Measuring Top from an Experimentalist's View

Outline

Theory Overview on Top Physics in Zack Sullivan's lectures from Friday and Saturday

- Being an Experimentalist
- Acquiring Top Events
- Measuring the Top Mass
- Finding Single Top
- Conclusions

Caveat: Will focus on measurements from the Tevatron with a CDF bias

How Does a Rolex Work?

- An HEP experimentalist would do the following:
 - Purchase many watches -ten of thousands!
 - One at a time, throw them at
 - a brick wall (fixed target)
 - or another watch (colliding beams)
 - After each collision observe the remaining pieces
 - Statistically collect information for all the collisions
 - Draw conclusions on how the watch works.

June 30, 2009

Fermilab

Making Particles

June 30, 2009

K. Tollefson, 2009 CTEQ, Madison

It's a Bit More Complicated

Hadron Collider Detectors

Hadron Collider Detectors

Standard Model and Top Quarks

June 30, 2009

K. Tollefson, 2009 CTEQ, Madison

The "Golden" Quark

Size of gold atom

$$M_{\rm top} \approx 175 \; {\rm GeV}$$

- Only fermion with mass near EW scale.
- Does it play a role in EW symmetry breaking?
- Very short lifetime

$$\tau_{\rm top} \sim 10^{-24} {\rm s} \ , \ \Gamma^{-1} \approx (1.5 {\rm GeV})^{-1}$$

- Top quarks decay before they hadronize.
 - Study the decay of a **bare** quark
 - Momentum and spin of the top are transferred to its decay products
- Fundamental question: Is it the truth, the Standard Model (SM) truth, and nothing but the truth?
 - The top quark is an ideal place to look for Beyond the Standard Model Physics!

Why physicists really want to study Top...

Top Quark Production

1 top pair in **10** BILLION inelastic collisions at \sqrt{s} = **1**.96 TeV

K. Tollefson, 2009 CTEQ, Madison

Characterize Top Events by W Decay

Dilepton Channel

June 30, 2009

K. Tollefson, 2009 CTEQ, Madison

Lepton + jets Channel

June 30, 2009

K. Tollefson, 2009 CTEQ, Madison

All-Hadronic Channel

Lepton + Jet Top Event from CDF

Collecting Data at CDF

Tevatron:

- 36 p x 36 p bunches
- collisions every 396 ns
- 1.7 MHz of crossings
- CDF 3-tiered trigger:
 - L1 accepts ~25 kHz
 - L2 accepts ~800 Hz
 - L3 accepts ~150 Hz (event size is ~250 kb)
- Accept rate ~1:12,000

Triggering

- Want to trigger on physics information
 - # of jets, leptons, tracks
 - Amount of E_T , MET or P_T
- Example of jet trigger in a three level trigger system
 - Level 1 cut on E_T in one calorimeter tower
 - Level 2 cluster towers together to get better ${\rm E}_{\rm T}$ resolution
 - Level 3 reconstruct the jet using a jet algorithm

- Top "Signal" Triggers
 - High P_T Leptons
 (primary trigger)
 - Jets plus MET
- Top "Background" Triggers
 - "Looser" samples to measure efficiency of the "signal" triggers and to understand backgrounds
 - Calibration samples to measure b-tagging efficiency

Tools for Finding Top (1): b-tagging

Tools for Finding Top (2): MET

- Unlike e⁺ e⁻ colliders, we don't know what hit what.
 - We don't know p, of the collision.
 - We do know p_x and p_y so use the "transverse missing energy" ($E_T \circ r MET$).

Tools (3): Jet Reconstruction

What Can We Measure about Top?

Top Mass

June 30, 2009

Why Measure the Mass

History

Measuring the Mass ain't Easy

What a theorist sees...

What an experimentalist sees...

A Simple Mass Fit: Template Method

Use χ^2 fitter to reconstruct lepton+jet events:

Template Method (cont.)

0 160

165

175

180

29 M_{top} (GeV/c²)

170

Template Fit in Other Channels

Dilepton case (under-constrained):

- Use "Neutrino weighting method"
- Assume M_{top} and η of both ν
- Solve for P_x and P_y of neutrinos
- Form weights comparing solutions to measured MET
- Sum over all solutions to get weighted M_{top}

All-hadronic case:

- Use 6 highest E_T jets but swamped by backgrounds and radiation jets
- JES systematic uncertainty large

Jet Energy Scale (JES)

Relative using dijet balance: to make response uniform in η

Multiple ppbar interactions: pileup

Absolute correction using dijet MC tuned for single particle E/P, material, and fragmentations: due to non-linear and non-compensating calorimeter

Underlying events due to spectators

Out-of-Cone : due to energy outside cone

See also talks by Nikos Varelas and Rick Field

K. Tollefson, 2009 CTEQ, Madison

In-situ JES Measurement

Reconstructing the Mass

I.Template-based

Reconstruct mass for each event

Form "templates" for signal (varying M_{top}) and background using simulated events

Perform maximum likelihood fit to extract measured M_{top}

Advantages: Takes all (simulated) detector effects into account, (relatively) computationally simple Disadvantages: Only single number (recon. mass) per event in final Likelihood, all events have equal weight

2. Matrix Element-based

Form per-event probability using matrix element

Integrate over unmeasured quantities Form ensemble probability and calibrate using simulated events

Advantages: More statistical power, probability curve rather than single mass per event, events weighted naturally Disadvantages: Complex numerical integration (much CPU)→machinery does not account for all detector effects

June 30, 2009

Generic Matrix Element Method

Probability to observe a set of kinematic variables x for a given top mass *dⁿσ* is the differential cross section Contains (LO) matrix element squared *W(x,y)* is the probability that a parton level set of variables *y* will be measured as a set of variables *x*

$$P_{\rm sgn}(x;m_t) = -\frac{1}{\sigma}$$

 $d^{n}\sigma(y;m_{t}) dq_{1} dq_{2} f(q_{1}) f(q_{2}) W(x,y)$ f(q) is the probability distribution

Normalization depends on m_t includes acceptance effects

 \mathcal{M}_{\star}

f(q) is the probability distribution that a parton will have momentum q

Integrate over unknown q_1, q_2, y

- Maximal extraction of information, but phase space integration is very CPU intensive
- Additional background probability term with varying levels of sophistication

K. Tollefson, 2009 CTEQ, Madison

34

Philosophy in Run II

March 2007

Tevatron Top Mass (March 2009)

Systematics, Systematics, Systematics

Current list:

- 1. JES (for non-in situ)
- 2. Residual JES
- 3. b-JES
- 4. ISR&FSR
- 5. PDF uncertainties
- 6. Generator & modeling
- Multiple interactions (a.k.a Pile-up)
- 8. Background fraction & Shape
- 9. Lepton Energy scale

Systematics for Template Analysis using 2.7 fb⁻¹

Working on:

- 1. MC generators: checking against NLO MCs
- 2. Color reconnection more later

		Systematic	LJ	DIL	Combination
ng		Residual JES	0.7	3.3	0.6
_		Generator	0.7	1.2	0.7
		PDFs	0.3	0.8	0.3
1&		b-JES	0.2	0.2	0.2
		bkgd shape	0.2	0.3	0.2
		gg fraction	0.2	0.2	0.2
		Radiation	0.2	0.2	0.1
		MC statistics	0.1	0.5	0.1
		lepton energy scale	0.1	0.3	0.1
Analysis		pileup	0.2	0.2	0.3
		Combined	1.1	3.7	1.1
K_Tollefson, 2009 CTEQ, Madison 37					

Residual JES

- Use jets from hadronic W resonance in messy ttbar environment to measure the average response of jets
 In-situ measured JES does not fully measure shifts in JES scale along different parameter space curves (e.g. jet P_t and η)
- Even for in-situ measurement still evaluate JES uncertainty using standard procedure by shifting JES +/- 1σ
 - Must re-compute acceptances and shapes for both ttbar and backgrounds

JES for b quarks

- Derive JES from W daughter jets, but b jets carry most $M_{\rm top}$ information
- Study 3 components due to difference between b and q jets:
 - Semi-leptonic branching ratios
 - Move b anc c BRs together by +/- 1σ
 - B fragmentation uncertainties
 - Reweight to LEP/SLD Bowler parameters
 - Calorimeter response uncertainties
 - Shift b-jet energies by +/-1% then re-run PEs

Color Reconnection Studies

- Pythia 6.4 includes:
 - P_T ordered showering which allows for parton showers to interact with the underlying event
 - new color reconnection models
- Study by Wicke and Skands on toy top mass measurement see ~1 GeV differences
 - see Wicke and Skands, arXiv 0807.3248 and hep-ph/0703081

Color Reconnection Studies

Virtuality ordered PS (old) P_T ordered PS (new)

- Results:
 - Total spread +/- 1 GeV
- CDF and D0 are studying new Pythia tunes within our analysis methods
 - From preliminary studies added uncertainty of 0.4 GeV to systematics for the winter 2009 results

Interesting Lesson...

L_{xy} and Lepton P_t don't depend on JES, right?

Source of Systematic Error	Uncertainty (GeV/c^2)		
Monte Carlo Generator	0.7		
Initial State Gluon Radiation	1.0		
Final State Gluon Radiation	0.9		
Parton Distribution Functions	0.5		
Event Selection (Jet Energy Scale)	0.3		
Background Shape	6.8		
Background Normalization	2.3		
Multiple Interactions	0.2		
Data/MC $\langle L_{2D} \rangle$ Ratio	4.2		
Total	8.6		

Systematics for L_{xy} result using 695 pb⁻¹

Event selection was affected for jets near 20 GeV threshold cut

Systematic	L2d	LepPt	Combination
QCD Radiation	0.9	2.3	1.5
PDFs	0.3	0.6	0.5
Generator	0.7	1.2	0.6
L2d Scale Factor	2.9	0	1.4
LepPt scale	0	2.3	1.1
Bkg Shape	1.0	2.3	1.6
Out of Cone JES	1.0	0.3	0.6
Total	3.4	4.2	3.0

Systematics for L_{xy} and $LepP_t$ results using 1.9 fb⁻¹

Systematic	L2d	LepPt	Combination
Level 1, Eta Dependent	0	0	0
Level 4, Multiple Interactions	0.1	0	0
Level 5, Absolute	0.2	0.1	0.1
Level 6, Underlying Event	0	0	0
Level 7, Out of Cone	1.0	0.2	0.6
Level 8, Splash out	0.1	0.1	0.1
Simultaneous	1.0	0.3	0.6

Single Top

June 30, 2009

On the Road to Higgs

SM Higgs and Single Top

Single Top Production

Top Pair Production Cross Section CDF Run II Preliminary July 2008 Cacciari et al., arXiv:0804.2800 (2008) Assume m.=175 GeV/c² Kidonakis & Vogt, arXiv:0805.3844 (2008) IIII Moch & Uwer, arXiv:0807.2794 (2008) Lepton+Track 8.3+1.3+0.7+0.5 (L= 1.1 fb⁻) Lepton+Track: Vertex tag 10.1+1.8+1.1+0.6 (L= 1.1 fb⁻) Dilepton 6.7+0.8+0.4+0.4 $(L=2.8 \text{ fb}^{-1})$ Events 5000 CDF Run II Preliminary L = 2.7 fb⁻¹ L+jets with Lepton+Jets; Kinematic ANN Data $6.8 \pm 0.4 \pm 0.6 \pm 0.4$ (L= 2.8 fb⁻) ≥ 1 b-tag Top (7.2pb) 4000 Single Top Lepton+Jets; Vertex Tag 7.2+0.4+0.5+0.4 W + HF (L= 2.7 fb⁻) Mistags 3000 Lepton+Jets; Soft Electron Tag 7.8+2.4+1.5+0.5 Non-W $(L= 2.0 \text{ fb}^{-1})$ Z + jets Di-boson Lepton+Jets; Soft Muon Tag 2000 8.7+1.1+0.9+0.5 $(L= 2.0 \text{ fb}^{-})$ MET+Jets: Vertex Tag $6.1\pm1.2\pm_{0.6}^{0.8}\pm0.4$ 1000 $(L=0.3 \text{ fb}^{-1})$ All-hadronic: Vertex Tag $8.3\pm1.0\pm^{2.0}_{1.5}\pm0.5$ $(L= 1.0 \text{ fb}^{-1})$ 0 1 Jet 2 Jets 3 Jets 4 Jets ≥5 Jets CDF combined 7.0+0.3+0.4+0.4 $(L= 2.8 \text{ fb}^{-1})$ (stat)±(syst)±(lumi) 2 4 6 8 10 49**12** June 30, 2009 K. Tollefson, 2009 CTEQ, 0 14 $\sigma(p\overline{p} \rightarrow t\overline{t}) (pb)$

Single Top Event Signatures

Top Pair Production with decay into Lepton + 4 Jets final state are very striking signatures!

Single top Production with decay Into Lepton + 2 Jets final state is less distinct!

Single Top Backgrounds

Background Estimates

t -channel 87.6 ± 13.0 MET + high p_T lepton + 2 jets (with 1 or 2 b-tags) in 3.2 fb ⁻¹ tt 204.1 ± 29.6 b -tags) in 3.2 fb ⁻¹ $Dibosons$ 88.3 ± 9.1 b -tags) in 3.2 fb ⁻¹ $z + jets$ 36.5 ± 5.6 b -tags) in 3.2 fb ⁻¹ $W + bb$ 656.9 ± 198.0 292.2 ± 90.1 $W + cj$ 250.4 ± 77.2 $W + ight flavor$ 501.3 ± 69.6 Remember Zack's talk: Need help from theorists to understand W +HF production betterTotal background 2119.3 ± 350.9 W +HF production better	s-channel	58.1	± 8.4	
Single top 145.7 ± 21.4 $+ 2 jets (with 1 or 2 b-tags) in 3.2 fb^{-1}$ t 204.1 ± 29.6 $b-tags) in 3.2 fb^{-1}$ Dibosons 88.3 ± 9.1 $b-tags) in 3.2 fb^{-1}$ $Z + jets$ 36.5 ± 5.6 $b-tags) in 3.2 fb^{-1}$ $W + bb$ 656.9 ± 198.0 $b-tags) in 3.2 fb^{-1}$ $W + cc$ 292.2 ± 90.1 $b-tags) in 3.2 fb^{-1}$ $W + cj$ 250.4 ± 77.2 90.1 $W + cj$ 250.4 ± 77.2 $a-30\%$ $W + light flavor$ 501.3 ± 69.6 $Remember Zack's talk:$ Need help from theorists to understand W+HF production betterTotal background 2119.3 ± 350.9 $W + HF production$ better	t-channel	87.6	± 13.0	MET + high p _T lepton
tt 204.1 ± 29.6 $b-tags) in 3.2 fb^{-1}$ Dibosons 88.3 ± 9.1 $Z + jets$ 36.5 ± 5.6 $W + bb$ 656.9 ± 198.0 $W + cc$ 292.2 ± 90.1 $W + cj$ 250.4 ± 77.2 $W + light flavor$ 501.3 ± 69.6 Non-W 89.6 ± 35.8 Total background 2119.3 ± 350.9 Total prediction 2265.0 ± 375.4 Observed 2229	Single top	145.7	± 21.4	+ 2 jets (with 1 or 2
Dibosons 88.3 ± 9.1 Z + jets 36.5 ± 5.6 W + bb 656.9 ± 198.0 W + cc 292.2 ± 90.1 W + cj 250.4 ± 77.2 W + light flavor 501.3 ± 69.6 Non-W 89.6 ± 35.8 Total background 2119.3 ± 350.9 Total prediction 2225 Observed 2229	tt	204.1	± 29.6	b-tags) in 3.2 fb ⁻¹
Z + jets 36.5 ± 5.6 W + bb 656.9 ± 198.0 W + cc 292.2 ± 90.1 W + cj 250.4 ± 77.2 W + light flavor 501.3 ± 69.6 Non-W 89.6 ± 35.8 Total background 2119.3 ± 350.9 Total prediction 2265.0 ± 375.4 Observed 222	Dibosons	88.3	± 9.1	
$W + bb$ 656.9 ± 198.0 $W + cc$ 292.2 ± 90.1 $W + cj$ 250.4 ± 77.2 $W + light flavor$ 501.3 ± 69.6 Non- W 89.6 ± 35.8 Total background 2119.3 ± 350.9 Total prediction 2265.0 ± 375.4 Observed 2229	Z + jets	36.5	± 5.6	
W + cc 292.2 ± 90.1 $\sim 30\%$ W + cj 250.4 ± 77.2 $\sim 30\%$ W + light flavor 501.3 ± 69.6 Remember Zack's talk: Non-WNon-W 89.6 ± 35.8 Need help from theorists to understand W+HF production betterTotal background 2119.3 ± 350.9 $W+HF$ production better	W + bb	656.9	± 198.0	
W + cj250.4 ± 77.2W + light flavor501.3 ± 69.6Non-W89.6 ± 35.8Total background2119.3 ± 350.9Total prediction2265.0 ± 375.4Observed2229	W + cc	292.2	± 90.1	
W + light flavor501.3 ± 69.6Remember Zack's talk: Need help from theorists to understand W+HF production betterNon-W89.6 ± 35.8Need help from theorists to understand W+HF production betterTotal prediction2265.0 ± 375.4HF production better	W + cj	250.4	± 77.2	J
Non-W89.6 ± 35.8Need help fromTotal background2119.3 ± 350.9theorists to understand W+HF production betterTotal prediction2265.0 ± 375.4W+HF production better	W + light flavor	501.3	± 69.6	Remember Zack's talk:
Total background2119.3 ± 350.9theorists to understand W+HF production betterTotal prediction2265.0 ± 375.4theorists to understand better	Non-W	89.6	± 35.8	Need help from
Total prediction2265.0 ± 375.4W+HF production betterObserved2229	Total background	2119.3	± 350.9	theorists to understand
Observed 2229	Total prediction	2265.0	± 375.4	w+nr production
	Observed	22	29	oetter

Analysis Strategy

- Single Top production is rare (~3 pb)
 - Signal:Background (S:B) $\sim 1:10^9$
- First step:
 - Trigger and ID clean leptons/MET improves S:B by a factor ~10⁶
 - High p_{τ} lepton triggers (e, μ)
 - MET + jets triggers (recover nonfiducial leptons + hadronic τ decays)
- Second step:
 - Topological event selection
 - Efficient *b*-tagging
 - Careful background estimates
- Third step:
 - Advanced analysis techniques
 - S:B > 1:1 in most significant bins

June 30, 2009

General Analysis Method

June 30, 2009

Advanced Techniques

Single Top Discovery Observation

Single Top has been observed!

June 30, 2009

Single Top Cross Section

CDF and D0 are currently working on a Tevatron combination

June 30, 2009

Direct |V_{tb}| Measurement

Top Physics on Prime Time

Many more Top results from Tevatron on public webpages: CDF: http://www-cdf.fnal.gov/physics/new/top/top.html D0: http://www-d0.fnal.gov/Run2Physics/top/ top_public_web_pages/top_public.html

June 30, 2009

Top Physics at the LHC

- LHC is a Top Factory
 - Top pair cross section grows by x100 (remember Steve Mrenna's quiz?)
 - Access to more rare top decays for precision tests of SM
 - Standard candle
 - Calibration of b-tagging, jet energy scale, etc.
 - Single top test bench for finding Higgs

My View of the World

Backup Slides

June 30, 2009

New Twist on Template Method

- Simultaneous fit in 2 channels :
 - L+jets and Dilepton
- In-situ JES calibration applied in both channels
- No assumptions:
 - Correlations in systematics
 - On likelihood shapes

PRD submitted for 1.9 fb⁻¹ result: hep-ex. 0809.4808

K. IUIIEISUII, 2009 CTEQ, Madison

Template Results with 2.7 fb⁻¹

Optimizing Dilepton Selection

60

Event selection optimized to yield smallest expected statistical uncertainty by means of neuro-evolution:

- Start with random collection of neural nets
- Determine analysis sensitivity of each network (fitness function)
- Discard low sensitive nets and combine topology and node weights through mutation

Dibosor

2 2.5

umber of h-tag

-0.5 0 0.5 1 1.5

A Data

Bkg Unce

Z→ uι

Ref: S. Whiteson and D. Whiteson, Proceedings of the Nineteenth Annual Innovative Appllications of Artificial Intelligence Conference, p1819-1825, July 2007 K. Stanley and R. Miikulainen, Evolutionary Computation 10(2):99-127, 2002

Dilepton Results using 2.0 fb⁻¹

- After event select use matrix element technique
- New event selection expected statistical uncertainty improvement of 20%

Source	Size (GeV/c^2)
Jet Energy Scale	2.5
Lepton Energy Scale	0.1
Generator	0.7
Method	0.4
Sample composition uncertainty	0.3
Background statistics	0.5
Background modeling	0.2
FSR modeling	0.3
ISR modeling	0.3
PDFs	0.6
Total	2.9

Mtop = 171.2 +/- 2.7 (stat.) +/- 2.9 (syst) GeV/c² = 171.2 +/- 4.0 GeV/c²

Submitted PRL: hep-ex/0807.4652

L+jets - Template Method using SLTu

June 30, 2009

Source

JES

PDFs [

Pileup

Total

Top Mass from the Cross Section

June 30, 2009

- Use dedicated Pythia samples with increased/decreased amount of ISR/FSR
- Variations in pythia parameters are determined by studying dimuon events only sensitive to ISR
- FSR parameters are varied within similar bounds, assuming the physics is similar
- Extrapolation from DY data to ttbar events is large
- Pythia parameters control mainly the soft part of FSR, might overlook hard (NLO type) radiation

b-JES using Z(bb)

- Di b-jets with Et>22 GeV, ΔΦ>3.0,E_t^(3rd)<15 GeV using SVT impact parameter trigger at L2
- To measure data/MC b-JES

Has not applied to b-JES in top mass

- different cone size
- different pt spectrum

Multiple Interactions (Pile-up)

- Our MC simulates only one parton-parton interaction per event
- We add additional min bias events according to our lumi profile and determine JES correction
- In ttbar events our MC still underestimates the amount of multiple partonparton interactions in each collision
- How does this propagate into an Mtop uncertainty ?

B-Jet Et increases with ~200 MeV

- We find mean of ~2 vertices per event in our current 2 fb⁻¹ dataset
- We know that B-Jets affect M_{top} most
- We know how a 1% bjet ET increase affects M_{top}
- Total effect is O(200 MeV) on M_{top}

June 30, 2009

B-tagging and Flavor Separation

- Even with a fully reconstructed secondary vertex required, ~50% of the background in the W + 2 jets sample do NOT contain bottom quarks
- Train Neural Network with secondary vertex tracking information (25 input variables) for bottom/charm/light flavor separation
 - L_{xy}, vertex mass, track multiplicity, impact parameter, semi-leptonic decay information, etc...
- Replaces Yes-No tag decision by a continuous variable (0<b<1) - used in all lepton + jets analyses
- Improves sensitivity by ~10-15%!

Examples of Input Variables

- A total of 370 shape uncertainties evaluated!
- Each template, each source of shape error, each channel (#tags, #jets, extended muon coverage)
- Shape uncertainties affect sensitivity most are quite small but some appreciable

Likelihood Fit

Use binned maximum likelihood fit of templates to the data:

Systematic uncertainties can affect rate and template shape and are taken into account:

- Rate systematics give fit templates freedom to move vertically only
- Shape systematics allow templates to 'slide horizontally' (bin by bin)

Systematic Uncertainties

Systematic Uncertainty	Rate	Shape	
Jet Energy Scale	010%	\checkmark	
Initial + Final State Radiation	015%	\checkmark	
Parton Distribution Functions	23%	\checkmark	
Monte Carlo Generator	15%		
Event Detection Efficiency	09%		
Luminosity	6%		
Neural Net B-tagger		\checkmark	
Mistag Model		\checkmark	
Q ² scale in ALPGEN MC		\checkmark	
Input variable mismodeling		\checkmark	
Wbb+Wcc normalization	30%		
Wc normalization	30%		
Mistag normalization	1729%		
ttbar normalization & m _{top}	23%	✓	

Also, MC statistics treated as a source of systematic uncertainty in each bin independently

 Largest uncertainty on background normalization

CDF Discriminants and expected Sensitivity with 3.2 fb⁻¹

Combination Strategy

Combination using "Super Discriminant" (SD)

- Combine individual analyses into one, more powerful - use discriminant outputs as input to NN
- Evolutionary neural networks trained to give the **best expected p-value**, not classification error function
- Candidate networks compete with each other
- Gained 13% over most sensitive input

Neuro-Evolution of Augmenting Topologies (NEAT) K O. Stanley and R. Miikkulainen, Evolutionary Computation **10 (2)** 99-127(2002)

• Optimization of

- Network topology
- Inter-node weights
- Output histogram binning

Channels are divided up at least as finely as any ingredient analysis:

 $(2 \text{ jets} + 3 \text{ jets}) \times (1 \text{ tag} + 2 \text{ tags}) \times (2 \text{ leastern Categories}) = 0. Channel$

June 30, 2009

Hypothesis Testing: p-values

p-value = probability of upward fluctuation of background to the data or something even more "signal-like" Outcomes ranked as signal-like using -2lnQ

$$Q = \frac{P(\text{data} \mid s + b, \hat{\theta})}{P(\text{data} \mid b, \hat{\theta})}$$

θ=nuisance parameters Neyman-Pearson Lemma: Q is the uniformly most powerful test

Fit for W+LF and W+HF scale factors. Fluctuate **all** nuisance parameters in Pseudo-experiments

> K. Tollefson, 2009 CTEO, Madison

Two Dimensional Interpretation

- Measure σ_{s} and σ_{t} separately
- Interesting because s- and t-channels have different sensitivity to BSM models
- Train dedicated s-channel and t-channel discriminants and fit 2D

June 30, 2009

A Golden CDF Event

