial spatial asymmetries \rightarrow momentum asymmetries

PHOBOS Au+Au 130 GeV

 $\frac{1}{N}\frac{dN}{d\phi} = 1 + 2v_1\cos(\phi - \Phi_R) + 2v_2\cos(2[\phi - \Phi_R]) + \dots \text{ compared with Hydro (Huovinen)}$

Hydro (boost invariant) $\epsilon_0 \sim 30 \text{ GeV/fm}^3 = \epsilon_0 \sim 0.5 \text{ GeV/fm}^3$ $\tau_0 < 0.6 \text{ fm}^3 = \tau_0 \sim 1 \text{ fm}^3$

Hadronic scales

Equation of State (v₂(p_T))

Nucl.Phys.A761:296-312,2005

Implications of Hydro

- Hydro is not "just another" model
- The flowing medium is quite special
 - Local thermalization (strong coupling)
 - "Lattice"-like equation of state (1st order PT)
- Initial density so large (30xε_p) that can't justify a hadronic cascade
- Temperature exceeds T_H
 - High temperature seen directly by direct thermal photons from PHENIX
- This suggests that the medium <u>may well be</u> the "quark gluon plasma"
 - What points to quark and gluon DOFs?

Studying Matter in Laboratory

• Changing initial conditions -- "soft" physics

• Probing it microscopically -- "hard" probes (next lecture)

The Big Question: Thermalization at RHIC

Does the system truly thermalize? Everywhere?

What are the conditions (energy, density, size) for thermalization?

How fast does the system thermalize?

What thermalizes?

CTEQ

Degrees of Freedom: What Thermalizes?

Parton distributions Nuclear Geometry Nuclear shadowing

Parton production & reinteraction

Chemical Freezeout & Quark Recombination

Jet Fragmentation Functions

Hadron Rescattering

Thermal Freezeout & Hadron decays

CTEQ

The Edge of Liquidity

Can we make what we see at RHIC "turn off"?

Extended Longitudinal Scaling (Limiting Fragmentation) CTEQ

• From rest frame of one projectile: yields invariant at fixed geometry (i.e. same b/2R or N_{part}/2A)

Energy and rapidity dependence is smooth

Extended Longitudinal Scaling (Limiting Fragmentation) o

No change in shape moving from Au+Au → Cu+Cu

Change the nuclear size by x3: $Au+Au \rightarrow Cu+Cu$ No change in shape for same centrality (b/2R)
Longitudinal Scaling in Elementary Systems (p+p, e⁺e⁻) CTEQ

Even "small" systems (p+p and e⁺e⁻) show same feature, and magnitude for e⁺e⁻

Ubiquity \rightarrow 1) **trivial** or 2) **deep**

$$S \propto sV \propto \propto N_{tot} \propto N_{part}$$
 (Fermi-Landau model)

Cu+Cu & low energy data fit into systematics established by RHIC Au+Au: when is system "too small"?

Total multiplicity (4π) shows "wounded nucleon" scaling to N_{part}=20

Suggests no change in overall degrees of freedom with **system size**

p+p/d+Au → A+A explained by "leading-particle" effects

Phys.Rev.C74:021902,2006

Small ~ Large?

CTEQ

p+p spectrum, "undistorted" by energy-momentum conservation, compares well to A+A: radial expansion in p+p?

Does p+p behave like a thermalized, flowing system, like A+A? (if so, what does this suggest about "underlying event"?)

Recap: EOS Degrees of Freedom

Nucl.Phys.A761:296-312,2005

Degrees of Freedom: What Flows?

Parton distributions Nuclear Geometry Nuclear shadowing

Parton production & reinteraction

Chemical Freezeout & Quark Recombination

Jet Fragmentation Functions

Hadron Rescattering

Thermal Freezeout & Hadron decays

Constituent Quark Scaling

 $KE_T = m_T - m$

Data agree with n_q scaling substantially better than ideal hydro

"perfect fluid" ≠ good quasiparticles: can we harmonize two scenarios? (or give up on constituent quarks, or the perfect fluid...)

Direct Measurements of Viscosity: Heavy Flavor 10

Charm suppression and flow (via non-photonic electrons) are correlated and reflect diffusion of heavy quark in medium (i.e. viscosity)

Models suggest non-zero viscosity, at or near AdS/CFT bound: challenge to quasi-particle interpretations of RHIC medium?

Viscous Hydrodynamics

Recent advances in implementing viscous hydrodynamics

With Glauber initial conditions, RHIC data saturating viscosity bound (off by a factor of 2 in "Color Glass Condensate" approach)

Lessons from Soft Physics @ RHIC

- System is manifestly thermalized in final state
 - Appears to freezeout at or near Hagedorn temperature
- Hydro implies local thermalization in the initial state (and possibly presence of phase transition)
 - System much hotter than T_H
- No deviations in soft observables vs. rapidity, energy, size
 - Extended longitudinal scaling ubiquitous in all systems

Viscosity appears to saturate bound from string theory

 How to harmonize with observation of constituent quark scaling, suggesting "quark" DOFs just before freezeout?

The Next Chapter: The LHC

Parameter	Units	Nominal	Early Beam
Energy per nucleon	TeV/n	2.76	2.76
Initial Luminosity L ₀	cm ⁻² s ⁻¹	1 10 ²⁷	5 10 ²⁵
No. bunches/bunch harmonic		592/891	62/66
Bunch spacing	ns	99.8	1350
β*	m	0.5 (same as p)	1.0
Number of Pb ions/bunch		7 10 ⁷	7 10 ⁷
Transv. norm. RMS emittance	μm	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	н	8, 4.5, 3	14, 7.5, 5.5

RHIC: 200 GeV/N Au+Au LHC: 5500 GeV/N Pb+Pb (14 TeV p+p)

A single Pb+Pb collision (simulated in ALICE)

Does the system still thermalize?

(or will running coupling increase viscous effects?)

What are the <u>conditions</u> (energy, density, size) for thermalization?

(Will p+p collisions clearly show it?)

How fast does the system thermalize?

(initial longitudinal scale is 30x smaller!)

What thermalizes?

(Will degrees of freedom change?)

ATLAS & CMS @ L HC

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Enormous acceptance for soft physics

ATLAS & CMS @ L HC

first beam event seen in ATLAS

8030

· 方方社会田方大会会

meth CMEER Vocalization - (CHEER 1 18 0 August PSC/CECKIR. Inc

Anna Partie P

OT TO

Enormous acceptance for soft physics

ALICE @ LHC

Optimized for tracking & PID in high multiplicity heavy ion events (TPC), with new high p⊤ triggering abilities (EMCAL)

CTEQ

Landau hydrodynamics: application of 1950's Fermi-Landau model & 1970's Carruther's approach

$$\frac{dN}{dy} = Ks^{1/4} \frac{\exp(-y^2/2L)}{\sqrt{2\pi L}} \to \frac{s^{1/4}}{\sqrt{\ln(s)}} \quad L = \ln\left[\frac{s}{4m_p^2}\right]$$

Color Glass Condensate:

QCD at *very* low x. involves parametrization of gluon PDF and simple hadronization model

$$\frac{dN}{d\eta} = K s^{\delta}$$

Logarithmic rise: assumption that current trends apply at larger energies

Total Multiplicity @ LHC using data & models CIEQ

On a log-log plot, all data is approximately power-law

Where data exist, various models can approximate it: only the LHC provides test (unfortunately total yield is tough to measure!)

My favorite is Fermi-Landau (power law rise)

Fermi-Landau Model for Total Multiplicity

Assume complete thermalization in Lorentz-contracted volume

- Total energy scales as beam energy: $E = \sqrt{s}$
- Total volume scales as $V = V_0/2m\sqrt{s}$
- Energy density is *quadratic* in beam energy: ε=E/V=(2m/V₀)s

• Blackbody radiation: $p = \epsilon/d$ (d=# spatial dimensions, e.g. 3)

- Related to tracelessness of stress-energy tensor
- When d=3, entropy density $\sigma \sim \epsilon^{3/4}$ (or d/(d+1))
- Total entropy $S = \sigma V \sim s^{3/4}/s^{1/2} \sim s^{1/4} = \sqrt{E}$ (or $s^{0.5(d-1)/(d+1)}$)
 - Total multiplicity assumed linear with N_{tot}
 - N_{tot} assumed linear with N_{ch}
- Putting it all together: $N_{ch} \sim s^{1/4}$

Gaussian Rapidity Distributions

Hydrodynamics maps Lorentz contracted pancake into a Gaussian in rapidity with variance $\sigma^2 = \ln(s/m_P)$. Agrees with data on dN/dy and naturally produces longitudinal scaling seen in data (all of it...)

Total Multiplicity from AdS/CFT

AdS/CFT now in the game: using colliding shock waves, and calculating area of trapped surface, Gubser et al predict $N_{ch}{\sim}s^{1/3}$

Substantially faster than measured rise of multiplicity, 1/3 implies d=5: true by construction?! Anyway, we'll test!

Soft Observables: From RHIC to LHC

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

- In the soft sector, RHIC has observed:
 - Elliptic flow suggesting early thermalization (near perfect fluid)
 - Extended longitudinal scaling (trivial or deep?)
 - Intriguing connections to elementary systems
 - Statistical (& constituent quark) freezeout
- Empirical and theoretical trends have emerged from the extensive data set, requiring testing at the LHC
 - "Day 1" measurements in 2009 (p+p) and 2010 (A+A)
 - Lots will be learned very quickly -- stay tuned!
- The collider era of heavy ion physics is upon us!
 - We need all the help we can get to understand what we see

Help Wanted (Lattice? AdS/CFT?)

- Even if prediction of η /s is "true": still lots to do
- Strongly-coupled sector of QCD is a real challenge
 - Lattice is a powerful technique, but it requires analysis and interpretation
 - Data is simpler than expected, and thus more complicated to explain
- Many basic properties of baryon still not understood: how do soft interactions proceed?
 - Is there a fundamental (& simple) way to understand hadron structure?
 - pQCD works for jets, etc., but is inapplicable for small momentum transfers
 - What are colliding shock waves on gauge theory side, as interaction occurs?
- How & when does thermalization occur?
 - Again, describing system as a black hole doesn't explain the formation of the black hole
 - Attempts have been made (e.g. Shuryak, Kovchegov, Nastase), but have not yet led to novel predictions etc.

Heavy Ion Collisions: Hard Probes

Peter Steinberg Brookhaven National Laboratory Upton, NY

CTEQ Summer School July 2, 2009 Madison, WI, USA

CTEQ

The promise of hard probes

Participants vs. Collisions

In principle, rates of hard processes should be sensitive to the "microscopic" structure, N_{coll}, iff pQCD factorization holds true in A+A

Participants vs. Collisions

The number of binary collisions scales as $\sim N_{part}^{4/3}$. Nuclear "thickness" (v) scales like N_{coll}/(N_{part} /2)

Extrapolating hard processes to A+A

 10^4 increase in "cross section" (but 10^7 decrease in \mathcal{L})

Estimating Centrality

|η| < 1

Any quantity which varies monotonically with impact parameter can be used to get a data-driven estimate of

- Number of participants (*N_{part}*)
- Number of binary collisions (*N_{coll}*)
- Impact parameter (b)

by calculating a "percentile bin" in the variable, and the similar percentile in the geometric quantity.

For this, we use the "Glauber model"

Nuclear Modification Factor

Jets in p+p

Jets are a "hard" phenomenon, allow pQCD description

pQCD @ RHIC

"Jet Quenching"

Modified Fragmentation

The typical scenario

- <u>Hard parton produced</u> in medium according to pQCD cross sections
- <u>Energy loss</u>: generation of additional radiation, elastic scattering
- <u>Vacuum fragmentation</u> of attenuated parton
- "Modified fragmentation"
- Variety of implementations
 - Many soft gluons (ASW/BDMPS)
 - Few hard gluon (DGLV)
 - Higher twist (HT)
 - Thermal field theory (AMY)
 - Even AdS/CFT (LRW)

High p_T Suppression

High p_T particles are strongly suppressed relative to p+p spectrum × binary collisions (N_{coll}). Photons not.

pQCD energy loss calculations describe light hadrons. Photons appear to be <u>unaffected</u> by medium.

When does suppression occur?

Some sort of strong "shadowing" phenomenon in the inital nuclear parton distributons...

...so there are simply <u>fewer hard</u> <u>scatterings</u> in the reaction? Or does something occur in the strongly interacting stage??

Collisions of the outgoing particles with the background of <u>soft hadrons</u>?

Initial vs. Final State

CTEQ

p+A collisions provide some access to the shadowing from the nuclear wave-function (reduction in initial flux)

d+Au not suppressed (except at high p_T...) while Au+Au shows large effect at all p_T: evidence for final state

CTEQ

Comparison of approaches - singles

CTEQ

Variety of jet quenching implementations all give the "same" result for high p⊤ suppression - dominated by geometry

Heavy Flavor: a fly in the ointment

CTEQ

Heavy flavor (c,b) measured via semi-leptonic mode. Suppression at high pT is very similar to other hadrons: surprising since mass should reduce radiation ("dead-cone")

Correlations (jet-medium interactions)

Jets are multi-particle phenomena: 2+ high p⊤ particles (quark and/or photon) quarks fragment into multiple hadrons

"Back-to-Back" Disappearance (b2bd)

Surface Bias

Return of the "Away Side"

Including <u>all</u> particles (soft & hard) accounts for suppressed jet, but highly smeared-out in Φ Indicates non-trivial interaction with medium.

Spectral Modification (thermalization)

CTEQ

Away-side spectrum starts to resemble inclusive "thermal" one

Medium Effects on Jets

In central events, 2-particle correlations not back-to-back!

Suppression is a "redistribution" of energy/momentum. Excitations couple strongly to medium, rapidly thermalize

Figure 1: The AdS_5 -Schwarzschild background is part of the near-extremal D3-brane, which encodes a thermal state of $\mathcal{N} = 4$ supersymmetric gauge theory [24]. The external quark trails a string into the five-dimensional bulk, representing color fields sourced by its fundamental charge and interacting with the thermal medium.

QCD Mach Cones?

Speed of light: c Speed of sound: $c/\sqrt{3}$

Expect shock wave ~1 radian from jet axis

Hot debate: 3p correlations

wQGP: Neufeld, Ruppert, Mueller (2008)

sQGP:

Chesler

Yaffe

(2007)

Back to Back comes back (STAR)

Previous results: near-complete quenching in strongly-coupled plasma.

Raising momentum of trigger & associated particles show back-to-back jets

> Observation of dijets in heavy ion collisions

CTEQ

4

Spectral non-modification

Tangential emission

"Punch through"

some jets will lose little energy even when passing through medium: "punch through" (25% in this case)

The Landscape of 2-particle $\Delta \Phi$ correlations CTEQ

The Landscape of 2-particle $\Delta \Phi$ correlations CTEQ

FIG. 37: (Color online) Per-trigger yield versus $\Delta \phi$ for successively increasing trigger and partner $p_T (p_T^a \otimes p_T^b)$ in p + p (open circles) and 20-40 % Au+Au (filled circles) collisions. Data are scaled to the vertical axes of the three left panels. Histograms indicate elliptic flow uncertainties for Au+Au collisions.

The Landscape of 2-particle $\Delta \Phi$ correlations CTEQ

FIG. 36: (Color online) Per-trigger yield versus $\Delta \phi$ for successively increasing trigger and partner $p_{\rm T} (p_{\rm T}^a \otimes p_T^b)$ in p + p (open circles) and 0-20 % Au+Au (filled circles) collisions. Data are scaled to the vertical axes of the four left panels. Histograms indicate elliptic flow uncertainties for Au+Au collisions.

What about $\Delta \eta$?

The STAR "ridge"

A surprising feature not predicted by anyone: extended longitudinal correlations, with excess reflecting properties of the "thermal" bulk

Long-range modifications

PHOBOS has measured a large-acceptance correlation function for p⊤(trigger) > 2.5 GeV (PYTHIA used for p+p reference, confirmed by STAR data)

http://arxiv.org/abs/0903.2811

"The Ridge"

Substantial correlated yield out to $\Delta \eta = 4$ Jet yield on near side seems to sit "on top" of the "ridge"

http://arxiv.org/abs/0903.2811

The Problem of the Ridge

- Coupling of induced radiation to longitudinal flow Armesto et al., PRL 93, 242301
- Recombination of shower + thermal partons
 - Hwa, arXiv:nucl-th/0609017v1

Anisotropic plasma

Romatschke, PRC 75, 014901

• Turbulent color fields

Shuryak, arXiv:0706.3531v1

Bremsstrahlung + transverse flow + jet-quenching

Majumder, Muller, Bass, arXiv:hep-ph/0611135v2

Splashback from away-side shock

Pantuev, arXiv:0710.1882v1

Momentum kick imparted on medium partons

Wong, arXiv:0707.2385v2

Glasma Flux Tubes

Dumitru, Gelis, McLerran, Venugopalan, arXiv:0804.3858; Gavin, McLerran, Moscelli, arXiv:0806.4718

The Problem of the Ridge

Jumping rapidity bins requires large spatial correlation, unless takes place at early time

Jets in Heavy lons

STAR

PHENIX

Despite enormous multiplicities, experiments @ RHIC are starting to reconstruct jets even in nuclear collisions

STAR jet spectrum extraction

Running k_T and anti-k_T algorithms, but with small cone sizes of R=0.2, 0.4

Need to reject fakes (look at "jets" at 90°), remove background (pedestal subtract) and unfold spectrum (correct for resolution)

CTEQ

Jet suppression at RHIC

Strong algorithm dependence

No substantial suppression of jets themselves

Suggestive that it is mainly the fragmentation that is modified

CTEQ

Comparison of jets with R=0.2 & 0.4 suggest that jets in Au+Au get <u>broader</u> with p_T (cf. p+p, where they apparently <u>narrow</u>) "Global Variables"

CTEQ

The Future of Jets in HI (ATLAS case)

The LHC detectors provide unprecedented capability for high p_T

At the LHC, can use the production of Z bosons as a background-free probe of the very initial PDFs. Expect 1000's of Z's each LHC year

Jet Finding in HI

- Cells collected in to 0.1x0.1 Towers
- Seed finding used to exclude candidate jets
- Background calculated in Eta bins, subtracted layer by layer
- Seeded midpoint cone algorithm to find jets
- Calibrations applied after jet finding

ø

Jet Efficiency

Efficiency turn-on curve reaches 100% at ~100 GeV (it's "easy" above that energy)
Fake Jets

"Jets" triggered by a seed and supported by background have a different shape than normal jets

Experimented with a variety of estimators to cut against fakes, "SumJt" most effective

 j_T^{Sum}

Cell

cell

$$\sin R_{cell} \quad \sigma_{j_T^{Sum}} = \frac{j_T^{Sum}(E_T) - \langle j_T^{Sum} \rangle(E_T)}{\sigma(E_T)}$$

CTEQ

LHC Luminosity should provide out to 400 GeV (2xRHIC √s!)

Requiring a muon to be correlated with a jet enhances the contribution from b-quarks: can look for HQ modifications to jet energy loss!

Oh, the places we'll go with jets @ LHC

• Jet rates

- Singles (RAA)
- Correlations (dijet broadening)

Fragmentation functions

Direct measurement of modified FF's

Flavor tagging

• s,c,b can be tagged via leading hadrons

γ+Jet, Z+jet

"Conclusions" (or, a new beginning!)

RHIC program has been incredibly productive

• Discovery of what seems to be a new strongly-coupled state of matter!

• The future is particularly bright, especially for high p_{T}

- RHIC II is on the way: increased luminosity
- LHC is on the way: increased energy of hard probes
- pQCD technology will be essential for progress her

Opportunities in "soft" QCD

- Interesting phenomena not necessarily treatable by pQCD
- Entropy production, cone, ridge, etc. require understanding of both soft sector and hard sector
- Even jet quenching requires detailed knowledge of initial conditions etc. & viscous hydro evolution...

$$R_{A+A} = \frac{N_{A+A}}{\langle T_{A+A} \rangle \sigma_{p+p}}$$

$$= \frac{d^2 N_{A+A} / dp_T dy}{\langle T_{A+A} \rangle d^2 \sigma_{p+p} / dp_T dy}$$

$$= \frac{1}{\langle T_{A+A} \rangle \sigma_{p+p}} \frac{d^2 N_{A+A} / dp_T dy}{d^2 N_{p+p} / dp_T dy}$$

$$= \frac{1}{N_{coll}} \frac{d^2 N_{A+A} / dp_T dy}{d^2 N_{p+p} / dp_T dy}$$

Spectral shape apparently quite similar between p+p & Au+Au for k_T and anti- k_T

Increased acceptance at the LHC

 $|\eta| < 1$

|η|<5