Heavy Flavor Physics lecture 1

Robert Roser

Fermi National Accelerator Lab

CTEQ Physics Summer School

August, 2012

Outline

Review Top Discovery

How far have we come....

The state of the art

Think Back

- To the early 90's
- Ok so you were all probably in grade school...
 - Before iPhones
 - Before laptops were commonplace
 - When physicists ran jobs on DEC VAX's and lived in their offices day and night
 - We programmed in FORTRAN, used PAW, and had to learn about ZEBRA – a memory management system
 - We thought we knew a lot back then.... BUT
- Silicon detectors had not been tried in a hadron collider environment

Keep Thinking Back

- Our MC did not differentiate b-quarks from light quarks (VECBOS)
- We did not know how to b-tag
- We did not even know if a silicon detector would work in a hadron collider environment?
- How long would it last before the accelerator put a hole in it?
- We did not know how to measure b-tagging efficiency
- It took us a year to collect 20 pb-1
- But we were motivated!!!

A Simplified History of the Quark Model

- 1964 Gell-Mann, Zweig idea for 3 quarks up, down, strange (u, d, s)
- 1970 Glashow, Iliopoulos and Maiani 4 quarks - up, down, strange, charm (u, d, s, c)
- 1973 Kobayashi and Maskawa add 2 quarks top and bottom (t, b) to explain CP violation
- 1974 Ting, Richter discover charm
- 1977 Lederman (Fermilab) discovers bottom
- B weak isospin = -1/2, need +1/2 partner There must be a Top!

Top Mass Predictions and Discovery

Several top mass predictions in late 70s
 Predict 5 < M_{top} < 65 GeV

Rule of 3

Mass (GeV)

Quark

- Jan. 1983 UA1 & UA2 discover W boson
- May 1983 UA1 discovers Z boson
- June-July 1984 Rubbia discovers Top!
 - Articles (Nature, NY Times) and press release
 - Mass peak between 30-50 GeV

A Fun Aside

- I heard there was a recent "event" at CERN on the 4th of July – something about a boson… ③
- Last time CERN had a special announcement on that date, it was 1984 and Carlo Rubbia was announcing the discovery of the Top Quark at 40 GeV
- I hope this one goes better!!!

Meanwhile back at Fermilab

- 1977 First discussions of colliding p-pbar beams at Fermilab and a detector
- 1981 CDF Design Report general purpose detector with magnetic field
- Oct. '85 CDF sees first p-pbar collisions collect total 23 events
- Run 0 June '88 May '89, collect < 5 pb⁻¹
 - Set limits on M_{top} > 91 GeV using Dilepton and L +jets channels (first use of SLT tagging)
 - Mass too high for CERN, Fermilab only game in town

A Quick Review on Top Production and Decay

 Top pair production via the strong interaction:

90% $q\overline{q}$ 10% gg at Tevatron $\sqrt{s} = 1.8 \text{ TeV}$ 85% $q\overline{q}$ 15% gg at Tevatron $\sqrt{s} = 1.96 \text{ TeV}$ 10% $q\overline{q}$ 90% gg at LHC $\sqrt{s} = 14 \text{ TeV}$

- Top decays t->Wb ~100%
- Top lifetime ~ 4x10⁻²⁵ sec
 - Doesn't hadronize
- Decay of W identifies channel
 - Dilepton, L+jets, All-hadronic
 - Each channel poses its own unique challenges

SM: tt pair production, $Br(t \rightarrow bW) = 100\%$, $Br(W \rightarrow lv) = 1/9 = 11\%$

dilepton(4/81)2 leptons + 2 jets + missing E_T I+jets(24/81)1 lepton + 4 jets + missing E_T fully hadronic(36/81)6 jets


```
SM: tt pair production, Br(t\rightarrowbW)=100% , Br(W->lv)=1/9=11%
```


SM: it pair production, $Br(t \rightarrow bW) = 100\%$, $Br(W \rightarrow lv) = 1/9 = 11\%$

dilepton fully hadronic (36/81) 6 jets

SM: tt pair production, Br(t \rightarrow bW)=100% , Br(W->lv)=1/9=11%

Top Decay Channel Summary

Dilepton

- Few events but pure
- final state: lv lv bb

Lepton + Jets

- More events, less pure
 - Add b-tags
- final state: lv qq bb
- All-Hadronic
 - Lots of events, huge QCD bkg
 - final state: qq qq bb
 - Not used in discovery

Looking for Top in Run 0

- Believe M_{Top} < M_W
 - Decay mode would be
 W -> tb with t -> blv
- Search strategies
 - Dilepton channel
 - ee, eµ, and µµ
 - L+jets channel
 - Added SLT tags
- Set limit M_{Top} > 91 GeV
- CDF had no silicon yet!

 Soft Lepton Tagging
 Identify semileptonic B decay

$$b \rightarrow], b \rightarrow c \rightarrow]$$

■ E(SLT) ~ 20%

Building the Silicon VerteX Detector

- Silicon used at fixed target to measure particle lifetimes and tag particles
- Not easy to sell idea to CDF
 - Hadron environment too messy to do precision tracking and heavy flavor physics (b and c)
 - No obvious physics case for device
 - Top discovery not a factor, didn't consider b-tagging people thought all-jets was the way to find it back then!
 - Many technical challenges with construction and readout in collider environment
- Dedication by Pisa (especially Aldo Menzione) and LBL groups got detector built

Fermilab Gets Serious Run Ia

- June '92 May '93
- CDF now has SVX and muon upgrades
- D0 is now taking data too
- Developing strategies for discovering top
 - Counting experiments
 - Kinematic analyses

How Hard is it going to be?

- Tevatron was running at 900 GeV and colliding beam at 300,000 times/sec
- A ttbar event is created about once every 10 billion collisions
- So in Run 1A, about 1 trillion collisions
- For a top mass of 175, we made about 100 total!!! (not taking into account acceptance, trigger etc)

b-tagging using Secondary Vertices

Use new SVX and b lifetime

- cτ ~ 450mm
- b hadrons travel L_{xy} ~ 3 mm before decay
- Run 1a had 3 SVX taggers
 - Jetvtx ≥2 tracks form secondary vertex with |Lxy|/ σ_{Lxy}≥3
 - Jet Probability use track impact parameter, probability of track consistent with primary vertex
 - d-φ Uses impact parameter, d, and azimuthal angle,φ, of tracks

■ε(svx) ~ 40%

- resolution ~ 30 μm
- Search tracks inconsistent with primary vertex:
 - Candidates for secondary vertex
 - See whether three or two of those intersect at one point
- Require displacement of secondary from primary vertex
 - Form Lxy: transverse decay distance projected onto jet axis:
 - Lxy>0: b-tag along the jet direction => real b-tag or mistag
 - Lxy<0: b-tag opposite to jet direction => mistag!
 - Significance: $L_{xy} > 7 \delta(L_{xy})$ i.e. 7 sigma

Characterize the B-tagger: Mistag rate

Jet probability

- Complementary to full secondary vertex reconstruction:
 - Evaluate probability of tracks to be prompt
 - Multiply probabilities of individual tracks together
 - "Jet Probability"
- Continuous distribution
 - Can optimize cut valued for each analysis
 - Can also use this well for charm

Silicon Vertex Detectors <u>Work</u> (in a hadron collider)!

The Golden Event

- "DPF event"
 - Oct. 22, 1992
 - That year ALL candidate events were "named"
 - eµ + 2 jet event
 - 1 jet tagged by both SLT and SVX
 - Decide not to declare discovery on 1 event
 D0 similar experience

Push for top is on!

Game Plan

- Perform counting experiments
- Deliberate decision to NOT use NN because people did not trust that MC would model shapes with sufficient accuracy
- Base Findings on counting experiment only – use peak in mass plot (hopefully) and kinematic plots as confirmation

Backgrounds – How to Estimate?

- We weren't sure so we did it 2 ways...
- Method 1
 - fully tied to data. Developed a mistag matrix vs Jet Et and Eta and applied it to all non-tagged jets in sample
 - Felt this was an over-estimate of background
- Method 2
 - Uses MC to determine ratio's
 - Applied to our untagged W+jet data

At some point in 1991...

- Change of attitude very important
- A realization that one person or one university group was NOT going to discover top by themselves
- Groups became less competitive, started sharing information and working in a coherent fashion

Naïve Schematic of Typical L+J Analysis

The "Evidence" Paper

- July 1993 CDF collaboration meeting
 - Seeing excess in all channels
 - Decide to write 4 PRLs
- Oct. '93 CDF collab meeting
 - Reject PRLs and opt for giant PRD
- Jan. '94 CDF collab meeting
 - Many questions and concerns (next slide)
- April 26, 1994 Submit "Evidence for Top Quark Production" - PRD 50, p.2966-3026

Comments on "Evidence"

- 9 months of endless meetings answering questions while attempting to keep results quiet
- Some of the concerns raised:
 - Choice of official SVX b-tagger
 - Tuning on data
 - Method 1 vs. Method 2 background
 - Overestimate from data or trust MC
 - Role of kinematic analyses
 - Supporting evidence but not in significance
 - Calculate significance
 - Events or tags, weight of double tags

Results for Evidence Paper

				-
Channel:	SVX	SLT	Dilepton	
Expected Bkg.	2.3±0.3	3.1±0.3	0.56±0.25	
Observed Events	6	7	2	10 3

- Combining all channels with 19 pb⁻¹
- Prob bkg fluctuate up to observed = 0.26% (2.8σ)
- Back then we did not consider a Look Elsewhere Effect

There were reasons for "Pause"

- We had far too many Z+b jet events in our Run 1a data from what we expected
- (in run 1b did not have ANY)

Run Ib and Observation

- Run Ib Feb. '94 Dec. '95
 - New rad-hard silicon SVX'
 - Optimized SVX b-tagger Secvtx
- Jan '95 CDF collaboration meeting
 - See significant excess in all channels
 - Slight changes to Evidence analyses
 - One optimized SVX b-tagger Secvtx
 - Use Method 2 background (smaller # of bkg events)
- March '95 D0 and CDF submit PRL's
Top Discovery

Channel	SVX	SLT	Dilepton
Observed	27 tags	23 tags	6 events
Exp. bkg	6.7±2.1	15.4±2.0	1.3±0.3
Probability	2x10 ⁻⁵	6x10 ⁻²	3x10 ⁻³

- Using 67 pb-1 (includes Evidence data) combined Prob = 1x10⁻⁶ (4.8σ)
- If include mass distribution Prob = 3.7×10^{-7} (5.0 σ)

"N" Jets Plot for Discovery

Determining the Mass

- Each event has two top's so you have two chances in each event
- We don't know which decay products belong to which top
- We try ALL combinations
- Constrain M(w) = 80
- Mtop = M antitop

CDF and D0 Discovery Mass Plots

• Top Mass is 175.9 \pm 4.8(stat) \pm 4.9(sys) GeV/c²

calibration and tomorrow's background.

m_{bb} (GeV)

Our Projections for Run II

- In our physics plan for Run II, written based on run 1 experience we predicted
 - Top Mass uncertainty of 3 GeV
 - Top Cross Section uncertainty of 10%
 - Why were we so far off?

The Reasons....

- An entire new set of tools were developed ALPGEN, MADGRAPH etc
- Large data sets allowed us to really tune the MC's, underlying event etc so data/mc agreement was excellent
- We got more creative
 - Maximizing information in events with a variety of neural network techniques
 - Separating out the Jet energy scale
 - Better detector performance out of much more pixelated devices

Why Should We Care?

- Heaviest known fundamental particle
 - M_{top}=172.7+-1.1 GeV
- Is this large mass telling us something about electroweak symmetry breaking?
- Related to m_W and m_H :
 - $m_W \sim M_{top}^2$
 - m_w~ln(m_H)
- If there are new particles the relation might change:
 - Precision measurement of top quark and W boson mass can reveal new physics

W

W

America's Once Most Powerful Accelerator: Fermilab's Tevatron

Main

Injector

Booster

Chicago

Tevatron Ring

(~4 miles)

Run II accelerator performance

25 years of Luminosity

Time (25 year span)

CDF Top Quark Physics Program

CDF program is systematically studying the physics of top quarks...

Top Cross Section

(Golden) Lepton + Jets Channel

Top Cross Section

Dilepton Channel and MET+Jet Channel

±17%

±13%

Top Mass – state of the art!

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

20-50% of the time

Jet Energy Scale Composition

Jet energy scale

- Determine the energy of the partons produced in the hard scattering process
- Instrumental effects:
 - Non-linearity of calorimeter
 - Response to hadrons
 - Poorly instrumented regions

Physics effects:

- Initial and final state radiation
- Underlying event
- Hadronization
- Flavor of parton

Test each in data and MC

Time

JES Studies

- Measure energy response to charged particles
 - Test beam and in situ
 - CDF: Response rather nonlinear
 - DØ: compensating =>has better response
 - Some compensation "lost" due to shorter gate in run 2
- CDF uses fast parameterized showers:
 - Tuned to data
- DØ uses full GEANT

Testing Jets in Photon-Jet Data

Agreement within 3% but differences in distributions!

- Data, Pythia and Herwig all a little different
- These are difficult physics effects to get right!

- Better agreement of data and MC than in photon-jet data
 - This is an older plot worked with Herwig and Pythia authors and improved this further

JES Uncertainties

In-situ Measurement of JES

 Additionally, use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

2D fit of the invariant mass of the non-b-jets and the top mass:

JES∝ M(jj)- 80.4 GeV/c²

Measurement of JES scales directly with data statistics

CDF Lepton+Jets Mass

M_{top} = 172.85 +/- 0.71 (stat.+JES) +/- 0.84 GeV/c² (syst)

172.85 +/- 1.10 GeV/c

Top Mass vs. Year

Top Anti-Top Mass Difference

• If CPT is a good symmetry of nature: $\Delta M_t = M_{top} - M_{anti-top} = 0$

Consistent with SM expectations

statistics limited

Start of Lecture 2...

A few thoughts from yesterday

- While progress seems slow the field of HEP has made tremendous progress in the last 15 years
- Think about how the world has changed -- top, higgs, neutrino's have mass, dark energy and dark matter,
- Tools and approaches continue to improve as we advance our field
- What you are doing now will look to you as very rudimentary a decade from now
- We will surpass your expectations in time!!!

Books on HEP Discoveries

Nobel Dreams by Gary Taubes

- Discovery of the W,Z bosons and Carlo Rubbia's group
- The Evidence for the Top Quark by Kent Staley
 - Philosophy discussion of discovery in science but most of the book looks at CDF's process for the Evidence and Observation papers

Breaking News

- "Curiosity" -- NASA launched Mars Rover successfully landed on Mars today
- Its about the size of a small car
- On board lab is very sophisticated

First photo

Top Forward/Backward Asymmetry

Why Measure it?

• Test of discrete symmetries of the strong interaction

NLO QCD predicts small (~6%) asymmetry from qq→tt

- $A_{FB} = \frac{F B}{F + B}$
- New physics can show up: Big Gluons with axial vector coupling

background processes, and the method of reconstructing the angle

Measure A_{FB}

Reconstructing the Top Direction

• Reconstruct the top direction from the observables in the detector

 Algorithm used to match jets to partons → just add 4-vectors to get top direction

- We use the rapidity difference (∆Y) of t→lvb and t→jjb, which is proportional to Y_t in tt frame
 - $Y_t \propto q_{lepton} \cdot \Delta Y$

Reconstructing the Top Direction

 $\Delta \mathbf{Y} = \mathbf{q_{lep}} \cdot \left(\mathbf{Y_{lep}} - \mathbf{Y_{had}} \right)$

• Reconstruct the top direction from the observables in the detector

 Algorithm used to match jets to partons → just add 4-vectors to get top direction

 We use the rapidity difference (∆Y) of t→lvb and t→jjb, which is proportional to Y_t in tt frame

 $Y_t \propto q_{lepton} \cdot \Delta Y$

Mtt Dependence

- A_{FB} could increase at higher energy due to new production mechanisms
- Study the asymmetry vs. the mass of the tt system (M_{tt})
- Simply divide sample into high/low M_{tt}
- Use 450 GeV → based on MC studies

Mtt Dependence

	Inclusive	M < 450 GeV	M > 450 GeV
Data	5.7 ± 2.8 %	-I ± 3 %	21 ± 5 %
SM MC	2 ± 0.4 %	I ± 0.6 %	3 ± 0.7 %

Mtt Dependence

 $A_{FB}^{mc@nlo} = I^{+2.0}_{-1.0} \%$

 $A_{FB}^{CDF} = 7.5 \pm 3.7 \%$

Now with the full data set

- Updates from CDF's 5.3 fb⁻¹
 lepton+jets analysis:
 - Add new data stream and increase luminosity to 8.7 fb⁻¹
 - > 2498 events (double sample size)
 - Use NLO generator Powheg for signal modeling
 - Parton level shape corrections use regularized unfolding algorithm
 - Proper multi-binned measurement of rapidity and mass dependence
- Parton Level A_{FB}: 16.2 ± 4.7 %

Mtt and Δy dependence

(bckg subtracted)

- Predicted background contribution has been removed
 - Measure asymmetry in only top events
- No correction to parton level yet
 - No assumptions about the underlying physics
- Data well-described by linear ansatz determine best-fit slope
 - ▶ χ^{2} /d.o.f ≤ ~I for both Δy and M_{tt} dependence
- Determine p-value by comparing observed slope to NLO prediction
 - How often will NLO slope fluctuate to be at least as large as in the data?

Slope Parameter α	Α _{FB} vs. Μ _{tt}	A _{FB} vs. Δy
Data	(11.1 ± 2.9)×10 ⁻⁴	$(20.0 \pm 5.9) \times 10^{-2}$
SM	3.0×10 ⁻⁴	6.7×10 ⁻²
p-value	0.00646	0.00892

Correcting to the Parton Level

Correct for acceptance and detector resolution

- Regularized unfolding algorithm addresses resolution effects
- Multiplicative acceptance correction factor applied to each bin
- Both corrections use the NLO generator Powheg as the top model
- Parton level results can be compared directly to theory
- Determine best-fit slope for observed data and compare to NLO prediction

Slope Parameter α	A _{FB} vs. M _{tt}	A _{FB} vs. ∆y
Data	(15.6 ± 5.0)×10 ⁻⁴	(30.6 ± 8.6)×10 ⁻²
SM	3.3×10-4	10.3×10 ⁻²

Parton Level Δy

Obvious Culprits?

- Is it a problem with the current understanding of the SM?
 - Mis-modeled top pair P_T spectrum?
 - Higher order corrections?
- Is it new physics?
 - Many new models have been proposed
 - Axigluon, Z-prime, W-prime, ...
 - Other top properties measurements can help differentiate between the possibilities
 - Differential cross-section in M_{tt}
 - Top spin or polarization

What you Shouldn't worry about!

vetted techniques

- Unfolding
 - The significance of the result is present before the acceptance/reconstruction corrections they only scale the result

On the Road to Higgs

SM Higgs and Single Top

Single Top Production

- Motivation:
 - Direct measurement of CKM matrix element $|V_{tb}| (\sigma_{s+t} \sim |V_{tb}|^2)$
 - Sensitive to New Physics (FCNC, W'...) and CP violation
 - Additional channel for top quark properties study
- Experimental challenge:
 - Extract small signal out of a large background with large uncertainty

Event Signature

- Main analysis channel: Lepton+Jets
 - Only one isolated lepton
 - Large missing Et from neutrino
 - At least 2 jets
 - At least one of the jets is b-tagged
- Background rejection:
 - CDF: Veto QCD, Dilepton, Z and Cosmic
 - D0: Cut on scalar sum (H_T and H_T (alljets)) to suppress QCD and soft-scattering processes
- Still large backgrounds share similar final state after the background rejection.

Single Top Event Signature

Top Pair Production with decay into Lepton + 4 Jets final state are very striking signatures!

Single top Production with decay Into Lepton + 2 Jets final state is less distinct!

Background Model

- ttbar, diboson and Z+jets are normalized to SM cross section
- QCD models derived from data with non-isolated lepton (D0) or anti-lepton (CDF)
- W+jets are modeled by Alpgen (Wjj, Wbb, Wcc, Wcj)
- W+jets and QCD are normalized to data before b-tagging in missing E_T (CDF) or several variables (D0)

Analysis Strategy

- Single Top production is rare (~3 pb)
 - Signal:Background (S:B) ~ 1:10⁹
- First step:
 - Trigger and ID clean leptons/MET improves S:B by a factor ~10⁶
 - High p_T lepton triggers (e, μ)
 - MET + jets triggers (recover nonfiducial leptons + hadronic τ decays)
- Second step:
 - Topological event selection
 - Efficient b-tagging
 - Careful background estimates
- Third step:
 - Advanced analysis techniques
 - S:B > 1:1 in most significant bins

General Analysis Method

Advanced Techniques

Signal Modeling

- Previously used MadEvent for single top modeling
 - Manually mix two processes of t-channel according to ZTOP prediction
- Using **POWHEG** for single top modeling with NLO accuracy

t-channel production

- t-channel shows good agreement with MCFM 4 flavor prediction for both POWHEG and MadEvent
- Add Wt-channel as signal through POWHEG

Neural Network

- Train the NN with 11~14 variables in four channels (2, 3 jets with 1, 2 b-tags)
- Train for s-channel in 2 jet 2 b-tags, train for t-channel in the rest channels
- Train the NN with systematic mixed samples for better uncertainty constraint (\sim 3% improvement expected)

Tevatron Observation

- Observed by CDF and D0 simultaneously in 2009
- Over 100 citations for both observation PRLs
 - T. Aaltonen, et al. [CDF collaboration], Phys. Rev. Lett. 103, 092002 (2009)
 - V.M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 103, 092001 (2009)

- Combination of CDF and D0:
 - CDF: Four multivariate analysis in Lepton+jets channel with 3.2fb⁻¹ data.
 - CDF: MET+Jets channel with 2.1fb⁻¹ data
 - D0: Three multivariate analysis in Lepton+jets channel with 2.3fb⁻¹ data.

- Assuming $m_{top} = 172.5 \text{ Gev}/c^2$
- Measured cross section:

 $\sigma_{s+t} = 3.04^{+0.57}_{-0.53} \text{ pb}$

- From the cross section posterior
- Set limit: $|V_{tb}| > 0.78$ at 95% CL

Extracted $|V_{tb}| = 0.92^{+0.10}_{-0.08}$ (stat.+sys.) ± 0.05(theory)

- $\sigma_t = 1.49^{+0.47}_{-0.42} \text{ pb}$
- **SM Prediction:**
 - $\sigma_s^{SM} = 1.05 \pm 0.07 \text{ pb}$
 - $\sigma_{t}^{SM} = 2.10 \pm 0.19 \text{ pb}$
 - $\sigma_{wt}^{SM} = 0.22 \pm 0.08 \text{ pb}$ (Effect negligible)

- Measured cross section:
 - $\sigma_s = 0.98 \pm 0.63 \text{ pb}$
 - $\sigma_t = 2.90 \pm 0.59 \text{ pb}$ (± 20%)
- **SM** Prediction:
 - $\sigma_s^{SM} = 1.04 \pm 0.04 \text{ pb}$
 - $\sigma_t^{SM} = 2.26 \pm 0.12 \, \text{pb}$

W-boson Helicity Fraction in Top Quark Decays

Final Thought on Top

Why physicists really want to study Top...

Generic Matrix Element Method

Probability to observe a set of kinematic variables x for a given top mass *dⁿσ* is the differential cross section Contains (LO) matrix element squared

W(x,y) is the probability that a parton level set of variables y will be measured as a set of variables x

$$P_{\rm sgn}(x;m_t)$$

 $d^{n}\sigma(y;m_{t}) dq_{1} dq_{2} f(q_{1}) f(q_{2}) W(x,y)$

Normalization depends on m_t includes acceptance effects

 $\sigma(m_{t})$

f(q) is the probability distribution that a parton will have momentum q

Integrate over unknown q_1, q_2, y

- Maximal extraction of information, but phase space integration is very CPU intensive
- Additional background probability term with varying levels of sophistication