C. Some Results from the CT10-NNLO Global Analysis

CT10-NNLO Table 1/ 159 HERA1X0 2/ 101 BcdF2pCor 3/ 102 BcdF2dCor 4/ 103 NmcF2pCor	Ndp 579 339 251 201	Chi^2 617. 392. 291. 333.	Nsy 114 5 5 11	Combined HERA1 NC+CC DIS (2009) BCDMS collaboration BCDMS collaboration NMC collaboration	28 data sets used for the CT10-NNLO global analysis
5/ 104 NmcRatCor	123	151.	5	NMC collaboration	
6/ 108 cdhswf2 7/ 109 cdhswf3 8/ 110 ccfrf2.mi 9/ 111 ccfrf3.mc 10/ 201 e605	85 96 69 86 119	70.5 77.9 67.8 34.8 95.7	0 0 5 0 0	P Berge et al Z Phys C49 187 (1991) P Berge et al Z Phys C49 187 (1991) Yang&Bodek model-independent Shaevitz&Seligman model-dependent processed by SK DY Q^3 dSig/dQ dy proton on heavy target	
11/ 203 e866f 12/ 225 cdfLasy 13/ 140 HN+67F2c 14/ 143 HN+90X0c 15/ 156 ZN+67F2c	15 11 8 10 18	9.7 13.4 9.3 16.3 13.4	0 0 8 0	E866 experiment: pd / 2pp W production: decay lepton asymmetry CDF Run-1 H1 neutral current charm H1 neutral current charm ZEUS neutral current charm	
16/ 157 ZN+80F2c 17/ 124 NuTvNuChX 18/ 125 NuTvNbChX 19/ 126 CcfrNuChX 20/ 127 CcfrNbChX	27 38 31 33 33 30 40 38	16.7 29.6 28.4 48.0 26.4	0 0 0 0	ZEUS neutral current charm NuTev Neutrino Dimuon Reduced xSec NuTev Neutrino Dimuon Reduced xSec Ccfr Neutrino Dimuon Reduced xSec Ccfr Neutrino Dimuon Reduced xSec	
21/ 204 e866ppxf 22/ 260 ZyD02a 23/ 261 ZyCDF2 24/ 227 cdfLasy2 25/ 231 d02Easy1	184 28 29 11 12	234. 15.6 46.5 11.4 26.0	0 6 0 0	E866 experiment: DY pp: Q^3 dSig/dQ dxf Z rapidity dist. (D0 TeV II-a) Z rapidity dist. (CDF TeV II) W production: decay lepton asymmetry CDF Run-2 W production: decay elec asymmetry D0 Run-2 Pt>25	
26/ 234 d02Masy1 27/ 504 cdf2jtCor 28 / 514 d02jtCor2	9 2 72 110	14.8 101. 114.	0 24 23	W production: decay muon asymmetry DO Run-2 Pt>20 (run II: cor.err; ptmin & ptmax) (run II: c 3912 err; ptmin & ptmax) 2	

HERA Combined Data

ep deep inelastic scattering

positron scattering , neutral current , #data points = 366
electron scattering , neutral current , #data points = 145
positron scattering , charged current , #data points = 34
electron scattering , charged current , #data points = 34

HERA Combined Data, positron – proton Neutral Current DIS

HERA : $\bar{e} P \rightarrow \bar{e} X$

HERA positron-proton NC DIS

Positron-proton, neutral current deep inelastic scattering

Q and x are the kinematic variables for deep-inelastic scattering.

The HERA combined data set – resolved H1 and ZEUS data

These graphs show the **reduced cross section** as a function of momentum transfer Q, for individual values of x.

(Q and x are the kinematic variables for deep-inelastic scattering.)

HERA : e + P -> e + X

HERA : $\bar{e} P \rightarrow \bar{e} X$

Red curves = CT10-NNLO theory

С

2012

HERA : $\bar{e} P \rightarrow \bar{e} X$

7

"Histogram of Residuals"

We define the *residual* by

Residual_i =
$$\frac{D_i - T_i}{\sigma_{0i}}$$

For good agreement between data and theory , the residuals should have a Gaussian distribution with mean = 0 and standard deviation = 1.

Theory = CT10-NNLO;

Data = HERA combined data with systematic errors;

Black curve = ideal Gaussian distribution

HERA : $\bar{e} P \rightarrow \bar{e} X$

8

$\mathrm{HERA}:\bar{\mathrm{e}}\;\mathrm{P}\to\bar{\mathrm{e}}\;\mathrm{X}$

Residual

Residual

Inclusive Jet Production at the Tevatron

(110; 23)

Inclusive Jet Production in Run 2 at the Tevatron Collider - CDF

The red curves are the theoretical calculations with CT10-NNLO PDFs.

Inclusive Jet Production in Run 2 at the Tevatron Collider – D0

The red curves are the theoretical calculations with CT10-NNLO PDFs.