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IIIA. Factorization in DIS

• Challenge: use AF in observables σ
(cross sections, also some amplitudes)
that are not infrared safe

• Possible if: σ has a short-distance subprocess.
Separate IR Safe from IR: this is factorization

• IR Safe part (short-distance) is calculable in pQCD

• Infrared part – example: parton distribution –
measureable and universal

• Infrared safety – insensitive to soft gluon emission
collinear rearrangements
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• For DIS, will find a result . . .

• Just like Parton Model except in Parton Model
the infrared safe part is σLO ⇒ φ(x) normalized uniquely

• In pQCD must define parton distributions
more carefully: the factorization scheme

• Basic observation: virtual states are not truly frozen.
Some states fluctuate on scale 1/Q . . .

• Just like Parton Model except in Parton Model

the infrared safe part is σBorn ⇒ f(x) normalized uniquely

• In pQCD must define parton distributions

more carefully: the factorization scheme

• Basic observation: virtual states not truly frozen.

Some states fluctuate on scale 1/Q . . .

+

q
p p

< Q
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Short-lived states ⇒ ln(Q)Short-lived states ⇒ ln(Q)

p

 Q

p

<< Q

(collinear

  divergence)

(ln Q)

Long-lived states ⇒ Collinear Singularity (IR)• Longer-lived states ⇒ Collinear Singularity (IR)

• How we systematize to all orders in perturbation theory . . . a
taste of “all-orders” proofs in pQCD.
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• We can generalize to all sources of mass dependence. Always
from classical processes with on-shell particles.

S

S

Collinear lines

P

q q

P

A A*

soft lines

scattered
lines

J

• This is “Cut diagram notation”, representing the amplitude
and complex conjugate. Adding up all cut diagrams is the
same as summing diagrams of A and then taking |A|2.
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• Again: the structure of on-shell lines in an
arbitrary cut diagram.

S

S

Collinear lines

P

q q

P

A A*

soft lines

scattered
lines

J

• The story: h splits into collinear partons, then one of them
scatters, producing jets that recede at speed of light, con-
nected only by “infinite wavelength soft” quanta.
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• Use of the optical theorem – relate the cut diagram to forward
scattering. No classical processes are possible, because the
scattered quarks must rescatter, and all interactions after the
hard scattering collapse to a “short-distance” function C, that
depends only on xp and q:

S

S
P

q

J

!N

N

= Im

Cq q q

• All long-distance logs cancels because of the inclusive sum
over states.
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• The partons on each side of the short distance functionC(p, q)
must have the same flavor and momentum fraction.

!

xp,axp,a

p p

Im

• Definition of parton distribution generates all the same long-
distance behavior left in in the original diagrams (quark case)
after the sum over hadronic final states:

φa/h(x, µF ) =
∑

spins σ

∫ dy−
2π

e−ixp
+y− 〈p, σ|q̄(y−)γ+q(0)|p, σ〉

• This matrix element requires renormalization: thus the ‘µF ’.
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• The result: factorized DIS

F
γq
2 (x,Q2) =

∫ 1
x dξ C

γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)


× φq/q(ξ, µF , αs(µ))

≡ C
γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

⊗ φq/q(ξ, µF , αs(µ))

• φq/q has ln(µF/ΛQCD) . . . with µF its independent
renormalization scale.

•C has ln(Q/µ), ln(µF/µ)
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• Often pick µ = µF and often pick µF = Q. So often see:

F
γq
2 (x,Q2) = C

γq
2


x

ξ
, αs(Q)

 ⊗ φq/q(ξ,Q
2)

IIIB. DIS at one loop

• But we still need to specify what we really
mean by factorization: scheme as well as scale.

• For this, compute F
γq
2 (x,Q).

• Keep µ = µF for simplicity.
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• “Compute quark-photon scattering” – What does this mean?

Must use an IR-regulated theory

Extract the IR Safe part then take away the regularization

• Let’s see how it works . . .

• At zeroth order – no interactions:

Cγqf(0) = e2
f δ(1− x/ξ)

(LO cross section; parton model)

φ
(0)
qf/qf ′

(ξ) = δff ′ δ(1− ξ)
(at zeroth order, momentum fraction conserved)
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F
γqf (0)
2 (x,Q2) =

∫ 1
x dξ C

γqf (0)
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)



× φ
(0)
qf/qf

(ξ, µF , αs(µ))

= e2
f

∫ 1
x dξ δ(1− x/ξ) δ(1− ξ)

= e2
f x δ(1− x)

• On to one loop . . .
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• F γq at one loop: factorization schemes

• Start with F2 for a quark:

F γq AT ONE LOOP: FACTORIZATION SCHEMES

• Start with F2 for a quark:

+

2

+ 2 Re ( )
*( )+

Have to combine final states with different phase space . . .
Have to combine final states with different phase space . . .
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• “Plus Distributions”:

∫ 1
0 dx

f(x)

(1− x)+
≡

∫ 1
0 dx

f(x)− f(1)

(1− x)
∫ 1
0 dx f(x)


ln(1− x)

1− x


+
≡

∫ 1
0 dx ( f(x)− f(1) )

ln(1− x)

(1− x)

and so on . . . where

• f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1− x

• f(1) term: virtual, with elastic kinematics

• DGLAP “evolution kernel” = “splitting function”

P (1)
qq (x) = CF

αs

π


1 + x2

1− x


+
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• αs Expansion:

F
γq
2 (x,Q2) =

∫ 1
x dξ C

γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)


× φq/q(ξ, µF , αs(µ))

F
γqf
2 (x,Q2) = C

(0)
2 φ(0)

+
αs

2π
C(1) φ(0)

+
αs

2π
C(0) φ(1) + . . .
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• And result:

F
γqf
2 (x,Q2) = e2

f { x δ(1− x)

+
αs

2π
CF


1 + x2

1− x


ln(1− x)

x

 +
1

4
(9− 5x)


+

+
αs

2π
CF

∫Q2

0
dk2
T

k2
T


1 + x2

1− x


+

} + . . .

F
γqf
1 (x,Q2) =

1

2x

F
γqf
2 (x,Q2)− CF α

αs

π2
2x


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• Factorization Schemes

MS (Corresponds to matrix element above.)

φ
(1)
q/q(x, µ

2) =
αs

π2
Pqq(x)

∫ µ2

0
dk2
T

k2
T

With kT -integral “IR regulated”.

Advantage: technical simplicity; not tied to process.

C(1)(x)MS = (αs/2π) Pqq(x) ln(Q2/µ2) + µ-independent

DIS:

φq/q(x, µ
2) =

αs

π2
F γqf(x, µ2)

Absorbs all uncertainties in DIS into a PDF.

Closer to experiment for DIS.

C(1)(x)DIS = (αs/2π) Pqq(x) ln(Q2/µ2) + 0
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• Using the Regulated Theory to Get Parton Distributions for
Real Hadrons . . .

IR-regulated QCD is not REAL QCD

BUT it only differs at low momenta

THUS we can use it for IR Safe functions: C
γq
2 , etc.

THIS enables us to get PDFs from experiment.
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• Compute F
γq
2 , F

γG
2 . . .

Define factorization scheme; find IR Safe C’s

Use factorization in the full theory

F
γN
2 =

∑
a=qf ,q̄f ,G

Cγa ⊗ φa/N

Measure F2; then use the known C’s to derive φa/N

NOW HAVE φa/N(ξ, µ2) AND CAN USE IT IN ANY OTHER
PROCESS THAT FACTORIZES.

• Multiple flavors and cross sections complicate technicalities;
not logic (Global Fits)
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• IIIC. Evolution: Q2-dependence

• In general, Q2/µ2 dependence still in Ca
(
x/ξ,Q2/µ2, αs(µ)

)

Choose µ = Q

F
γA
2 (x,Q2) =

∑
a

∫ 1
x dξ C

γa
2


x

ξ
, 1, αs(Q)

 φa/A(ξ,Q2)

Q� ΛQCD→ compute C’s in PT.

C
γa
2


x

ξ
, 1, αs(Q)

 =
∑
n


αs(Q)

π


n

C
γa
2

(n)

x

ξ



But still need PDFs at µ = Q: φa/A(ξ,Q2) for different Q’s.
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• How evolution works . . .

• A remarkable consequence of factorization.

• Can use φa/A(x,Q2
0) to determine

φa/A(x,Q2) and hence F1,2,3(x,Q2) for any Q

• So long at αs(Q) is still small.

• Let’s see how it works explicitly in an example.

21



• The ‘nonsinglet’ distribution

F γNS
a = F γpa − F

γn
a

F
γNS
2 (x,Q2) =

∫ 1
x dξ C

γNS
2


x

ξ
,
Q

µ
, αs(µ)

 φNS(ξ, µ2)

Gluons, antiquarks cancel

At one loop: CNS
2 = C

γN
2
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• Basic tool:

• ‘Mellin’ Moments and Anomalous Dimensions

f̄(N) =
∫ 1
0 dx x

N−1 f(x)

• Reduces convolution to a product

f(x) =
∫ 1
x dy g


x

y

 h(y)→ f̄(N) = ḡ(N) h̄(N + 1)
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• Moments applied to NS structure function:

F̄
γNS
2 (N,Q2) = C̄

γNS
2

N,
Q

µ
,αs(µ)

 φ̄NS(N,µ2)

(Note φNS(N,µ2) ≡ ∫1
0 dξξ

Nf(ξ, µ2) here.)

• F̄ γNS
2 (N,Q2) is Physical

⇒ µ
d

dµ
F̄
γNS
2 (N,Q2) = 0
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• ‘Separation of variables’

µ
d

dµ
ln φ̄NS(N,µ2) = −γNS(N,αs(µ))

γNS(N,αs(µ)) = µ
d

dµ
ln C̄

γNS
2 (N,αs(µ))

• Because αs is the only variable held in common.

• γNS an “anomalous dimension”, which controls the logarith-
mic µ dependence.
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µ
d

dµ
ln φ̄NS(N,µ2) = −γNS(N,αs(µ))

γNS(N,αs(µ)) = µ
d

dµ
ln C̄

γNS
2 (N,αs(µ))

• Only need to know C’s ⇒ γN from IR regulated theory!

⇓

Q-DEPENDENCE DETERMINED BY PT

EVOLUTION

THIS WAS HOW WE FOUND OUT QCD IS ‘RIGHT’

AND THIS IS HOW QCD PREDICTS PHYSICS
AT NEW SCALES
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• γNS at one loop (5th line is an exercise.)

γNS(N,αs) = µ
d

dµ
ln C̄

γNS
2 (N,αs(Q))

= µ
d

dµ

 (αs/2π) P̄qq(N) ln(Q2/µ2) + µ indep.


= −
αs

π

∫ 1
0 dx x

N−1 Pqq(x)

= −
αs

π
CF

∫ 1
0 dx


xN−1 − 1

 1 + x2

1− x



= −
αs

π
CF

 4
N∑
m=2

1

m
− 2

2

N(N + 1)
+ 1



≡ −
αs

π
γ

(1)
NS

Hint: (1−x2)/(1−x) = 1 +x . . . (1−xk)/(1−x) = ∑k−1
i=0 x

k
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• Solution and scale breaking.

µ
d

dµ
φ̄NS(N,µ2) = −γNS(N,αs(µ)) φ̄NS(N,µ2)

φ̄NS(N,µ2) = φ̄NS(N,µ2
0)× exp

 −
1

2

∫ µ2

µ2
0

dµ′2

µ′2
γNS(N,αs(µ))



⇓

φ̄NS(N,Q2) = φ̄NS(N,Q2
0)


ln(Q2/Λ2

QCD)

ln(Q2
0/Λ

2
QCD)


−2γ

(1)
N /β0

Hint:

αs(Q) =
4π

β0 ln(Q2/Λ2
QCD)

So also: φ̄NS(N,Q2) = φ̄NS(N,Q2
0)

αs(Q
2
0)

αs(Q2)


−2γ

(1)
N /β0
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Qualitatively,

φ̄NS(N,Q2) = φ̄NS(N,Q2
0)


αs(Q

2
0)

αs(Q2)


−2γ

(1)
N /β0

• Is ‘mild’ scale breaking, to be contrasted to

• Case of αs→ α0 6= 0, get a power Q-dependence:
Q2

γ(1)αs
2π

•⇒ QCD’s consistency with the Parton Model (73-74)

29



• Inverting the Moments.

µ
d

dµ
φ̄NS(N,µ2) = −γN(αs(µ)) φ̄NS(N,µ2)

⇓

µ
d

dµ
φqq(x, µ

2) =
∫ 1
x

dξ

ξ
PNS(x/ξ, αs(µ)) φNS(ξ, µ2)

Splitting function ↔ Anomalous dimensions

∫ 1
0 dx x

N−1 Pqq(x, αs) = γNS(N,αs)
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• Singlet (Full) Evolution

µ
d

dµ
φb/A(x, µ2) =

∑
b=q,q̄,G

∫ 1
x

dξ

ξ
Pab(x/ξ, αs(µ)) φb/A(ξ, µ2)

• The Physical Context of Evolution

– Parton Model: φa/A(x) density of parton a with
momentum fraction x, assumed independent of Q

– PQCD: φa/A(x, µ): same density, but
with transverse momentum ≤ µ

31



• If there were a maximum transverse momentum Q0,
each φa/h(x,Q0) would freeze for µ ≥ Q0.

• Not so in renormalized PT.

• Scale breaking measures the change in the density
as maximum transverse momentum increases.

• Cross sections we compute still depend on our
choice of µ through uncomputed “higher orders” in C
and evolution.
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• Evolution in DIS (with CTEQ6 fits)
– Evolution in DIS (with CTEQ6 fits)
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IIID. Factorization in hadron-hadron scattering

• General relation for hadron-hadron scattering for a hard, in-
clusive process with momentum transfer M to produce final
state F +X:

dσH1H2
(p1, p2,M) =
∑
a,b

∫ 1
0 dξa dξbdσ̂ab→F+X (ξap1, ξbp2,M, µ)

×φa/H1
(ξa, µ)φb/H2

(ξb, µ),

• Factorization proofs justify of the universality of the parton
distributions.

• Also underly a range of generalizations of evolution: resum-
mations (see appendix slides for an example).
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• The physical basis: classical fields

x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆= ∆ ≡ x′3 − βct′

• Why a classical picture isn’t far-fetched . . .

The correspondence principle is the key to
to IR divergences.

An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.
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Transformation of a scalar field:

φ(x) =
q

(x2
T + x2

3)1/2
= φ′(x′) =

q

(x2
T + γ2∆2)1/2

From the Lorentz transformation:
x3 = − γ(βct′ − x′3) ≡ γ∆.

Closest approach is at ∆ = 0, i.e. t′ = 1
βcx
′
3 .

The scalar field transforms “like a ruler”: At any fixed
∆ 6= 0, the field decreases like 1/γ =

√
1− β2.
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x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆=

field x frame x′ frame

scalar q
|~x|

q
(x2

T +γ2∆2)1/2

gauge (0) A0(x) = q
|~x| A′0(x′) = −qγ

(x2
T +γ2∆2)1/2

field strength E3(x) = q
|~x|2 E′3(x

′) = −qγ∆
(x2

T +γ2∆2)3/2

Gauge fields : E3 ∼ γ0, E3 ∼ γ−2

• The “gluon” ~A is enhanced, yet is a total derivative:

Aµ = q
∂

∂x′µ
ln

(
∆(t′, x′3)

)
+O(1− β) ∼ A−

• The “large” part of Aµ can be removed by
a gauge transformation!
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• The “force” ~E field of the incident particle does not
overlap the “target” until the moment of the scattering.

• “Advanced” effects are corrections to the total derivative:

1− β ∼
1

2

√1− β2
2 ∼ m2

2E2

• Power-suppressed! These are corrections to factorization.

• At the same time, a gauge transformation also induces
a phase on charged fields:

q(x)⇒ q(x) ei ln(∆)

Cancelled if the fields are well-localized ⇔ σ inclusive
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• Initial-state interactions decouple from hard scattering

• Summarized by multiplicative factors: the parton distribu-
tions.

⇒ Cross section for inclusive hard scattering is IR safe,
with power-suppressed corrections.

• Factorizing dynamics at short and long distance can be built
into effective field theories based on the QCD Lagrangian: in
particular “soft-collinear effective field theory” (SCET) can
streamline many applications.

• What about cross sections where we observe specific
particles in the final state? Single hadrons, dihadron
correlations, etc?
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• Much of the same reasoning holds:

x < βc t3

• For single-particle inclusive . . .

Interactions after the scattering are too late to affect
large momentum transfer, creation of heavy particle, etc.

The fragmentation of partons to jets is too slow to know
details of the hard scattering: factorization of fragmentation
functions.
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• Conclude with a few comments . . .

• Factorization, although powerful, is brittle. To apply it, we
must define our cross sections to be “sufficiently inclusive”.
We have to be able to apply an analog of the optical theorem
as in DIS, recall:

S

S

P

q

J

!N

N

= Im

Cq q q
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• How this works out for 1PI cross sections is sketched in the
“appendix” slides. Also in appendix – basics of QT resum-
mation from a factorization point of view.

• Event generators for showering depend on the physics of fac-
torization: each sequential branching (gluon emission, pair
creation) is independent. A series of “mini-factorizations”.

• The key to applications of perturbative QCD is to avoid un-
controlled dependence of long-distance physics. It must either
cancel or be factorized from calculable quantities.

• pQCD will give sensible answers if you ask the right questions.
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Appendix III.1: high orders in factorization proofs for 1PI
cross sections

• How it works in pQCD, with pictures as in DIS:

• Separation of soft quanta from fragmenting partons because

soft radiation cannot resolve collinear-moving particles.

h(p)

=

h(p)

x

S

h(p)

h(p)
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• The all-orders cancellation of soft singularities that connect
initial and final states for single-particle inclusive and other
short-distance cross sections in hadron-hadron scattering:

H

J1

2
J

S

H

J1

2
J

S

H

J1

2
J

S

= Im - -

= Im
H

J1

2
J

S

- H

J1

2
J

S

H

J1

2
J

S

-

• all terms on RHS are power-suppressed
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Appendix III.2: Resummation: the Classic Case: QT

• Start with the Drell-Yan transverse momentum distribution
at order αs

q(p1) + q̄(p2)→ γ∗(Q) + g(k)

• Treat this 2 → 2 process at lowest order (αs) “LO”
in factorized cross section, so that k = −QT
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• Factorized cross section at fixed QT :

dσNN→µ+µ−+X(Q, p1, p2)

dQ2d2QT

=
∫
ξ1,ξ2

∑
a=qq̄

dσ̂aā→µ+µ−(Q)+X(Q,QT , ξ1p1, ξ2p2, µ)

dQ2d2QT
× fa/N(ξ1, µ) fā/N(ξ2, µ)

• µ is the factorization scale that separates
IR (f) from UV (dσ̂) in quantum corrections.
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• The diagrams at order αs. Finite for QT 6= 0 . . .

Gluon emission contributes at QT 6= 0

Virtual corrections contribute only at QT = 0
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dσ̂
(1)
qq̄→γ∗g

dQ2 d2QT
= σ0

αsCF

π2

1−
4Q2

T

(1− z)2ξ1ξ2S


−1/2

×


1

Q2
T

1 + z2

1− z
−

2z

(1− z)Q2



OK as long as QT 6= 0, z = Q2/ξ1ξ2S 6= 1.

The QT integral → ln(1−z)
1−z ; z integral → ln Q2

T
Q2
T

.
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The leading singularity in QT

• z integral: If Q2/S not too big, PDFs nearly constant:

1

Q2
T

∫ 1−Q2
T/Q

2

1−Q2/S

dz

1− z
=

1

Q2
T

ln


Q2

Q2
T



⇒ Prediction for QT dependence:

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
=
αsCF

π

1

Q2
T

ln


Q2

Q2
T



× ∑
a=qq̄

∫
ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2

× fa/N(ξ1, µ) fā/N(ξ2, µ)
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• Compare to: Z pT (from Kulesza, G.S., Vogelsang (2002))

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power

• lnQT/QT works pretty well for large QT

• But at smaller QT reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

• Most events are at “low” QT � Q = mZ.
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• Getting to QT � Q: Transverse momentum resummation

(Logs of QT )/QT to all orders

How? Variant factorization and separation of variables

q and q̄ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and q̄ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
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Summarized by: QT -factorization:

dσNN→QX
dQd2QT

=
∫
dξ1dξ2 d

2k1Td
2k2Td

2ksT

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

×Uaā(ksT , n) δ (QT − k1T − k2T − ksT )

The P′s: new Transverse momentum-dependent PDFs

Also need U : “soft function” for wide-angle radiation
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Symbolically:

dσNN→QX
dQd2QT

=

H × Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

⊗ξi,kiT Uaā(ksT , n)

We will solve for the kT dependence of the P’s.

New factorization variables: nµ apportions gluons k:

pi · k < n · k ⇒ k ∈ Pi
pa · k, pā · k > n · k ⇒ k ∈ U

Convolution in ki,T s ⇒ Fourier ei
~QT ·~b
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The factorized cross section in “impact parameter space”:

dσNN→QX(Q, b)

dQ
=

∫
dξ1dξ2 H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, b)Pā/N(ξ2, p2 · n, b) Uaā(b, n)

Now we can resum by separating variables!

the LHS independent of µren, n ⇒ two equations

µren
dσ

dµren
= 0 nα

dσ

dnα
= 0
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Method of Collins and Soper, and Sen (1981)

Change in jet must cancel change in (UV) H and (IR) U :

p · n
∂

∂p · n
ln P(p · n/µ, bµ) = G(p · n/µ) +K(bµ)

G matches H, K matches U . Renormalization indep. of nµ:

µ
∂

∂µ
[G(p · n/µ) +K(bµ) ] = 0

µ
∂

∂µ
G(p · n/µ) = A(αs(µ)) = − µ

∂

∂µ
K(bµ)

Solve this one first. µ in αs varies (& αs need not be small).
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G(p · n/µ) +K(bµ) = G(p · n/µ) +K(µ/p · n)

−
∫ p·n
1/b

dµ′

µ′
Aa(αs(µ

′))

The consistency equation for the jet becomes

p · n
∂

∂p · n
ln P(p · n/µ, bµ) = G(p · n/µ) +K(µ/p · n)

−
∫ p·n
1/b

dµ′

µ′
A(αs(µ

′))

Integrate p · n and get double logs in b→ αns
ln2n−1(Q/QT )

QT
.
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Transformed solution back to QT : all the (Logs of QT )/QT ,
Which fits the data; (viz. RESBOS; Yuan, Nadolsky et al.)

dσNNres

dQ2 d2 ~QT
=

∑
a
Haā(αs(Q

2))
∫ d2b

(2π)2
ei
~QT ·~b eE

PT
aā (b,Q,µ)

× ∑
a=qq̄

∫
ξ1ξ2

dσ̂aā→µ+µ−(Q)+X

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

“Sudakov” exponent links large and low virtuality:

EPT
aā = −

∫Q2

1/b2

dk2
T

k2
T

2Aq(αs(kT )) ln


Q2

k2
T

 + 2Bq(αs(kT ))



With B = 2(K +G)µ=p·n, and lower limit: 1/b (NLL)
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