C T E Q

Experimental Results from CMS Φ ETH Institute for Particle Physics

Overall Outline

- Introduction
 CMS, Lumi, performance
- SM Physics QCD, EWK, TOP
- BSM Physics
 - some Exotica and SUSY searches
- Searches for the Higgs
- Bonus Material (only in backup)
 - Machine
 - Physics expectations, requirements
 - Tools/Methods

Disclaimer 1 : Many introductory and theoretical aspects covered in the other lectures

Disclaimer 2 : For complete list of results: see <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Disclaimer 3 : Some slides or slide content taken from seminars/lectures/write-ups of other colleagues or previous lectures of mine

 $E_{T} = 57 \text{ GeV/c}, \phi = 2.2$

Some thoughts about BSM searches

"LHC is most powerful street lamp in history"

J. Wells, ICHEP2010

- In the following I will not go through the, roughly infinite, list of models, with how much lumi they can be detected (or not), what are the ~14356 limits obtained so far, etc etc
- Motivations for why and how of BSM models are given in other lectures
- I rather try to make some "general" observations...
- In and talk about "tools", ie. useful variables and datadriven background estimates
- I can't wait for the moment when exclusion plots will mostly disappear from BSM talks....

SUSY searches

CTEQ

The zoo...

From the Possible to the Unexpected

Large zoo of models that predict different incarnations of New Physics at the LHC

5/05/2010 LHCC/A101 O. Buchmüller (ICL)

Non exhaustive list (by far) 21

CTEQ

Topologies

- A fundamental problem: most of the models depend on many (!) parameters, which influence production and decay modes. Many topologies to look for!
- To make life a bit easier, people chose some benchmark points/models, and studied those in more detail
- However, some "generic features" very often apply
- Take example of a "typical" SUSY mode (gluino/squark production and decay):
 - Production via strong interactions ie. large cross section
 - decay details depend on model parameters
 - However, once the heavy state is produced, it will decay to jets, leptons/photons and MET
 - Most of the jets and leptons have "relatively large p_T", leptons are isolated, considerable MET and large H_T = sum over p_Ts

Topologies, another example

4th generationHeavy quarksťComposite Higgs

ETH Institute for Particle Physics

models

New vector-like quark states,

So, while designing a search

- focus on robust and "simple" signatures, be "topology-oriented"
- in this way, hopefully you can cover a wide variety of models/parameters
- Iet the SM backgrounds decide on the feasibility, not the models
- if you see "something", you have the pleasant problem to understand what it is: the "LHC" inverse problem"
- Then data came, and the experiments basically tried to follow this approach....

- Á Á 🕫

Signatures (not at all complete!!)

Signature	class of model	important backgrounds	issues
Resonances -di-jets -di-leptons/photons	Z', W', excited quarks ED	falling QCD or DY spectrum	 Jet Energy Scale and resolution leptons : alignment, momentum resolution, calorimeter saturation
Multi-jets + MET	SUSY New heavy quarks, composite models	QCD ttbar V+jets	 data-driven bckg. estimation MET modeling, jet fluctuations choice of clever variables (HT, alpha_T, Razor, m_{T2},)
leptons + jets + MET	SUSY New heavy quarks, ť, b',	QCD ttbar V+jets	 like above jets faking leptons, lepton isolation lepton charge mis-ID (for same-sign lepton searches)
photons + MET	SUSY Extra Dimensions	QCD	- jets faking photons - MET modeling

Examples of variables

ETH Institute for Particle Physics

General Stress Stre

selection:

CTEQ

Aug 12

CTEQ

Others

slide adapted from M. Dünser

backgrounds:

- -> Z to vv : data-driven estimate
- -> lost-lepton (W,ttbar) : data-driven
- -> hadronic T decays : data validated MC
- -> QCD : data-driven

-> M_R ~ scale of the event

-> R very small for QCD, large for signal --> analysis in M_R vs. R² plane

Most of the experience shows:

also using other approaches (alpha_T, MT2, Razor):

QCD can be pretty well controlled

A lot of work has to go into control of EWK backgrounds with real MET

G. Dissertori : Results from CMS

Background estimates

Data driven background estimates. An example.

ETH Institute for Particle Physics

MET

CTEQ

Example of variable : JZB (fully data-driven)

Search for topologies with jets, MET, Z :

- Event selection:
 - ≥3 jets (p_T > 30 GeV, central)
 - Two p_T > 20 GeV, opposite-sign, same flavor isolated leptons (e or μ).
 - Dilepton invariant mass within 20 GeV of nominal Z mass.
- JZB : Jet- Z Balance
- MET in Z+jets events: fake, from jet mis-measurements
- Z+jets bkg on positive JZB: from negative JZB part
- top backg : use opposite-flavour events

arXiv:1204.3774

CTEQ

Aug 12

Searches for Supersymmetry

GeV

m(ť.) (

Example of the CMS strategy

Focus on signatures (topologies), use different approaches/observables

- alpha_T, "Razor", MT2, HT, MHT, ...
- more recently: add b-tags to enhance sensitivity to 3rd gen. squarks, and design dedicated, "high-precision" 3rd gen. searches
- Established many different **data-driven techniques** to derive backgrounds
 - jet smearing and re-balancing, ABCD, fakeable-object technique to estimate fake lepton rates, generic properties of lepton p_T spectra, generic properties of falling SM spectra
- Different trigger paths (all hadronic HT-based, leptonic)
- Not necessarily optimized for best excl. limits, but sharpened tools for discovery!
- cross check, cross check, cross check....

ETH Institute for Particle Physics

Example: same-sign dileptons +MET

- Very low SM backgrounds
- Name of the game: fake-rate estimates
 - estimated from data
- Baseline selection
 - Define different search regions, based on lepton p_T, H_T, MET

CTEQ

And the results are...

in the context of the cMSSM

CTEQ

Interpretation: Simplified models

Models proposed at: http://www.lhcnewphysics.org

ie. re-interpret existing searches and provide information to model builders in this generic form

Watch out regarding (simple) assumptions made, eg. about branching ratios

CTEQ

ETH Institute for Particle Physics

C T E Q

Interpretation: Simplified models

example of a 3rd generation search, for direct stop / sbottom production

T2bb - Di-sbottom production resulting in 2 b quarks + MET final states

ETH Institute for Particle Physics

CTEQ

Simplified models

Note the fine print: Limits get weaker and weaker for heavier neutralinos (less mass splitting, less MET). Also, 100% BR assumed!

 $m(\tilde{\chi}^0)$ is varied from 0 GeV/ c^2 (dark blue) to $m(\tilde{g})-200$ GeV/ c^2 (light blue).

 $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_{2}^{0}) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^{0})}{2}.$

And finally, not to forget...

Decays highly suppressed in SM

•Forbidden at tree level •b \rightarrow s(d) FCNC transition only through penguin and box diagrams •Helicity suppressed by factors of (m_µ/ m_B)²

Standard Model Predictions

Bs→µµ = (3.2±0.2) 10⁻⁹
Bd→µµ = (1.0±0.1) 10⁻¹⁰

Sensitivity to New Physics

BR in MSSM proportional to tanβ⁶

CTEQ

Aug 12

A very rare decay

CTEQ

So....

CMSSM is being cornered

- very much so, also because of recent Higgs results
- "Vanilla SUSY searches" at the LHC exclude gluinos and light squarks at and beyond O(1) TeV by now, much weaker limits for all other parts of the SUSY spectrum, eg.
 - 3rd gen. squarks below ~300-400 GeV
 - "EWKinos", eg. from direct chargino-neutralino production: ~ O(100) GeV
- In developing data-driven methods, actually there are often interesting side-products, in terms of probing SM processes in challenging regions, eg. gamma+njets/Z+njets
- Naturalness to be given up?
- However, remember:
 - in the beginning we have been running for the low-lying fruits
 - they are not hanging where we hoped for
 - Only "simple" SUSY models being squeezed
 - Now, a lot of effort going into searches for "light" 3rd generation partners (eg. previous searches plus b-tags), first results on stop and bottom searches appearing....
 - and thinking how to tackle difficult phase space regions, eg. with (close to) degenerate states

Exotic signatures

CMS/	Run : 142528
	Event : 201376378
	Dijet Mass : 1636 GeV

Leptons (+ E_{Tmiss})

Search for heavy resonances decaying to lepton pairs

- Bump hunt in M(ee, μμ) spectrum
- no deviations observed

- General Bump hunt in M_T(Iv) spectrum
- no deviations observed

Z' with SM-like couplings < 2590 GeV</p>

W' with SM-like couplings < 2.85 TeV</p>

CTEQ

Photons and Tops in the final state Φ Particle Physics

- Search for massive neutral bosons
- Bump hunt in M(ttbar) spectrum
- Reconstructing boosted tops
- No bumps seen so far...

Complementarity is always nice

- Interesting complementarity of collider exps and direct DM detection
 - monojets, photons+MET

arXiv:1204.0821

ETH Institute for

Particle Physics

At colliders we probe parton-DM couplings, whereas in DDM it is the coherent nucleon-DM scattering. Collider exps can cover much lower masses and also very high cross sections not accessible by underground direct DM (DDM) detectors.

4.4.

And many, many more...

CTEQ

A. de Roeck, Sep11

CTEQ

Aug 12

400

Higgs searches

in the following: concentrating on SM Higgs, low mass range, most sensitive channels

 $\mathsf{BR}(\Phi^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) = 100\%$ CMS Preliminary $\sqrt{s} = 7$ TeV, $\int \mathcal{L} = 4.6$ fb⁻¹

Executive summary

80.34

80.32

80.3

165

170

New (preliminary) indirect Higgs mass determination

- after March analyses were blinded
- re-optimization only using simulation
- analyses validated in control regions

CTEQ

 $M_{H} = 94^{+29}_{-24}\,GeV$ (was $M_{H} = 92^{+34}_{-26}\,GeV$ before)

190

SM prediction: Phys.Rev.D69:053006,2004 Top Mass: 173.2+0.9 GeV (arXiv:1107.5255)

185

Top quark mass (GeV)

180

The statistics behind all this

- something for the discussion session ;-)

$$\mathcal{L}(\operatorname{data}|\mu \cdot s(\theta) + b(\theta)) = \mathcal{P}(\operatorname{data}|\mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta}|\theta)$$

$$q_{\mu} = -2\ln \frac{\mathcal{L}(\operatorname{data}|\mu \cdot s(\hat{\theta}_{\mu}) + b(\hat{\theta}_{\mu}))}{\mathcal{L}(\operatorname{data}|\mu \cdot s(\hat{\theta}) + b(\hat{\theta}))}$$

$$P_{0} = P\left(q_{0} \ge q_{0}^{\operatorname{obs}}|b\right)$$

$$CL_{s+b} = P\left(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} \mid \mu \cdot s + b\right)$$

$$CL_{s+b} = P\left(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} \mid b\right), \quad CL_{s} = CL_{s+b}$$

$$CL_{b} = P\left(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} \mid b\right), \quad CL_{s} = CL_{s+b}$$

$$CL_{b} = P\left(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} \mid b\right), \quad CL_{s} = CL_{s+b}$$

$$CL_{s+b} = P\left(q_{\mu} \ge q_{\mu}^{\operatorname{obs}} \mid b\right), \quad CL_{s} = CL_{s+b}$$

Higgs production

CTEQ

Production and Decay

CTEQ

Signatures/Channels

2-photon final states

excellent detector / mass resolution (1-3 %), isolation, background fit

- Iepton final states (µ, e or tau)
 - isolation, momentum resolution, tau identification
 - For electrons and muons: excellent mass resolution (1-2 %) at low mass
- Iepton + neutrino final states
 - Iepton identification, WW, tt and W+jets bkg rejection, MET resolution
- associated Higgs production (VHbb, ttH)
 b-tagging, jet resolution and energy scale, V+c,b and ttjj backgrounds
- Higgs production via Vector Boson Fusion
 - very forward jet tagging

Classes of Final States

Solution Mass can be fully reconstructed ($\gamma\gamma$, 4 leptons, bb)

- background from sidebands and/or fits, on data
- $\frac{1}{2}$ for hadronic final state: need excellent jet E_T resolution
- Neutrinos in final state,
 no exact mass reconstruction possible
 - eg. H \rightarrow WW \rightarrow /v/v or H/A \rightarrow $\tau\tau$
 - 🖗 Jacobian peaks
 - background from 'sidebands' if possible
 - background from MC
 - with extrapolation of background from non-signal region using data and MC (shape)
 - extrapolation of background using data and theory (ratio of cross sections)

Overview and expected sensitivity

slide adapted from P. Meridiani

- at 125 GeV, all analyses show good expected sensitivity
- redundant measurements, addressing different production and decay modes
- excellent mass range for studying Higgs properties
- Side remark: Always look at expected sensitivities, when judging performance of an experiment!!

ETH Institute for

Particle Physics

Aug 12

H→bb

see also arXiv:1207.7235

- in associated production mode (VH)
 - reduced background when asking for a W or Z (with leptonic and invisible decays)
- Itwo b-jets with high p⊤
- Analysis improvements wrt 2011: ~50% in sensitivity
- Result: broad excess compatible with presence of 1xSM Higgs boson

 $H \rightarrow \tau \tau$

see also arXiv:1207.7235

- Channels used: e-mu, e-had, mu-had, mu-mu
- ✓ VBF / boosted / 0-jet
- Backgrounds: top, EWK, DY (irreducible)
- No significant excess wrt SM background
 - with very broad excess expected

Sensitivity close to 1xSM Higgs (improved by ~70% wrt 2011)

CTEQ

Aug 12

HWW

Signature

- 2 opposite charged leptons (leptons only e, μ)
- 2 neutrinos == missing
 transverse energy (MET)
- no Higgs mass peak
- enhance sensitivity by subdividing into + (0,1,2) jets
- Kinematic variables to reject backgrounds: most discriminant: delta-phi and inv. mass of the two leptons
- Analysis challenges
 - understand backgrounds
 - normalize to control regions
 - backgrounds: WW, top, W+jets, DY

Aug 12

HWW: results

see also arXiv:1207.7235

- 2011 analysis had BDT and cut-and-count approaches
- In 2012: so far only the cut-and count results available
- Result: broad excess compatible with presence of 1xSM Higgs

CTEQ

Aug 12

The 4-lepton channel : The golden mode

- >20% improvement wrt. 2011 analysis
- New: inclusion of angular information using a matrix-element likelihood analysis (MELA)

G. Dissertori : Results from CMS

4 isolated high p⊤ leptons

- consistent with Z decays
- from same vertex
- fit mass peak with resolution: 2-3 GeV
- little background, main comes from non-resonant ZZ production, irreducible
- also Zbb and top (2l2nu2b)
- Modes: eeee, eemumu, 4mu

ETH Institute for Particle Physics

HZZ: results

see also arXiv:1207.7235

- Normalization and background shape ok Remember: ZZ xsec in agreement with NLO pred.
- Result: excess at ~125 GeV

HZZ: results

Excess at ~125.6 GeV

see also arXiv:1207.7235

- observed 3.2 σ , expected 3.8 σ
- Resulting strength at 125.6 GeV: $\mu = \sigma/\sigma_{SM} \sim 0.7$
- ZZ alone excludes almost full mass region

The di-photon channel

CMS-HIG-12-015

see also arXiv:1207.7235

ETH Institute for Particle Physics

It's (almost) all about mass resolution!

Exp	Expected signal and estimated background								
Event classes		SM Higgs boson expected signal ($m_{\rm H}$ =125 GeV) Backgrou					Background		
Event classes							$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 125 \text{GeV}$
			ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./GeV)
-1	Untagged 0	3.2	61%	17%	19%	3%	1.21	1.14	3.3 ± 0.4
l fb	Untagged 1	16.3	88%	6%	6%	1%	1.26	1.08	37.5 ± 1.3
5.	Untagged 2	21.5	91%	4%	4%	_	1.59	1.32	74.8 ± 1.9
IeV	Untagged 3	32.8	91%	4%	4%	-	2.47	2.07	193.6 ± 3.0
2	Dijet tag	2.9	27%	73%	1%	-	1.73	1.37	1.7 ± 0.2
1	Untagged 0	6.1	68%	12%	16%	4%	1.38	1.23	$7.4 \pm \ 0.6$
- L	Untagged 1	21.0	88%	6%	6%	1%	1.53	1.31	54.7 ± 1.5
5.31	Untagged 2	30.2	92%	4%	3%	-	1.94	1.55	115.2 ± 2.3
N	Untagged 3	40.0	92%	4%	4%	-	2.86	2.35	256.5 ± 3.4
3 Te	Dijet tight	2.6	23%	77%	_	-	2.06	1.57	1.3 ± 0.2
	Dijet loose	3.0	53%	45%	2%	_	1.95	1.48	3.7 ± 0.4

CTEQ

slide adapted from P. Meridiani

Analysis very advanced: makes use of several multivariate techniques to enhance the small S/B signal

STEP	CRITICAL ISSUES
1) two isolated photons with large transverse momentum	 isolation to reject γ+jet and QCD background
2) di-photon mass reconstruction $m_H^2 = 2E_1E_2(1 - \cos\theta)$	 vertex determination in presence of multiple interactions pile-up (PU) energy scale and resolution
3) signal extraction	 event categories to maximize sensitivity: MVA categories + di-jet (VBF enriched) background shape

The di-photon channel

slide adapted from P. Meridiani

Result:

CTEQ

- 4.1 σ excess at 125 GeV
- Very consistent between 2011 and 2012
- Cross-checked with two alternative analyses (including fully cut based).
 Compatible results

see also arXiv:1207.7235

Results - all combined

bb

lepton, E_{T}^{miss} (VH)

10

110-135

WH, ZH

Inclusive

 $H \rightarrow WW$

 $H \rightarrow ZZ$

5 at fb⁻¹ at 7 TeV

5+5 fb⁻¹ at 7+8 TeV

CTEQ

5.1

5.0

ETH Institute for Particle Physics

Questions on the excess:

Is it statistically significant? Is it a boson? What is its mass? Is it "the" SM Higgs boson? Is it "a" Higgs boson?

Results - all combined

slide adapted from P. Meridiani

Solution of p-values, adding modes (ICHEP combination):

CTEQ

σ

3σ

4σ

Compatibility with SM Higgs

slide adapted from P. Meridiani

• Best fit SM strength at 125GeV: $\mu = \sigma/\sigma_{SM} = 0.87 \pm 0.23$

Good agreement among modes

CTEQ

Aug 12

-exceptions: ττ (small), γγ (large, about 1.6xSM)

G. Dissertori : Results from CMS

52

First measured property: Mass

- Mass derived from most sensitive channels (best resolution)
 - $H \rightarrow \gamma \gamma$
 - H→γγ dijet (VBF enriched)
 - H→ZZ

CTEQ

Aug 12

- Likelihood scan (mass vs σ)
- Systematics mainly from ECAL energy scale

Is it the SM Higgs?

slide adapted from P. Meridiani

Ratio sensitive to coupling to W

and Z bosons (g_{Hww}/g_{HZZ})

protected by gauge custodial symmetry

 $R_{WZ} = \mu_{WW}/\mu_{ZZ} = 0.9 + 1.1 - 0.6$

Another exercise: group couplings in fermionic and vectorial ones (C_F, C_V)

- Use LO prediction for loops in H→γγ and H→gg couplings
- In agreement with SM within 95% CL
- Some tension to be studied with more

exclusive channels and data

What next?

- By the end of this year's run:
 - might have collected 20-30/fb

The consequence

'Yes, I'm serious. Three posh blokes on camels wanting to meet the God particle' To order a copy of The Best of Mac 2011, priced £9.99, call the Mailshop Bookstore on 0843 382 0000 or visit mailshop.co.uk/books

Grand Summary

Summary 1

So many things I couldn't cover :(

- Heavy Ion results (extremely rich!)
- lot's of low-p_T physics
- forward physics, diffraction
- more BPH, QCD, EWK, TOP results
- many, many search results
- my god, too much...

Note: CMS has already produced ~155 papers, on collision data!

Summary 2

- I guess, by now you must be pretty tired
 I am...
- But there is a good reason for that ;-)
 in these two years only, CMS has produced such a wealth of high-quality results, that it is just mindboggling when scanning through all of it
- Solution State State
- So the best is only to come!

thus, this is not the

Backup

parametrizations

Production	Decay	LO SM	
VH	$H \rightarrow bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
ttH	$H \rightarrow bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
ggH	$H \rightarrow ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \rightarrow WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_{\!F}^2$

Is it a SM Higgs boson?

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through

Production	Decay	LO SM			
VH	$H \to bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$		
$\mathrm{tt}\mathrm{H}$	$H \to b b$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$	/	
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$	C _F	
ggH	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$		
$\rm ggH$	$H \to Z Z$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$		
ggH	$H \to WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$		<u></u>
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$		-v
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$		
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_{\!F}^2$		

G. Petrucciani (UCSD, CMS)

UCSD

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through

CTEQ

Is it a SM Higgs boson?

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through

Production	Decay	LO SM		
VH	$H \to bb$	$\sim rac{C_V^2 imes C_F^2}{C_F^2}$	$\sim C_V^2$	
$\mathrm{tt}\mathrm{H}$	$H \to bb$	$\sim rac{C_F^2 imes C_F^2}{C_F^2}$	$\sim C_F^2$	
VBF	$H \to \tau \tau$	$\sim rac{C_V^2 imes C_F^2}{C_F^2}$	$\sim C_V^2$	C _F
ggH	$H \to \tau \tau$	$\sim rac{C_F^2 imes C_F^2}{C_F^2}$	$\sim C_F^2$	
ggH	$H \to Z Z$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$	
$\rm ggH$	$H \to WW$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$	ς _ν ,
VBF	$H \to WW$	$\sim rac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$	-v
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$	
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_F^2$	

G. Petrucciani (UCSD, CMS)

LHC2TSP - 13 Jul 21

Is it a SM Higgs boson?

 CMS data compatible with SM prediction at 95% C.L.

Higgs couplings

- Best fit c_F driven to low values by VBF γγ excess and ττ deficit.
- More data needed to draw any definite conclusion.
- LHC Cross Section WG also converging on an improved models for these kinds of fits.

48

UCSD

parametrizations

Production	Decay	LO SM	
VH	$H \rightarrow bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
ttH	$H \rightarrow bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
ggH	$H \rightarrow ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \rightarrow WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_{\!F}^2$

The road goes ever on...

Naïve rescaling of uncertainties on σ BR with $\sqrt{\sigma}$ L), **NOT AN OFFICIAL CMS PROJECTION**

Decay	Prod.	60fb⁻¹ @ 8 TeV	300fb⁻¹ @ 14 TeV	ئ 1.2 - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ -
H→bb	VH	30%		1.1
H→bb	ttH	60%		
$H \rightarrow \tau \tau$	ggH	40%		1.0
$H \rightarrow \tau \tau$	qqH	40%		
$H\to \gamma\gamma$	ggH	20%		0.9
$H \to \gamma \gamma$		40%		
$H \rightarrow WW$	ggH	16%		0.8 8 0.9 1.0 1.1 1.2
$H \rightarrow WW$	qqH	60%		68% CL contours, assuming 100%
$H \rightarrow ZZ$	ggH	16%		signal purity and no correlations
LHC2TSP - 13 Jul	21		G. Petrucciani (UCS	- 5D, CMS) 53

CTEQ

Electron energy scale: golden barrel

slide adapted from M. Donega

Playing with Poisson: (s = #expected signal; b= #expected background events)

$$P(n|b) = \frac{b^n}{n!}e^{-b} \qquad P(n|s+b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

We have n events for which we measure all sorts of variables x. We can write the likelihoods for H_0 and $H_{1.}$

background only
$$L_b = \frac{b^n}{n!}e^{-b}\prod_{i=1}^n f(\mathbf{x}_i|\mathbf{b})$$
 $\pi_s = s/(s+b)$ signal + background $L_{s+b} = \frac{(s+b)^n}{n!}e^{-(s+b)}\prod_{i=1}^n (\pi_s f(\mathbf{x}_i|\mathbf{s}) + \pi_b f(\mathbf{x}_i|\mathbf{b}))$

see also, eg.: Tom Junk at ETH Pauli lectures 2012, <u>http://www-cdf.fnal.gov/~trj/</u> Glen Cowan: CERN academic lectures on statistics 2012 <u>https://indico.cern.ch/</u> <u>conferenceDisplay.py?confld=173726</u>

slide adapted from M. Donega

Typically (for numerical reasons take the In, the -2 is conventional) one defines a test statistics Q as: -2 In converges to a x2 for large samples

$$Q = -2\ln\left(\frac{L_{s+b}}{L_b}\right) = -s + \sum_{i=1}^n \ln\left(1 + \frac{s}{b} \frac{f(\mathbf{x}_i|\mathbf{s})}{f(\mathbf{x}_i|\mathbf{b})}\right)$$
constant it shifts the distributions but it doesn't affect the separation, so you usually drop it

Neyman-Person Lemma tells the LR is the best test statistics in the bkg only hp and has the biggest power relative to the S+B hp (you have both hp in the definition)

To compute the p-value (for H0 reject the bkg only or H1 reject a signal model) We need the pdf for Q under the different hp: f(Q|b) and f(Q|s+b)You do it with MC (toy). You build f(Q|b) generating pseudo-data on the background only hp and for each pseudo-experiment you compute Q. (same with s+b).

Some Stat.

slide adapted from M. Donega

yellow = p_b if $p_b < 2.9 \ 10^{-7}$ reject the bkg only hp @ 5 σ (discovery)green = p_{s+b} if $p_{s+b} < \alpha$ then reject that specific model at 1- α CL

Some Stat.

slide adapted from M. Donega

yellow = p_b if $p_b < 2.9 \ 10^{-7}$ reject the bkg only hp @ 5 σ (discovery)green = p_{s+b} if $p_{s+b} < \alpha$ then reject that specific model at 1- α CL

Some Stat.

slide adapted from M. Donega

$$\mathcal{L}(\operatorname{data}|\mu \cdot s(\theta) + b(\theta)) = \mathcal{P}(\operatorname{data}|\mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta}|\theta)$$

Notes: $\lambda(\mu) \in [0,1]$ it reflects the level of agreement between the hp and the data $\rightarrow 1$ if the tested μ is close to $\hat{\mu}$ (fit on data) and so also the nuisance parameters fit on data $\hat{\theta}$ are close the the ones that maximize the numerator $\hat{\theta}$ $\rightarrow 0$ if the tested μ is way off the $\hat{\mu}$ (fit on data)

slide adapted from M. Donega

ETH Institute for Particle Physics

Test statistics for discovery (i.e. test the μ = 0 hp: H₀ is bkg only)

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

 $\lambda(\mu) \in [0,1] \Rightarrow q_0 = -2 \ln \lambda(\mu) \in [0,\infty)$

 $\mu = 0$ (bkg only hp): -2 ln $\lambda(0) \rightarrow$ large values bad agreement \rightarrow small values good agreement

We set $q_0 = 0$ for negative $\hat{\mu}$ because we only look at upward fluctuations as evidence of signal against the bkg only hp

Careful with μ and $\hat{\mu}$! μ is the physical quantity: the signal strength is $\mu \ge 0$ $\hat{\mu}$ is fit on data and can be positive or negative (it can fluctuate up or down)

In the large sample approximation the distribution of $\hat{\mu}$ becomes gaussian ! (and as usual this brings some simplifications)

slide adapted from M. Donega

Measured p-value

test statistics
$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

large q0 means bad compatibility

10

(and as usual the p-value can be converted in σ)

slide adapted from M. Donega

A. Read definition

CLs+b: probability to get a result which is less compatible with a signal when the signal hypothesis is true CLb: probability to get a result less compatible with the B only hypothesis than the observed one

If the two distributions are very well separated than p_b will be very small $\Rightarrow 1-p_b \sim 1$ and $CL_s \sim CL_{s+b}$ which is just the ordinary p-value of the s+b hypothesis

If the two distributions are very close than p_b will be large $\Rightarrow 1-p_b$ small ! So that the CL_s is prevented to become very small !

The rejection now is decided on the corrected p-value and so $CL_s \leq \alpha$ and this prevents you to reject ho where you have little sensitivity !

slide adapted from M. Donega

ETH Institute for Particle Physics

Brazilian Flag plot

Expected: for each mass point you calculate the CLs upper limit on μ (μ_{up}) in the background only hp (μ =0). The dashed line is the median of the μ_{up} distribution. (each toy has the equivalent integrated luminosity -number of events- as in data) Observed: all data are used at each single mass hp point (x-axis). For each mass hp you calculate the CLs upper limit on μ (μ_{up}).

If the observed limit is larger that the expected it means you have observed some excess of candidates in that region.

slide adapted from M. Donega

ETH Institute for Particle Physics

Best fit plot

The best fit value of μ (i.e. $\hat{\mu}$) vs the hypothesis mass. The green band (usually it's blue, but in CMS we have a lot of fantasy) is defined as:

 $-2\ln\lambda(\mu) = -2\ln(L(\mu)/L(\hat{\mu})) < 1 \text{ i.e., } \ln L(\mu) > \ln L(\hat{\mu}) - \frac{1}{2}$

slide adapted from M. Donega

ETH Institute for

Particle Physics

p-value plot

The local p-value is calculated at each mass hp in the background only hp. (the probability to have a fluctuation of the background as large or larger than the one observed) Local p_0 means that it has not been corrected for any look-elsewhere-effect (see next) The blue dashed line is the signal expected giving the median p_0 under the assumption of the Standard Model cross section μ =1 at each mass point (red dashed line is when you inject a signal at 125 GeV).

Local p-value is related to (equivalent gaussian) significance Z as: p-value = erf(Z/sqrt(2))

A very small p-value means you're excluding the background only hp at a particular mass point, hence you might have signal

78

O E