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Plan of the lectures

 Lecture 1 – Global PDF fits
– Why parton distributions?
– Global PDF fits
– Observables
– The art of fitting

 Lecture 2 – PDF uncertainties and applications
– Statistical and theretical uncertainties
– Modern PDF sets
– LHC applications
– Large-x connections



CTEQ 2013 – Lecture 1accardi@jlab.org 3

 

Resources

 Articles
 

– J.Rojo, “Parton distributions in the Higgs boson era “,  arXiv:1305.3476

– A.Accardi, “The CJ12 parton distribution functions”, DIS2013 proceedings

 (see school's website)
 

 Reviews
 

– P.Jimenez-Delgado, W.Melnitchouk, J.F.Owens, 
“Momentum and helicity distributions in the nucleon”, arXiv:1306.6515

– Forte, Watt, “Progress in partonic structure of proton”, arXiv:1301.6754 

 Lectures
 

– J.F. Owens' lectures, “Intro to parton model and pQCD”, 2013 summer school

– J.F. Owens, “PDF and global fitting”, 2007 summer school

– W.K.Tung, “pQCD and parton structure of the nucleon”,  CTEQ website
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Resources

 Textbooks (mostly on DIS...)
 

– Halzen, Martin, “Quarks and leptons,” John Wiley and sons, 1984

– Lenz et al. (Eds.), “Lectures on QCD. Applications,” Springer, 1997

• esp. lectures by Levy, Rith, Jaffe

– Devenish, Cooper-Sarkar, “Deep Inelastic Scattering,” Oxford U.P., 2004

– Feynman, “Photon-hadron interactions,” Addison Wesley, 1972   

...and a special thank to Jeff Owens, 
who has been teaching me this business...
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Lecture 1 – Global PDF fits

 Why parton distributions?
– High-energy, hadronic and nuclear physics

 Global PDF fits
– The basic ideas

 Observables
– Sensitivity to specific quarks and gluons

 Fitting
– A selection of fine details
– PDF uncertainties: experimental, theoretical
– Some recent PDFs
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Why parton distributions?
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PDFs and hadron structure

 Fundamental description of the structure of hadrons
– Nucleons made of 3 quarks 

Fractional momentum:
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PDFs and hadron structure

 Fundamental description of the structure of hadrons
– Nucleons made of 3 confined quarks 

Fractional momentum:
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PDFs and hadron structure

 Fundamental description of the structure of hadrons
– Nucleons made of 3 confined quarks, and sea quarks and gluons

Fractional momentum:
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PDFs and hadron structure

 Non-perturbative regime – dynamics of quark confinement
 

– SU(6) spin-flavor symmetry:  
 

– Broken SU(6) : hard gluon exchange:  
 

– Broken SU(6) : scalar diquark dominance:

 Perturbative regime – gluon saturation

Y

W[]

A
Caola,Forte,Rojo,2010
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PDFs and High-Energy Physics

 Essential in perturbative calculations of hard scattering processes 
– Factorization & universality [J.Owens' lectures]

Partonic cross section
(calculable in pQCD)

Parton Distribution Fns
(non-perturbative)

“Hard scale”
(large momentum transfer)2
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PDFs and High-Energy Physics

 For example, at the LHC
– Key ingredient for Higgs discovery
– But PDF uncertainties fundamentally limit cross section calculations

 Higgs cross section uncertainty 
– Hence limitation on measurement of Higgs coupling
– Cause: spread of PDF fits at medium-low x  
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PDFs and High-Energy Physics

 New heavy particle searches
– Large statistical uncertainties on large-x PDFs

 Gluino searches
– Large statistical uncertainties in high-x gluons
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PDFs and High-Energy Physics

 W' and Z' total cross sections
– Large statistical and theoretical uncertainties on high-x d quarks 
– In the figure, “nuclear uncertainties” only
– PDF uncertainties are comparable

7 TeV

Mass in GeV

Brady, Accardi, Melnitchouk, Owens,
JHEP 1206 (2012) 019 
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PDFs and nuclear physics

 Precise PDFs from proton target data 
  →  baseline for “nuclear PDFs”

 Compare proton target data with theory-corrected nuclear target data
  →  test of nuclear theory models

spread due to theoretical
modeling of nuclear effects
in DIS on Deuterium targets

Reconstructed 
W asymmetry

nCTEQ



CTEQ 2013 – Lecture 1accardi@jlab.org 16

Hadronic
Physics

Nuclear
Physics

High-energy
Physics

PDFsPDFs

These lectures' common thread
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Global PDF fits
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Fundamentals

 pQCD factorization

 Universality
– PDFs can be used to compute “any” hard scattering process
– In fact, the proof is not general but needs to be done 

process-by-process

Partonic cross section
(calculable in pQCD)

Parton Distribution Fns
(non-perturbative)

Renormalization scaleFactorization scale
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Fundamentals

 DGLAP evolution: 

– you only need to know the PDFs at one scale Q0

– Coupled set of equations whose solutions show how the PDFs 
change with variations in the scale Q

– Splitting functions have perturbative expansions αs 
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 Sum rules
 

– Charge conservation

– Momentum conservation

Fundamentals

NOTE: does not 
mean c (x) = c (x) !!
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Useful PDF properties - 1

 The gluon dominates at low x and falls steeply as x increases
 

 Symmetric sea quarks: anti-q and q comparable at low x 
(and anti-q fall off in x even faster than the gluons)
 

 u and d dominate at large x with u > d ; at low x, u ≈  d   

Owens, AA, Melnitchouk, PRD 87, 094012 (2013)
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Useful PDF properties - 2

 Gluon radiation – QCD evolution in Q2

– Gluon radiation causes parton momentum loss: 
• At large x, quarks and gluons shift to the left: PDFs get steeper 

–  Gluons create q, anti-q pairs, and g, g pairs:
• At small x, quark and gluon PDFs increase, get steeper

Owens, AA, Melnitchouk, PRD 87, 094012 (2013)
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Global PDF fits

 Problem:
– we need a set of PDFs in order to calculate a particular

hard-scattering process

 Solution:
– Choose a data set for a set of different hard scattering processes 
– Generate PDFs using a parametrized functional form at initial scale 

Q0; evolve them from Q0 to any Q using DGLAP evolution equations

– Use the PDF to compute the chosen hard scatterings
– Repeatedly vary the parameters and evolve the PDFs again
– Obtain an optimal fit to a set of data. 

 Modern PDF sets: CTEQ-TEA (CT10), CTEQ-JLab (CJ12), 
MSTW2008, NNPDF2.1, ABM11, JR09, HERAPDF1.5
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 PDFs PDFs

● DIS: p, d
● p+p(pbar)  ll, W
● p+p(pbar)  jets, γ+jet

● DIS: p, d
● p+p(pbar)  ll, W
● p+p(pbar)  jets, γ+jet

data
● pQCD at NLO
● Factorization & universality
● Large-x, low-Q2, nuclear corr.

● pQCD at NLO
● Factorization & universality
● Large-x, low-Q2, nuclear corr.

theory

● Parametrize PDF at Q0 , evolve to Q
● Minimize χ2

● Parametrize PDF at Q0 , evolve to Q
● Minimize χ2

fits

F2(n)

W, Z  /  W',Z', Higgs
(or any other “hard” observable)

F2(n)

W, Z  /  W',Z', Higgs
(or any other “hard” observable)

Global PDF fits
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Global PDF fits as a tool

 Test new theoretical ideas
– e.g., are sea-quarks asymmetric? Is there any “intrinsic” charm?

  

 Phenomenology explorations
– e.g., can CDF / HERA “excesses” be at all due to glue/quark 

underestimate at large x? Are there new particles at the LHC?
 

 Test / constrain models
– e.g., by extrapolating d/u at x=1
– Possibly, constrain nuclear corrections

  

 Limitations
– existing data
– experimental uncertainty
– theoretical uncertainty

As a user you should 
be aware of these
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The art and science of global fitting – key points

 Choice of observables and data sets
 

 Choice of kinematic cuts to perform calculations with confidence
 

 Parametrized functional form for input PDFs at Q0 

 

 Definition of “optimal fit” 
– typically by a suitable choice of 2 function

 Truncation of the perturbative series: 
– LO; NLO (state-of-the-art)
– NNLO (fully available for DIS, DY – partially for other processes)

 

 Treatment of errors
– Experimental: statistical and systematic
– Theoretical
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Observables
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Observables

 Each observables involves a different linear combination, or product of PDFs:
a diverse enough set of observables is needed for parton flavor separation
– Some redundancy needed to cross-check data sets

 

 Typical data sets used in global fits
– Inclusive DIS
– Vector boson production in p+p, p+D 

– Hadronic jets, p+p or p+pbar:  inclusive jets, γ+ jet
– neutrino  DIS: 

 

* use of nuclear targets require consideration of nuclear corrections to measure the
proton / neutron PDFs; typically these induce large theoretical uncertainty,  the
more so for heavy nuclei.  Fixed target DY is so far an exception: the probed x  values 

   in the nucleus are small enough to neglect corrections.
 

 Need to establish a strategy to get to the particular PDFs one is interested in
– Different groups make different choices
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Deep Inelastic Scattering (DIS)



 Electromagnetic probe at small Q2, electroweak couplings at large Q2

NC: gamma, Z

CC: W +, W –  
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Deep Inelastic Scattering (DIS)

 Leading Order DIS is a direct probe 
of quark and antiquarks
 

 Proton target at

– Each flavor is weighted by its charge squared

– Gluon does not enter at LO  (and F
L
 = 0)

– Quarks and antiquarks enter togther 
 

 Deuterium target = (interacting) proton + neutron

– Different combination, allows d vs. u quark separation
– Assumes isospin symmetry,  up= dn  and  dp= un , no other nuclear fx 
– But corrections for binding and Fermi motion not small at x > 0.3
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Deep Inelastic Scattering (DIS)

 Neutrino scattering: measure both F
2
 and F

3

– Separation of quarks and antiquarks
– BUT: few data on proton targets (WA21/22) 
– Needs heavy nuclear targets, 

theoretical corrections for nuclear effects

 Same can be accomplished in CC lepton DIS on protons (e.g. at HERA)
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Deep Inelastic Scattering (DIS)

 γ-Z interference allows further quark separation

– Can be measured by comparing positive vs. negative helicity leptons 
and positrons vs. electrons
 

 In principle DIS on protons allows full quark flavor separation, but:
– Data scarce for more “exotic” structure functions
– Would require either a neutrino factory (far in the future)

or an Electron-Ion Collider – EIC or LHeC (possibly in the 2020's)

 We also need nuclear targets and/or hadron-hadron scattering
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Lepton pair production in hadronic collisions

q(x
2
) in pp collisions
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“Drell-Yan” pair production

 Away from Z,W resonance → mediated by photons 

 At large (but not too much) y, and low Q2

 

–                  sensitive to the           ratio

 At large y (large x1, small x2) same combinations as DIS on p and D

– No new information 

 Large Q2 range at LHC: additional handles available
– Evolution at moderate x different for strange and light quarks
– at very large Q2 charm quarks not negligible
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W,Z production

 Z → l++ l– 

– Z kinematics reconstructed from charged lepton pair 
– Weak coupling helps with flavor separation

 W → l + ν

At large y, i.e., small x2: 

(Alternatively, charge asymmetry                                                 )
 
– But: missing energy, reconstruction of W kinematics is a challenge
– Lepton decay limits reach to x < 0.5
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Hadronic production of jets

 The qq subprocesses do dominate the high-E
T
 region

– But enough contribution from the gluons that data 
can be used to constrain the large-x gluon behavior
 

– Combined with the low-x data and the momentum sum rule
one has strong constraints on the gluon distribution
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Gluons from DIS

 2 methods

– Scaling violations in F2

 

– Longitudinal structure function FL 

• Gluons subdominant in F
2

• But same order as quarks in FL
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Gluons from DIS

 Caveats
– Experimentally separating F2 and FL requires measurements

at different √s
– Typically lower statistics than for F2 
– Systematic error analysis tricky

 In practice global fits can directly fit the cross section
– effective F2 / FL separation 
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Data coverage in x and Q – NNPDF 2.0

Note the 
empty triangle
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Data coverage in x and Q – CJ12 (by category)

CJ12, ABM11

standard cut

x
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The art of fitting
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Parametrization at Q0

 In the beginning... first fits based on

 Estimate   by counting rules:  β = 2ns – 1 with ns = spectator quarks no.

– Valence quarks (qqq): ns = 2, β = 3

– Gluons (qqqg): ns = 3, β= 5

– Antiquarks  (qqqqq): ns = 4, β= 7
 

 Estimate  from Regge arguments, behavior of gluon radiation:

– Gluons and antiquarks: ≈  –1

– Valence quarks:   ≈  –1/2 
 

 Overall normalization fixed by sum rules (momentum, charge 
conservation, ...)
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Parametrization at Q0

 With the large variety of precise data available today, needs more 
flexibility: multiply by a suitable function of x.
 

 Examples for u, d quarks and gluons
 

– CTEQ6.1 –    u,d,g:
 

– MSTW2008 – u,d:
 

             g:
 Caveats:

– Choice of functional form or no. of free parameters can bias the results
– Theoretical prejudices often built-in (e.g., CTEQ gluons can't go negative, 

d/u ratio forced to either 0 or ∞ as x → 1 ) 
 

 NNPDF: obtains “unbiased fits” by a neural-network parametrization, 
using a very large linear basis of functional forms 
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Parametrization at Q0

 Other points to keep in mind

– One should increase the number of parameters and the flexibility
of the parametrization until the data are well described

– Adding more parameters past that point simply results in 
ambiguities, false minima, unconstrained parameters, etc.

• But in Neural Network based fits this is turned into a virtue!

– May have to make some arbitrary decisions on parameter values 
that are not well constrained by the data
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“Optimal” fit

 Needs a numerical measure of how good a fit is
– choose a suitable 2 function

– vary parameters iteratively until 2 minimized

 Simplest choice

– OK for 1 data set
– And if data is statistically limited (errors not “too small”)

 But nowadays we have
– Several data sets for many observables
– Correlated and uncorrelated errors
– Overall normalization errors (due to, say, luminosity uncertainties)

D = exp.data    
 = uncorrelated exp. errors 
T = calculation 
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“Optimal” fit

 Normalization errors
– assign a 2 penalty for normalization errors (different choices possible)

– Fit optimal normalization fN, compare to quoted one

 Point-to-point systematic errors

– The data points Di are shifted by an amount reflecting the systematic 

errors β with the shifts given the the sj parameters

– There is a quadratic penalty term for non-zero values of the shifts s

– The minimum w.r.t. sj are obtained analytically

MSTW use a 
power 4
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“Optimal” fit

 Minimization of biases in treatment of normalizations
– treat all errors on the same footing

 

 Want to emphasize a given data set? use

– the weights wk and wN,k can be chosen to emphasize the contribution 

of a given experiment or normalization to the total 2

[Ball et al., Nucl.Phys.B838:136,2010]
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“Optimal” fit

 Neural Network based fits

– Too many parameters for conventional 2 minimization 
(would fit everything, including statistical fluctuation...)

– Solution:
• Generate replicas of data set by randomly varying central values

within their experimental uncertainties
• Divide these pseudo-data sets into “training” and “control”
• Reduce  2 in training set until the control  2 starts to increase

– Method can in principle be used also in conventional global fits

[Ball et al., Nucl.Phys.B838:136,2010]



CTEQ 2013 – Lecture 1accardi@jlab.org 50

Order of perturbation theory

  Lowest order in α
s
 (LO) - easy to do, but

– Hard scattering subprocesses do not depend on the factorization scale
– May be missing large higher order corrections

 

 Next-to-leading-order (NLO) - more complicated, but
– Less dependent on scale choices since the PDFs and hard scattering 

subprocesses both contain scale dependences which (partially) cancel
– Some higher order corrections are now included

 

 Next-to-next-to-leading-order (NNLO) - better, but
– Splitting functions are known so NNLO evolution can be done
– Some hard scattering subprocesses are known to NNLO (DIS, DY) 

but not high-ET jets (yet), and many other important for, say, LHC
 

 NLO remains the state-of-the-art, but full NNLO analyses are coming
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Order of perturbation theory

 LO PDFs can be interpreted as probability distribution in x

 At NLO, PDFs are defined to absorb IR and collinear divergences in the 
hard-scattering diagrams: they are no longer probabilities.

– Then, get rid of infinities by extracting PDFs from data 
(in this sense it is analogous to UV renormalization)

– Note: a “divergence” is defined differently in different subtraction 
schemes (most commonly “modified minimal subtraction” MS, or DIS) 
 

 NLO PDFs are not “better” than LO PDFs – they are different objects:
– you should use LO PDFs in LO calculations, NLO PDFs in NLO calcul'ns
– ...and the same subtraction scheme, choice of scale
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PDF uncertainties – preview of Lecture 2

 Experimental: 
 

– uncertainties in measured data propagate into the fitted PDFs
– can be quantified adapting statistical methods: “PDF error bands”
– These PDF errors need to be interpreted with care

 

 Theoretical:
 

– Several sources, cannot be quantified easily
• Choice of data sets, kinematic cuts
• Parametrization bias
• Choice of χ2 function
• Truncation of pQCD series, heavy-quark scheme, scale choice
• Higher-twist, target mass effects
• Nuclear corrections
• ...
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 PDFs PDFs

● DIS: p, d
● p+p(pbar)  ll, W
● p+p(pbar)  jets, γ+jet

● DIS: p, d
● p+p(pbar)  ll, W
● p+p(pbar)  jets, γ+jet

data
● pQCD at NLO
● Factorization & universality
● Large-x, low-Q2, nuclear corr.

● pQCD at NLO
● Factorization & universality
● Large-x, low-Q2, nuclear corr.

theory

● Parametrize PDF at Q0 , evolve to Q
● Minimize χ2

● Parametrize PDF at Q0 , evolve to Q
● Minimize χ2

fits

F2(n)

W, Z  /  W',Z', Higgs
(or any other “hard” observable)

F2(n)

W, Z  /  W',Z', Higgs
(or any other “hard” observable)

Lecture 1 – recap
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