CTEQ-Fermilab School on QCD and Electroweak Phenomenology

Deeply Inelastic Scattering (DIS)

Fred Olness (SMU)

Lima, Peru

30 July - 9 August 2012

National Science Foundation where discoveries begin

HOW TO CHARACTERIZE THE PROTON

Deeply Inelastic Scattering

(DIS)

... also see lectures by George Sterman

Inclusive Deeply Inelastic Scattering (DIS)

Metal Foil

Measure $\{E_2, \theta\} \Leftrightarrow \{x, Q^2\}$ Inclusive

Deep: $Q^2 > 1 GeV^2$

Inelastic: $W^2 \ge M_p^2$

Analogue of Rutherford scattering

 $d\sigma \sim |A|^2$

Measure
$$\{E_2, \theta\} \Leftrightarrow \{x, Q^2\}$$

 $Q^2 = -q^2 = 4E_1E_2\sin^2(\theta/2)$
 $x = \frac{Q^2}{2p \cdot q} = \frac{2E_1E_2\sin^2(\theta/2)}{M(E_1 - E_2)}$

x: partonic momentum fraction Q: characteristic energy scale*

Other common DIS variables

$$\nu = \frac{p \cdot q}{p^2} = E_1 - E_2$$
$$y = \frac{\nu}{E_1} = \frac{Q^2}{2ME_2x}$$

Lepton Tensor (L) and Hadronic Tensor (W)

Current Interactions

W and F Structure Functions

$$d\sigma \sim |A|^2 \sim L^{\mu\nu} W_{\mu\nu}$$
$$L^{\mu\nu} = L^{\mu\nu}(\ell_1, \ell_2)$$
$$W^{\mu\nu} = W^{\mu\nu}(p, q)$$

$$W^{\mu\nu} = -g^{\mu\nu}W_1 + \frac{p^{\mu}p^{\nu}}{M^2}W_2 - \frac{i\,\epsilon^{\mu\nu\rho\sigma}p_{\rho}q_{\sigma}}{2M^2}W_3 + \dots$$

Convert to "Scaling" Structure Functions

$$W_1 \to F_1 \qquad W_2 \to \frac{M}{\nu}F_2 \qquad W_3 \to \frac{M}{\nu}F_3$$

$$\frac{d\sigma}{dx\,dy} = N\left[xy^2F_1 + (1 - y - \frac{Mxy}{2E_2})F_2 \pm y(1 - y/2)xF_3\right]$$

What's all this talk about

Scaling????

$$d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times 1$$

$$d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times 1$$

$$d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times 1$$

$$d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times 1$$
Dimensional considerations

Structure Function

Is this a point like particle ???

We found the Higgs

Structure of the Proton

 Λ of order of the proton mass scale

 $d\sigma \sim \frac{4\pi\alpha^2}{Q^2} \times \sum e_i^2$

11

The Scaling of the Proton Structure Function

Data is (relatively) independent of energy

Scaling Violations observed at extreme x values

... not yet at the

Parton Model

$$\frac{d\sigma}{dx\,dy} = N\left[xy^2F_1 + (1 - y - \frac{Mxy}{2E_2})F_2 \pm y(1 - y/2)xF_3\right]$$

Taking the limit $M \to 0$ for neutrino DIS

$$\frac{d\sigma^{\nu}}{dx\,dy} = N\left[(1-y)^2F_+ + 2(1-y)F_0 + F_-\right]$$

For
$$\bar{\nu}, F_+ \Leftrightarrow F_-$$

$$F_{1} = \frac{1}{2}(F_{-} + F_{+}) \qquad F_{+} = F_{1} - \frac{1}{2}F_{3}$$

$$F_{2} = x(F_{-} + F_{+} + 2F_{0}) \qquad F_{-} = F_{1} + \frac{1}{2}F_{3}$$

$$F_{3} = (F_{-} - F_{+}) \qquad F_{0} = \frac{1}{2x}F_{2} - F_{1}$$

A Review of Target Mass Corrections. Ingo Schienbein et al. J.Phys.G35:053101,2008.

Parton Model

Proton as a bag of free Quarks

Quarks are not quite free

Corrections to this picture (non-factorizable/ higher twist) terms are suppressed by powers of Λ/Q

Part 1) Show these 3 definitions are equivalent; work out the limits of integration.

$$f \otimes g = \int_{0}^{1} \int_{0}^{1} f(x) g(y) \delta(z - x * y) dx dy$$
$$f \otimes g = \int f(x) g(\frac{z}{x}) \frac{dx}{x}$$
$$f \otimes g = \int f(\frac{z}{y}) g(y) \frac{dy}{y}$$

Part 2) Show convolutions are the ``natural" way to multiply probabilities.

If f represents the heads/tails probability distribution for a single coin flip, show that the distribution of 2 coins is $f \oplus f$ and 3 coins is: $f \oplus f \oplus f$.

$$f \oplus g = \int f(x)g(y)\delta(z - (x+y))dx dy$$
$$f(x) = \frac{1}{2}(\delta(1-x) + \delta(1+x))$$

Careful: convolutions involve + and *

BONUS: How many processes can you think of that don't factorize?

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[(1-y)^2 F_+ + 2(1-y)F_0 + F_- \right]$$

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[(1-y)^2 (2\bar{q}) + 2(1-y)(\phi) + (2q) \right]$$

$$\frac{d\sigma^{\nu}}{dx \, dy} = N \left[(1-y)^2 (2\bar{q}) + 2(1-y)(\phi) + (2q) \right]$$

$$\frac{Gompute}{\text{in Parton}}$$

$$\frac{Gompute}{Model}$$

$$\frac{Gompute}{Mompute}$$

$$\frac{$$

20

and

Callan-Gross

Why is F_L special ???

TOY

PDFs

Proton as a bag of free Quarks: Part 2

$$f(x,Q) = u(x,Q) + d(x,Q) = 2 \,\delta(x - \frac{1}{3}) + 1 \,\delta(x - \frac{1}{3})$$

$$u(x,Q) = 2 \ \delta(x - \frac{1}{3})$$

$$d(x,Q) = 1 \ \delta(x - \frac{1}{3})$$
Pe

Perfect Scaling PDFs *Q independent*

Quark Number Sum Rule

$$\langle q \rangle = \int_0^1 dx \, q(x) \qquad \langle u \rangle = 2 \quad \langle d \rangle = 1 \quad \langle s \rangle = 0$$

Quark Momentum Sum Rule

$$\langle x q \rangle = \int_0^1 dx \, x \, q(x) \qquad \langle x u \rangle = \frac{2}{3} \quad \langle x d \rangle = \frac{1}{3}$$

SOLUTION:

Gluons carry half the momentum, but don't couple to the photons

Gluons smear out PDF momentum

Gluons allow partons to exchange momentum fraction

 α_{s} is large at low Q, so it is easy to emit soft gluons

Reconsider the Quark Number Sum Rule

$$\langle u, d \rangle = \infty$$
 $\langle q \rangle = \int_0^1 dx \, q(x)$

$$\langle u - \bar{u} \rangle = 2$$
 $\langle d - \bar{d} \rangle = 1$ $\langle s - \bar{s} \rangle = 0$

SOLUTION: Infinite number of u quarks in proton, because they can be pair produced: *(We neglect saturation)*

cf., lectures by Dan Stump

Scaling violations are essential feature of PDFs

Where do PDFs come from???? Universality!!!

Deep Inelastic Scattering experiments

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010 18

HERA ep Collider: 1992-2007

Two colliding beam experiments: H1 and ZEUS ~0.5 fb⁻¹ collected per experiment approximately same amount of collisions with electrons and positrons of Left- and right-handed polarisation

 $E_e = 27.5 \text{GeV}, E_p = 920 \text{ GeV}$ dedicated low Ep runs Ep = 460GeV,575 GeV

Burkard Reisert, Deep Inelastic Scattering, CTEQ/MCnet Summer School 2010 11

H1 & ZEUS Collaborations

Collaborations of 300-400 Physicists, at ~40 Institutes of ~15 Countries

How do we distinguish flavors???

HOMEWORK

Sum Rules & Structure Functions
Homework: Part 1 Structure Functions & PDFs

$$\begin{array}{rcl} F_2^{ep} &=& \frac{4}{9}x \left[u + \bar{u} + c + \bar{c} \right] \\ && + & \frac{1}{9}x \left[d + \bar{d} + s + \bar{s} \right] \\ F_2^{en} &=& \frac{4}{9}x \left[d + \bar{d} + c + \bar{c} \right] \\ && + & \frac{1}{9}x \left[u + \bar{u} + s + \bar{s} \right] \\ F_2^{\nu p} &=& 2x \left[d + s + \bar{u} + \bar{c} \right] \\ F_2^{\nu n} &=& 2x \left[u + s + \bar{d} + \bar{c} \right] \\ F_2^{\bar{\nu} p} &=& 2x \left[u + c + \bar{d} + \bar{s} \right] \\ F_2^{\bar{\nu} p} &=& 2x \left[d + c + \bar{u} + \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[d + s - \bar{u} - \bar{c} \right] \\ F_3^{\nu n} &=& 2 \left[u + s - \bar{d} - \bar{c} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[u + c - \bar{d} - \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[d + c - \bar{u} - \bar{s} \right] \\ F_3^{\bar{\nu} n} &=& 2 \left[d + c - \bar{u} - \bar{s} \right] \end{array}$$

Verify: i.e., Check for typos ...

We use these different observables to dis-entangle the flavor structure of the PDfs

> See talks by Alberto Gago (Neutrinos) & Dan Stump (PDFs)

In the limit $heta_{Cabibbo} = 0$ $m_c = 0$

Verify: i.e., *Check for typos ...*

Before the parton model was invented, these relations were observed. Can you understand them in the context of the parton model?

Gross Llewellyn-Smith (1969)

Adler

(1966)

Bjorken

(1967)

$$\int_{0}^{1} dx \left[F_{3}^{\nu p} + F_{3}^{\bar{\nu} p} \right] = 6$$

 $\int_{0}^{1} \frac{dx}{2x} \left[F_{2}^{\nu n} - F_{2}^{\nu p} \right] = 1$

 $\int_{0}^{1} \frac{dx}{2x} \left[F_{2}^{\bar{\nu}p} - F_{2}^{\nu p} \right] = 1$

Gottfried (1967) if
$$\bar{u} = \bar{d} \int_0^1 dx \left[F_2^{ep} - F_2^{en} \right] = \frac{1}{3}$$

Homework (19??)

$$\frac{5}{18}F_2^{\nu N} - F_2^{eN} = ?$$

This one has been particularly important/controversial How do we distinguish flavors???

Different Targets

Possible Targets:

 $\begin{array}{ll} p & Proton \\ n & Neutron \\ N & Nucleon \sim Z \ p + (A-Z) \ n \end{array}$

... for isoscalar: $N = \frac{1}{2} (p+n)$

Relate p and n

Proton		Neutron
U _p	=	d _n
d _p	=	u _n
q _p	=	q _n

Complications

 $N \neq Z p + (A-Z) n$

Nuclear Corrections

Where do Nuclear Corrections come from ???

carved in stone

Discovered by the French in 1799 at Rosetta, a harbor on the Mediterranean coast in Egypt. Comparative translation of the stone assisted in understanding many previously undecipherable examples of hieroglyphics.

42

Ooooops!

Nuclear Corrections: Compare Neutrino and Charged Lepton DIS 45

nCTEQ Nuclear PDF's

- CTEQ style global fit extended handle various nuclear targets
- ✓ CTEQ Data + nuclear DIS & DY
 [~15 targets; ~2000+ data]
- A-dependence modeled;
 NLO fits work well

A-Dependent PDFs

$$xf(x) = x^{a_1}(1-x)^{a_2}e^{a_3x}(1+e^{a_4}x)^{a_5}$$
$$a_i \to a_i(A)$$
$$a_k = a_{k,0} + a_{k,1}(1-A^{-a_{k,2}})$$

Nuclear PDFs from neutrino deep inelastic scattering. **I. Schienbein, J.Y. Yu,** C. Keppel, J.G. Morfin, F. Olness, J.F. Owens. Phys.Rev.D77:054013,2008.

where all black curves stand for free proton PDF and red, green, blue, cyan, pink, yellow, magenta and brown curves show PDF in protons bound in nuclei - from deuterium (red) to lead (brown).

Process	CC/ton	NC/ton
Quasi-Elastic	270 K	90 K
Resonance	530 K	165 K
Transition	670 K	210 K
DIS	1370 K	400 K
Coherent	28 K	14 K
Total (ν)	2870 K	880 K

Per ton per w/ 4-year run

MINER*v***A**

Per ton per 10²⁰ protons

DIS Comparisons: *Charged Current*

Experiment	v DIS events	anti-v DIS events
CCFR	1.03 M	0.179 M
NuTeV	1.3 M	0.4 M

MINERvA Comparisons

Target	Mass (Tons)	Events
Fe	0.70	2 M
Pb	0.85	2.5 M
He	0.40	600 K
С	0.15	430 K
CH	3	9 M

Evolution

What does the proton look like???

The answer is dependent upon the question

`Cheshire Puss,' ...

- 'Would you tell me, please, which way I ought to go from here?'
- 'That depends a good deal on where you want to get to,' said the Cat.
- 'I don't much care where--' said Alice.
- `Then it doesn't matter which way you go,' said the Cat.
- `--so long as I get somewhere,' Alice added as an explanation.
- `Oh, you're sure to do that,' said the Cat, `if you only walk long enough.'

 $\Lambda_{QCD} \sim 200 \,\mathrm{MeV}$

 $\Delta E \Delta t \geq \frac{1}{2} \hbar$

Evolution of the PDFs

Evolution of the PDFs

Momentum Fraction

Renormalization Group Equation

DETAILS

Evolution and such

Homework: Mellin Transform

$$\widetilde{f}(n) = \int_0^1 dx \, x^{n-1} \, f(x)$$

 $f(x) = \frac{1}{2\pi i} \int_C dn \, x^{-n} \, \widetilde{f}(n)$

$$\sigma=f\otimes\omega$$

$$\widetilde{\sigma}=\widetilde{f}\;\widetilde{\omega}$$

C is parallel to the imaginary axis, and to the right of all singularities

1) Take the Mellin transform of $f(x) = \sum_{m=1}^{\infty} a_m x^m$, and verify the inverse transform of \tilde{f} regenerates f(x)

2) Take the Mellin transform of $\sigma = f \otimes \omega$ to demonstrate that the Mellin transform separates a convolution yields $\tilde{\sigma} = \tilde{f} \ \tilde{\omega}$.

A useful reference:

Courant, Richard and Hilbert, David. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989. 561 p.

Evolution of the PDFs

Evolution of the PDFs

HOMEWORK

Sum Rules & Structure Functions

The Splitting Functions:

Definition of the Plus prescription:

$$\int_0^1 dx \, \frac{f(x)}{(1-x)_+} = \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)}$$

1) Compute:

$$\int_{a}^{1} dx \, \frac{f(x)}{(1-x)_{+}} = ???$$

$$P_{qq}^{(1)}(x) = C_F \left[\frac{1+x^2}{1-x} \right]_+ \equiv C_F \left[(1+x^2) \left[\frac{1}{1-x} \right]_+ + \frac{3}{2} \delta(1-x) \right]_{1-x=0}^{x}$$

Observe

$$P_{gg}^{(1)}(x) = 2C_F \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] + \left[\frac{11}{6}C_A - \frac{2}{3}T_F N_F \right] \delta(1-x)$$

HOMEWORK: Part 3: Symmetries & Limits

Verify the following relation among the regular parts (from the real graphs)

For the regular part show: For the regular part show: $P_{gq}^{(1)}(x) = P_{qq}^{(1)}(1-x)$ $P_{gg}^{(1)}(x) = P_{gg}^{(1)}(1-x)$ $P_{gg}^{(1)}(1-x)$ $P_{gg}^{(1)}(1-x)$ $P_{gg}^{(1)}(1-x)$ $P_{gg}^{(1)}(1-x)$

Verify, in the soft limit:

$$P_{qq}^{(1)}(x) \xrightarrow[x \to 1]{} 2C_F \frac{1}{(1-x)_+}$$

$$P_{gg}^{(1)}(x) \xrightarrow[x \to 1]{} 2C_F \frac{1}{(1-x)_+}$$

Verify conservation of momentum fraction

$$\int_0^1 dx \, x \, \left[P_{qq}(x) + P_{gq}(x) \right] = 0$$

$$\int_{0}^{1} dx \, x \, \left[P_{qg}(x) + P_{gg}(x) \right] = 0$$

Verify conservation of fermion number

$$\int_0^1 dx \ [P_{qq}(x) - P_{q\bar{q}}(x)] = 0$$

Homework: Part 5: Using the Real to guess the Virtual

Use conservation of fermion number to compute the delta function term in $P(q \leftarrow q)$

Powerful tool: Since we know real and virtual must balance, we can use to our advantage!!!

- Rutherford Scattering \Rightarrow Deeply Inelastic Scattering (DIS)
 - Works for protons as well as nuclei
- Compute Lepton-Hadron Scattering 2 ways
 - Use Leptonic/Hadronic Tensors to extract Structure Functions
 - Use Parton Model; relate PDFs to F_{123}
- Parton Model Factorizes Problem:
 - PDFs are independent of process
 - Thus, we can combine different experiments. ESSENTIAL!!!
- PDFs are not truly scale invariant; they evolve
 - We use evolution to "resum" an important set of graphs

N³LO

ACOT Extension to Higher Orders

Full ACOT

$$\sigma = f(\xi(x, m_{ps}), Q) \otimes \hat{\sigma}(m_{dyn})$$
$$\xi(x, m_{ps}) = x \left(1 + \left[\frac{n m_{ps}}{Q} \right]^2 \right)$$
$$n = \{0, 1, 2\}$$

Extensible to any order

Distinguish: "phase space" mass "dynamic" mass

Demonstrate: 1) PS mass dominates 2) Estimated Error small **F**_{2.L} @ **N3LO**

Strange Production

the LHC and PDFs

Di-muon production \Rightarrow Extract s(x) Parton Distribution

Heavy Quark components play an increasingly important role at the LHC

•Rutherford Scattering ⇒ Deeply Inelastic Scattering (DIS)

• Works for protons as well as nuclei

Compute Lepton-Hadron Scattering 2 ways

- Use Leptonic/Hadronic Tensors to extract Structure Functions
- Use Parton Model; relate PDFs to F123

Parton Model Factorizes Problem:

- PDFs are independent of process
- Thus, we can combine different experiments. ESSENTIAL!!!

•PDFs are not truly scale invariant; they evolve

• We use evolution to "resum" an important set of graphs

•NLO Calculations, and beyond

•New Era: Strong constraints on PDF from LHC

END OF LECTURE