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Starting Point:

The temperature of the 400

cosmic microwave

background (CMB) has F
been measured extremely g :
well. Turn this into a g >
measurement of the £ -
energy density.
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Photon Energy Density

Energy density of a gas of bosons in equilibrium:

P
s E 7 _1 h=c=kg=1

p=2f
>pin states \ Bose-Einstein distribution
Sum over phase space

For massless particles, E=p, so
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Similar Calculation: Number Density
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][2

1,

What were the number/energy density in the early universe?

To answer this, we must understand the expansion of the
universe, and how this expansion affected its components
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The Universe is Expanding




Scale Factor a quantifies expansion
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Comoving Coordinates/Distances

The coordinate differences on the grid are called comoving
distances. They are the equivalent of longitude & latitude.

) . P=40°N, 60°W
To get a physical distance dl from a =
set of coordinate differences o0°
(d9,dp), use the metric. g A
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Friedmann-Robertson-Walker metric

dr?
— kr

ds’ = -dt’ +a’(t) 1 -+ r°d0’ +r’sin’ Odg’

In a flat universe (our universe) k=0, and the metric reduces to

ds’ = -dt’ +a’ (t)dx'dx’

oo =—1 8ij = 5ly-az(t)



Comoving Coordinates/Distances

Since we set a,=1, the comoving distance between 2 objects
is the physical distance one would get today if an infinitely
long tape measure was placed between the objects.

A tape measure placed between the same 2 objects early on
would find a physical distance of (a(t) x comoving distance)
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The evolution of (a,p) is determined by Einstein’s
Equations

MV 2 MV
Ricci Tensor /
Newton’s Constant

Ricci Scalar

Energy Momentum Tensor



General Relativity in 1 Slide

Metric inverse guagm, = 5 MV
sl T = g T,
Christoffel Symbol ., = lgaﬂ agﬁu n ag/a’v _ aguv
2 ax"  ox*  ox’
Ricci Tensor RMV — I‘O‘Mv’a _ raua,v n raﬁarﬁuv _ raﬁvr/a’ua
Ricci Scalar R = guv Ruv



Example: Christoffel Symbol

1

) goa [gai,j T84~ 8ija

0
I’ =

_1

) goo[gx,j + 8%, _gij,O]

But the metric has no spatial dependence, so ...

And g%=-1 and g;=6,0°, so I’ =6, ——a’=96,aa

T2 dt 4




Time-Time Component of Einstein Equations

Ry, + %R =8nGT,, = 871G P

Straightforward calculations lead to:

a a a
2

PI.ugin to get the. (Cl) 2 _ 1(5
Friedmann equation: — | =H — 0




Notation

The expansion rate today is called the Hubble Constant

H, =100h km sec* Mpc?

1 Mpc =3.1x10°4 cm
h=0.73+/-0.03

Cosmologists measure densities in units of the critical density,

The total density in the

p. = 3H,%/(8nG) = 1.88 h? x 102° g cm3 | universe today is equal

to the critical density

The baryon density, e.g., is then written as

Qp = (Py/ Perdo

Others: Q. Que Q, Q
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Space-Space Component of Einstein Equations

a |1

e\ 2
a

+
a 2

a

= 4GP

where P is the diagonal space-space component of the
energy momentum tensor.

Combine with the Friedmann equation to get:

G

A

- 471G

3

(p+3P)

Deceleration unless p
+3P is negative




Evolution of energy density

Combine the Space-Space and Time-Time components of
Einstein’s Equation to get:

p(a) = p, exp. f i >]>

Energy density today Equation of state:
w=P/p
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Example 1: Non-relativistic matter

1
da’

Y

p(a) = pyexp {3~ {1+ w(d >]

The pressure of non-relativistic matter is very small
compared to the energy density (T<<m), so w=0.

p — p Cl_3 Consistent with simple dilution by
m m,0) volume expansion
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Example 2: Relativistic particles

pa) = p, exp{3 [+ w(a')]}

a

To determine w, recall that the pressure is:

For relativistic particles, E=p, so P=p/3, or w=1/3.

= \/olume dilution PLUS

= — length hi
IOr = IOr,Oa wavelength stretching
" T~1/a
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Example 3: Cosmological Constant

1
da’

p(a) = pyexp {3~ {1+ w(d )]

Y

One possibility is that the dark energy is a
cosmological constant with w=-1.

pA — pA,O Empty space contains energy



Thermal History of the Universe

=" The equation of state of
dark energy is -1 to
within 10%

= Structure begins to
grow when the universe
becomes matter
dominated (at agq)

m Associate a

temperature with every
a: T=(2.35x10%/a )eV
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Neutrinos are produced in the early universe

Alpher, Herman, & Gamow 1953
Assume there are no neutrinos initially when the
temperature is much larger than m,. The rate for producing
them via, e.g., _

is of order

22
no ~T3¢ r ~100 d sec”

\ m," 10MeV

At those times, electrons and positrons are effectively massless

so have the same abundance as photons.
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Compare this to the expansion rate

2

2
H = 8nGp T ~10 r sec”
3 \mPlanck 10MelV

since the universe is radiation
dominated at early times

The ratio of the neutrino production rate to the expansion
rate is therefore
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Above 5 MeV, neutrinos are in equilibrium with
the rest of the cosmic plasma

Fermi-Dirac distribution with temperature T equal to the
electron/photon temperature.

1 ._' L I llllllll I LN ) I LU l_
0.8 [ -
0.6 ! T=1 MeV ]
N

o = i
T 0.4 [ ]
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E (MeV)

After the neutrinos decouple from the rest of the plasma
(T<MeV), they still maintain Fermi-Dirac distribution with
T~1/a.
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You might think neutrinos and photons have the
same temperature today ...

But photons gained energy from electron/positron annihilation
when T~m,

Use:
» entropy conservation: sa>=constant
" neutrino temperature does scale as a1

S
— = const
T

14



Compute this ratio before and after electron/
positron annihilation

electrons/positrons .
photans /p neutrinos

3 e
5 cT”(2+(7/8)[4+6]) =c£
T’ T 4

L4

Initially:

TS3 cbr; +;7/8)6T) QT /T, T +21/4)

1% v

Finally:

T, (11
Equate the two to get: = —
T 4



Calibrate off the well-known photon
temperature to get the prediction

n. =115N,cm™

\

Number of species of weakly
interacting neutrinos

There are ~ a hundred quadrillion cosmic neutrinos (flux
of 115x3c = 1013 cm?sec?) passing through this screen
(~10% cm?) every second.



Unfortunately, we can’t detect these because
the cross-section is too small

v e

2

E
o~10"%cm? v
" (10%1/)

— o w——w—w—w— w—

So the detection rate is of order

Mdetector ) x 3 x 107 yl"_l

'~107"%x10
1kg



But ... these neutrinos do contribute to the
energy density of the universe.

The energy density of massive neutrinos is:

o _ P _mym 0.0l yom,

pCI" pCl" h2 leV

This could be as large as 10% of the total matter, so affects large
scale structure.

Massless Neutrinos
Massive Neutrinos




Weakly interacting stable massive particles

(WIMPs) could be the dark matter

10-1

: : 10-%
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Annihilation rate compared to expansion rate

m = 100 GeV

3/2 _-m/T
I ~ n,oy ~ (mT) e O’( Annihilation Rate

T2

Expansion Rate

H ~

mPlanck




Freeze-out takes place when the two rates are equal

—n’Z/Tf -1

€ om ~ nm Planck

After freeze-out, WIMP number scales as photon
number density

3/2 3/2
ny ([ m oo 1 m

ny Tfo

m O-n/lPlanck r fo



Multiply by mass to estimate the contribution to
the energy density today

3/2

mOTnPlanck Tfo
; 3/2
T m
Q ~
. p cromPlanck r fo
Plug in numbers
3/2 Mild mass
~37 2

Q =034"7 m 10" cm dependence, but

i IOTfO O mostly depends on

cross-section only.



WIMP Miracle

Need a cross section of order 1037 cm?

o> 107 (100GeV)2
O’ ~

m® (100GeV )
107*(2x10™* GeVem)® (100GeV \’
(100GeV )

100GeV)2 .
cm

m

m

m

~4x10-36(



Easy to get correct dark matter abundance in
supersymmetric models

De Austri, Trotta, & Roszkowski 2006
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Final Slide

If you want to get your hands dirty check out ...

http://www.physto.se/~edsjo/darksusy/

Meet me at the bar tonight if you have a good idea about ...

Cosmic Dark Matter and the LHC
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