JET PHYSICS

CTEQ summer school

Lima, peru 2012

> Matthew Schwartz Harvard University

Outline

- Lecture 1: Jets and QCD
 - The physics of jets
 - Jets from perturbative QCD
 - Jet algorithms
 - Some data
- Lecture 2: Modern jet physics
 - Jet substructure
 - Jet grooming
 - Jet properties
 - Color flow
 - Jet charge
 - Quark and gluon jets
 - The future of jets

LECTURE 2 MODERN JET PHYSICS

JET SUBSTRUCTURE

Jet-to-parton map

Jet algorithms

Application: resonance searches

Example: Tiny extra dimensions of space

KK gluon searches

Heavy KK gluons from extra dimensions jet Decays to quarks jet Dijet background from the standard model is enormous!

How else can we find KK gluons?

Other decay modes

Look at decays to top quarks:

Looks like 6 Jets

• Take **R small (R=0.4)**, end up with too many tiny jets

Typical top jets

Moderate boost ($P_T = 500 \text{ GeV}$)

Typical background jets

Typical top jets

Large boost ($P_T = 1500 \text{ GeV}$)

Typical background jets

Jet substructure

A jet is not a parton: it has substructure!

Quick history:

- M. Seymour : look within a jet (Z. Phys. C62 (1994) 127) (1994)
- Butterworth et al : boosted Ws in WW scattering (hep-ph/0201098) (2002)
- Butterworth et al : boosted Higgs (arXiv:0802.2470) (2008)
- Kaplan et al boosted tops (arXiv:0806.0848) (2008)
- 2008-today: hundreds of papers

Top-tagging

1. Find fat jets (R = 1.2)

- Filter: 3.
- New concept: subjets within a fat jet If clustered particle is soft, discard
- Top jets should have 3 subjets 4.
- 5. Kinematic subjet cuts
 - W mass peak, top mass peak, and helicity angle

top

Hopkins top-tagger Kaplan et al. arXiv:0806.0848

Top-tagging in data

CMS, 2011

Top-antitop events

Unboosted

Boosted

Top-tagging in data

Summer 2011: 0.8 fb⁻¹ analyzed resonances excluded to 1.5 TeV

W boson in top jet

Jet Mass [GeV]

W/Z

Н

Higgs to bb

How can we measure the Hbb coupling?

- H + W/Z has enormous W/Z + bb background
- top background is also very large (tt -> WW bb)
- Z -> neutrinos difficult because neutrinos go back to back and there's no missing energy

Go to boosted regime!

- Demand pT > 200 GeV for the higgs (at 14 TeV)
- Signal cross section drops to 5%
- W+jets drops to 0.1%
- Tops no longer a problem

Boosted higgs:

JET GROOMING

Matthew Schwartz

Jets with pileup

2015 pileup?

(This is a heavy ion collision from 2010)

Jet grooming

Can we remove piluep without destroying the event?

Basic idea: remove soft radiation which is not collinear

- Recluster fat jet into R=0.3 subjets
- Keep 3 hardest subjets
- Boosted Higgs
- Boosted top

Designed for C/A algorithm

Trimming (Krohn et al 2008)

- Recluster fat jet into R=0.3 subjets
- Keep subjets which have energy > 5% jet energy
- Parton momentum reconstructionPileup removal

Designed for anti-k_T algorithm

Pruning (Ellis et al 2008)

- Undo clustering steps
- Cluster 1 with 2 if
 - E_1 , E_2 > 0.1 (E_1 + E_2)
 - or $R_{12} < 0.2$
 - otherwise, drop softer of 1,2
- □ Jet mass searches

Qjets

•

\$1.

0.5

-0.5

-1.5 -1.5

-0.5

0

After anti-k_T

 $R_0 \sim 1.5$

0.5

1.5

Δŋ

-1.5 -1.5

-1

-0.5

After k_T

 $R_0 \sim 0.2$

0

0.5

Matthew Schwartz

Trimming

- I) Make seed jet with anti- k_T (R_0 large)
- 2) Recluster into subjets with k_T (R₀ small)

퀽

- 3) Remove subjets if $p_T < f_{cut} \Lambda_{hard}$
- 4) Kept subjets give trimmed jet

Trimming

Helps experimentally with pileup subtraction

Jet mass dependence

On $N_{\text{Pileup-Vertices}}$

Before trimming ⟨m₁^{let}⟩ [GeV] ATLAS Preliminary anti-k, LCW jets with R=1.0 280F 260È No jet grooming applied 240 $600 \le p_{-}^{\text{jet}} < 800 \text{ GeV}, \text{ } \text{m}\text{I} < 0.8$ 220 Data 2011, ∫ Ldt = 4.7 fb⁻¹ Dijets (Pythia) 200 Dijets (POWHEG+Pvthia) 180 160 140 120 100 80 60 Data / MC 1.1 1.0 0.9 6 8 0 12 10 14 Reconstructed vertex multiplicity $(N_{p_{N}})$

Jet mass with grooming

ATLAS simulation

CMS data (2012)

JET PROPERTIES

Jet-parton map

Assumption: this exists

What is wrong with the jet-parton map?

It treats jets as 4-vectors

- Jets have **substructure**
 - Fat-jet boosted top/higgs searches
 - Can be groomed
- Jets have superstructure
 - **color** connections between jets
- Partons have quantum numbers
 - Electric charge
 - QCD charge (quark or gluon?)

Can these be measured?

COLOR FLOW

Matthew Schwartz

Color coherence in soft radiation

3 quark color dipoles

Gluons act like ends of 2 dipoles

Accurate up to $1/N^2 \sim 10\%$ effects

Destructive interference

Dipole shower

Dipole showers in its rest frame

- Boost → **string showers** in **dipole-momentum** direction
- Alternative to angular ordering

How do they show up?

Shower same event *millions* of times

Signal vs background

Higgs:

Signal (Higgs) Color singlet

Background (QCD) Color connected to beam Pull

Gallichio et al. Phys.Rev.Lett. 105 (2010) 022001

- Find **jets** (e.g. anti-k_T)
- Construct pull vector (~ dipole moment) on radiation in jet

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r_i}$$

Angle between pull vectors measures color connections

Can be validated on ttbar

Measured by D0 (2011)

D0 (arXiv:1101.0648)

Noise/pileup area smaller towards other jet!

Cells are assigned to the *nearest jet*

Ruled out color octet W

D0 (arXiv:1101.0648)

JET QUANTUM NUMBERS

Jet charge

Can the charge of a jet be measured?

- Could distinguish **up-quark** jets from **down-quark** jets
 - Could help distinguish up squarks from down squarks

- W prime vs Z prime
- Many many uses for characterizing new physics (if seen)

Long history...

- Late 1970s: do quarks exist?
- Deep-inelastic neutrino-proton or anti-neutrino-proton scattering

Long history...

- Late 1970s: do quarks exist?
- Deep-inelastic neutrino-proton or anti-neutrino-proton scattering

• Charge of jet is unambiguous

Long history...

Measured the energy-weighted jet charge:

$$\mathcal{Q}^i_{\kappa} = \frac{1}{E_{\text{jet}}} \sum_{j \in \text{jet}} Q_j (E_j)^{\kappa}$$

- $1 \ll \kappa$ would include beam remnants
- $1\lesssim\kappa$ would let one particle dominate

• Suggested by Feynman and Field (1977)

• Early calculations in parton model (no QCD!)

anti-neutrino → down quark jet

Can it work at the LHC?

Measured the energy-weighted jet charge:

$$\mathcal{Q}^i_{\kappa} = \frac{1}{E_{\text{jet}}} \sum_{j \in \text{jet}} Q_j (E_j)^{\kappa}$$

Consider jets from

$$Z' \to \overline{u}u$$

Distinguishes W ' from Z '

Calibrate on standard model

Can also test on top quarks

Top Applications

- Measure hadronic W charge
- Measure top charge
- Measure top polarization

Measure sum of jet charges from W decay products

No LHC data yet

QCD charge: quark or gluon

New physics mostly quark jets

Backgrounds mostly gluon jets

- Quark and gluon discrimination already used in
 - b-tagging
 - Jet calibration
- Is it possible to distinguish **quarks** from **gluons** on an **event-by-event basis**?

Linear radial moment

Jet shape variables

Charged particle count

2D distributions

- Keep 50% of quark jets
- Reduce gluon jets by a factor of 8 (to 12.5%)

Data (July 2012)

Data and simulation do not agree For charged particle multiplicity

Future of Q vs G needs better understanding

THE FUTURE OF JETS?

Jet-to-parton map

Assumption: this exists

Parton-shower is not invertible

Different algorithms, different results

e.g. reconstruct W invariant mass

 $W \to \bar{q}q$

Parton shower is not invertible

 Is there a way to have "fuzzier" jets which account for non-unique inverse?

One possibility: Qjets

Ellis et al. arXiv:1201.1914

Add randomness into the jet algorithm

Instead of choosing smallest $\boldsymbol{d}_{ij},$ choose pair with a probability

$$P \propto \exp(-\alpha d_{ij})$$

Generates ensemble of trees for each event

What did we do with the Qjets?

As an example, we can **prune** them

• Pruning **discards** radiation in clustering that is **soft but not collinear**

$$z_{ij} \equiv \frac{\min(p_{T_i}, p_{T_j})}{|\vec{p_{T_i}} + \vec{p_{T_j}}|} < z_{cut} \qquad \Delta R_{ij} > D_{cut}$$

$$jet \text{ mass for jets with pT > 200}$$
From pruned

Other variants **filtering** or **trimming** work similarly

Butterworth, Cox, Forshaw Phys.Rev. D65 (2002)

Krohn, Thaler, Wang JHEP 1002 (2010)

1

Pruned Qjets

Event with a boosted W boson

- Construct 100 trees
 from each jet in each event
- Apply pruning to each tree

$$z_{ij} \equiv \frac{\min(p_{T_i}, p_{T_j})}{|p_{T_i}^{-} + p_{T_j}^{-}|} < z_{\text{cut}}$$
$$\Delta R_{ij} > D_{\text{cut}}$$

• Histogram resulting masses

Distributions become much smoother

Classical anti- k_T

Pruned Qjets anti-k_T

Need fewer events for same precision

For example,

- Take 10 boosted W events (p_T >500)
- Construct jet mass
- Look at **variance** of the the **mean** W-jet mass over many pseudo-experiments

Algorithm	Mass uncertainty $\delta \langle m angle$	Relative Luminosity required
k _T	3.15 GeV	1.00
Qjets α=0	2.20 GeV	0.50
Qjets α=0.001	2.04 GeV	0.45
		1

Qjets needs half as much luminosity as conventional jet algorithms

Signal vs background

QCD jets are broader than boosted W jets

QCD jets are broader than boosted W jets

W-tagging: cut on volatility

Qjets on dijet events (no pruning)

$$\alpha$$
 = 100

(classical anti-kT)

Qjets on dijet events (no pruning)

Work in progress, with D. Krohn and D. Kahawala

 $\mathrm{d}\sigma = e^{-\int \mathrm{d}P} \mathrm{d}P$

Summary from Lecture 1

- Jets exist because QCD is weakly coupled at short distances and ٠ strongly coupled at long distances
- Collinear and soft regions dominate cross sections ۲

2000

- Jet algorithms reconstruct parton momenta from jets ٠
- Different algorithms

k_T Anti-k_⊤

Different goals

Cone algorithms Reconstruct parton momenta Infrared safe Cambrideg/Aachen Insensitive to pileup Easy to calibrate experimentally

Excellent agreement of theory with data ٠

 $\sim e^{-\alpha \ln^2\left(\frac{\mu_1}{\mu_2}\right)} \left(\frac{\alpha_s}{2\pi} \frac{1+z}{1-z^2}\right) \mathrm{d}z$

August 1, 2012

Summary from Lecture 2

- Jets have substructure
 - Top-tagging CMS data
 - Boosted higgs for 14 TeV

- Jets can be **groomed**
 - Trimming, Pruning and Filtering remove pileup
 - Allow better reconstruction of parton 4-momenta
- Jets are not just 4-vectors
 - They have superstructure

• They have charge

and color

Jets and the LHC

- The LHC has much higher energy than any collider ever
 - More jets
 - Harder (more energetic) jets
 - More jet-like (collimated) jets
- LHC experiments can measure jets really well
 - Better energy resolution than Tevatron
 - Better spatial resolution than Tevatron
 - Can identify individual particles!!

Jet physics is entering a Golden Era

Revolution in the last 4 years

New experimental techniques

New theoretical methods

New ideas and algorithms

What will the future bring??