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Introduction

Stefan Gieseke · CTEQ School 2013 4/91



Why Monte Carlos?

We want to understand

Lint←→ Final states .
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Can you spot the Higgs?
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Why Monte Carlos?

LHC experiments require
sound understanding of signals and backgrounds.

↑
Full detector simulation.

↑
Fully exclusive hadronic final state.

↑
Monte Carlo event generator with

parton shower, hadronization model, decays of unstable
particles.
↑

Parton level computations.
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Experiment and Simulation
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Monte Carlo Event Generators

I Complex final states in full detail (jets).
I Arbitrary observables and cuts from final states.
I Studies of new physics models.

I Rates and topologies of final states.
I Background studies.
I Detector Design.
I Detector Performance Studies (Acceptance).

I Obvious for calculation of observables on the quantum
level

|A|2 −→ Probability.
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pp Event Generator
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Divide and conquer

Partonic cross section from Feynman diagrams

dσ = dσharddP(partons→ hadrons)

Note, that ∫
dP(partons→ hadrons) = 1 ,

I σ remains unchanged
I introduce realistic fluctuations into distributions.

Simulation steps governed by different scales
−→ separation into (Q0 ≈ 1GeV> ΛQCD)

dP(partons→ hadrons) = dP(resonance decays) [Γ>Q0]

×dP(parton shower) [TeV→Q0]

×dP(hadronisation) [∼Q0]

×dP(hadronic decays) [O(MeV)]
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Monte Carlo Methods
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Monte Carlo Methods

Introduction to the most important MC sampling
(= integration) techniques.

1. Hit and miss.
2. Simple MC integration.
3. (Some) methods of variance reduction.
4. Multichannel.
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Probability

Probability density:

dP = f (x)dx

is probability to find value x.

F(x) =
∫ x

x0

f (x)dx

is called probability distribution.

Example: f (x) = cos(x).
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Hit and Miss

Hit and miss method:
I throw N random points

(x,y) into region.
I Count hits Nhit,

i.e. whenever y< f (x).
Then

I ≈ V
Nhit

N
.

approaches 1 again in our
example.

Example: f (x) = cos(x).
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Every accepted value of x can be considered an event in this
picture. As f (x) is the ’histogram’ of x, it seems obvious that the
x values are distributed as f (x) from this picture.
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Hit and Miss

This method is used in many event generators. However, it is
not sufficient as such.

I Can handle any density f (x),
however wild and unknown it is.

I f (x) should be bounded from above.
I Sampling will be very inefficient whenever Var(f ) is large.

Improvements go under the name variance reduction as they
improve the error of the crude MC at the same time.
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Simple MC integration

Mean value theorem of integration:

I =
∫ x1

x0

f (x)dx

= (x1−x0)〈f (x)〉

≈ (x1−x0)
1
N

N

∑
i=1

f (xi)

(Riemann integral).

Sum doesn’t depend on ordering
−→ randomize xi.

Yields a flat distribution of events xi,
but weighted with weight f (xi) (→ unweighting).
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Inverting the Integral

I Probability density
f (x). Not necessarily
normalized.

I Integral F(x) known,
I P(x< xs) = F(xs) .
I Probability = ’area’,

distributed evenly,∫ x

x0

dP = r ·area
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Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.
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Inverting the Integral

Sample x according to f (x) with

x = F−1
[
F(x0)+ r

(
F(x1)−F(x0)

)]
.

Optimal method, but we need to know

I The integral F(x) =
∫

f (x)dx,
I It’s inverse F−1(y).

That’s rarely the case for real problems.

But very powerful in combination with other techniques.
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Importance sampling

Error on Crude MC σMC = σ/
√

N.
=⇒ Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

I =
∫

f dV =
∫ f

p
pdV ≈

〈
f
p

〉
±
√
〈f 2/p2〉−〈f/p〉2

N
.

where we have chosen
∫

pdV = 1 for convenience.

Note: need to sample flat in pdV, so we better know
∫

pdV and
it’s inverse.
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Importance sampling — better example

More interesting for divergent
integrands, eg

1
2
√

x
,

with some wiggles,

p(x) = 1−8x+40x2−64x3 +32x4 .

i.e. we want to integrate

f (x) =
p(x)

2
√

x
.
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Importance sampling — better example

I Crude MC gives
result in reasonable
’time’.

I Error a bit unstable.
I Event generation

with maximum
weight wmax = 20.
(that’s arbitrary.)

I hit/miss/events
with (w> wmax) =
36566/963434/617
with 1M generated
events.
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I = 47/63
|IMC |

MC error
|IMC − I|
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Importance sampling — example

Want events:
use hit+mass variant
here:

I Choose new random
number r

I w = f (x) in this case.
I if r< w/wmax then

“hit”.
I MC efficiency =

hit/N.
I Efficiency for MC

events only 3.7%.
I Note the wiggly

histogram.
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Importance sampling — example

Now importance sampling, i.e. divide out 1/2
√

x.∫ 1

0

p(x)

2
√

x
dx =

∫ 1

0

(
p(x)

2
√

x

/
1

2
√

x

)
dx

2
√

x

=
∫ 1

0
p(x)d

√
x

=
∫ 1

0
p(x(ρ))dρ

=
∫ 1

0
1−8ρ

2 + 40ρ
4−64ρ

6 + 32ρ
8 dρ

so,

ρ =
√

x, dρ =
dx

2
√

x

x sampled with inverting the integral from flat random numbers
ρ , x = ρ2.
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Importance sampling — example

∫ 1

0

p(x)

2
√

x
dx =

∫ 1

0
p(x(ρ))dρ

with

ρ =
√

x, dρ =
dx

2
√

x
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x
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746k/1M evts

Events generated with wmax = 1, as p(x)≤ 1, no guesswork
needed here! Now, we get 74.6% MC efficiency.

. . . as opposed to 3.7%.
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Importance sampling — example

Crude MC vs Importance sampling.
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σ/
√
N

100×more events needed to reach same accuracy.
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Multichannel MC

Typical problem:
I f (s) has multiple

peaks (×wiggles
from ME).

I Usually have some
idea of the peak
structure.

I Encode this in sum
of sample functions
gi(s) with weights
αi,∑i αi = 1.

g(s) = ∑
i

αigi(s) .

10−3
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10−1

0 50 100 150 200

s
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Multichannel MC

Now rewrite ∫ s1

s0

f (s)ds =
∫ s1

s0

f (s)
g(s)

g(s)ds

=
∫ s1

s0

f (s)
g(s) ∑

i
αigi(s)ds

= ∑
i

αi

∫ s1

s0

f (s)
g(s)

gi(s)ds

Now gi(s)ds = dρi (inverting the integral).

Select the distribution gi(s) you’d like to sample next event
from acc to weights αi.

αi can be optimized after a number of trials.
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Multichannel MC

Works quite well:

10−5
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Multichannel error
Crude MC error

Stefan Gieseke · CTEQ School 2013 29/91



Some Remarks/Real Life MC

I Didn’t discuss random number generators. Please make
sure to use ‘good’ random numbers.

I Didn’t discuss stratified sampling (VEGAS).
Sample where variance is biggest.
(not necessarily where PS is most populated).

I Only discussed one–dimensional case here. N–particle PS
has 3N−4 dimensions. . .

I Didn’t discuss tools geared towards this, like RAMBO
(generates flat N particles PS).

I generalisation straightforward, particularly
MCError∼ 1√

N
,

compare eg Trapezium rule Error∼ 1
N2/D .

I Many important techniques covered here in detail! Should
be good starting point.
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Hard Scattering
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Hard scattering
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Hard scattering
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Matrix elements

I Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

I OK for very inclusive observables.

I Starting point for further simulation.
I Want exclusive final state at the LHC (O(100)).
I Want arbitrary cuts.
I → use Monte Carlo methods.
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Matrix elements

Where do we get (LO) |M|2 from?
I Most/important simple processes (SM) are ‘built in’.
I Calculate yourself (≤ 3 particles in final state).
I Matrix element generators:

I MadGraph/MadEvent.
I Comix/AMEGIC (part of Sherpa).
I HELAC/PHEGAS.
I Whizard.
I CalcHEP/CompHEP.

generate code or event files that can be further processed.
I → FeynRules interface to ME generators.
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Cross section formula

From Matrix element, we calculate

σ =
∫

fi(x1,µ
2)fj(x2,µ

2)
1
F∑|M|2

Θ(cuts)

dx1dx2dΦn ,

now,

1
F

dx1dx2dΦn = J(~x)
3n−2

∏
i=1

dxi

(
dΦn = (2π)4

δ
(4)(. . .)

n

∏
i=1

d3~p
(2π)32Ei

)

such that

σ =
∫

g(~x)d3n−2~x ,
(

g(~x) = J(~x)fi fj ∑|M|2Θ(cuts)
)

=
1
N

N

∑
i=1

g(~xi)

p(~xi)
=

1
N

N

∑
i=1

wi .

We generate events~xi with weights wi.
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Mini event generator

I We generate pairs (~xi,wi).

I Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

I Keep event~xi with probability

Pi =
wi

wmax
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Mini event generator

I We generate pairs (~xi,wi).
I Use immediately to book weighted histogram of arbitrary

observable (possibly with additional cuts!)
I Keep event~xi with probability

Pi =
wi

wmax
,

where wmax has to be chosen sensibly.
→ reweighting, when max(wi) = w̄max > wmax, as

Pi =
wi

w̄max
=

wi

wmax
· wmax

w̄max
,

i.e. reject events with probability (wmax/w̄max) afterwards.
(can be ignored when #(events with wi > w̄max) small.)
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Mini event generator

I We generate pairs (~xi,wi).
I Use immediately to book weighted histogram of arbitrary
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Matrix elements

Some comments:
I Use techniques from above to generate events efficiently.

Goal: small variance in wi distribution!

I Clear from above: efficient generation closely tied to
knowledge of f (~xi), i.e. the matrix element’s propagator
structure.
→ build phase space generator already while generating
ME’s automatically.
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Parton Showers
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Hard matrix element
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Hard matrix element→ parton showers
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Parton showers

Quarks and gluons in final state, pointlike.

I Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: Q∼ few GeV to O(TeV).

I Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV→ 1 GeV.

I Measure hadronic final states, long distance effects,
Q0 ∼ 1GeV.

Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

Stefan Gieseke · CTEQ School 2013 40/91



Parton showers

Quarks and gluons in final state, pointlike.
I Know short distance (short time) fluctuations from matrix

element/Feynman diagrams: Q∼ few GeV to O(TeV).

I Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV→ 1 GeV.

I Measure hadronic final states, long distance effects,
Q0 ∼ 1GeV.

Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

Stefan Gieseke · CTEQ School 2013 40/91



Parton showers

Quarks and gluons in final state, pointlike.
I Know short distance (short time) fluctuations from matrix

element/Feynman diagrams: Q∼ few GeV to O(TeV).
I Parton shower evolution, multiple gluon emissions

become resolvable at smaller scales. TeV→ 1 GeV.
I Measure hadronic final states, long distance effects,

Q0 ∼ 1GeV.

Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

Stefan Gieseke · CTEQ School 2013 40/91



Parton showers

Quarks and gluons in final state, pointlike.
I Know short distance (short time) fluctuations from matrix

element/Feynman diagrams: Q∼ few GeV to O(TeV).
I Parton shower evolution, multiple gluon emissions

become resolvable at smaller scales. TeV→ 1 GeV.
I Measure hadronic final states, long distance effects,

Q0 ∼ 1GeV.
Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.

Soft and/or collinear emissions.

Stefan Gieseke · CTEQ School 2013 40/91



Parton showers

Quarks and gluons in final state, pointlike.
I Know short distance (short time) fluctuations from matrix

element/Feynman diagrams: Q∼ few GeV to O(TeV).
I Parton shower evolution, multiple gluon emissions

become resolvable at smaller scales. TeV→ 1 GeV.
I Measure hadronic final states, long distance effects,

Q0 ∼ 1GeV.
Dominated by large logs, terms

α
n
S log2n Q

Q0
∼ 1 .

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

Stefan Gieseke · CTEQ School 2013 40/91



e+e− annihilation

Good starting point: e+e−→ qq̄g:

Final state momenta in one
plane (orientation usually
averaged).
Write momenta in terms of

xi =
2pi ·q

Q2 (i = 1,2,3) ,

0≤ xi ≤ 1 ,x1 + x2 + x3 = 2 ,
q = (Q,0,0,0) ,

Q≡ Ecm .

(x1,x2) = (xq,xq̄) –plane:

Fig: momentum configuration of q, q̄ and g for
given point (x1,x2), q̄ direction fixed.
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e+e− annihilation

Differential cross section:

dσ

dx1dx2
= σ0

CFαS

2π

x1 + x2

(1−x1)(1−x2)

Collinear singularities: x1→ 1 or x2→ 1.
Soft singularity: x1,x2→ 1.

Rewrite in terms of x3 and θ = ∠(q,g):

dσ

dcosθdx3
= σ0

CFαS

2π

[
2

sin2
θ

1 +(1−x3)2

x3
−x3

]
Singular as θ → 0 and x3→ 0.
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e+e− annihilation

Can separate into two jets as

2dcosθ

sin2
θ

=
dcosθ

1− cosθ
+

dcosθ

1 + cosθ

=
dcosθ

1− cosθ
+

dcos θ̄

1− cos θ̄

≈ dθ 2

θ 2 +
dθ̄ 2

θ̄ 2

So, we rewrite dσ in collinear limit as

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
CF

1 +(1− z)2

z2 dz

= σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

with DGLAP splitting function P(z).
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Pq→qg(z) = CF
1 + z2

1− z

Pq→gq(z) = CF
1 +(1− z)2

z

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)

Pg→qq(z) = TR(1−2z(1− z))
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Collinear limit

Universal DGLAP splitting kernels for collinear limit:

dσ = σ0 ∑
jets

dθ 2

θ 2
αS

2π
P(z)dz

Note: Other variables may equally well characterize the
collinear limit:

dθ 2

θ 2 ∼
dQ2

Q2 ∼
dp2
⊥

p2
⊥
∼ dq̃2

q̃2 ∼
dt
t

whenever Q2,p2
⊥, t→ 0 means “collinear”.

I θ : HERWIG

I Q2: PYTHIA ≤ 6.3, old SHERPA.
I p⊥: PYTHIA ≥ 6.4, ARIADNE,

Catani–Seymour showers in HERWIG++ and SHERPA.
I q̃: Herwig++.
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Resolution

Need to introduce resolution t0, e.g. a cutoff in p⊥. Prevent us
from the singularity at θ → 0.

Emissions below t0 are unresolvable.

Finite result due to virtual corrections:

+ = finite.

unresolvable + virtual emissions are included in Sudakov form
factor via unitarity (see below!).
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Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

σ2+1(t0) = σ2(t0)
∫ t

t0

dt′

t′

∫ z+

z−
dz

αS

2π
P̂(z) = σ2(t0)

∫ t

t0

dtW(t) .

Simple example:
Multiple photon emissions, strongly ordered in t.
We want

Wsum = ∑
n=1

W2+n =

∫ ∣∣∣∣ ∣∣∣∣2 dΦ1 +
∫ ∣∣∣∣ ∣∣∣∣2 dΦ2 +

∫ ∣∣∣∣ ∣∣∣∣2 dΦ3 + · · ·∣∣∣∣∣
∣∣∣∣∣
2

for any number of emissions.
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Towards multiple emissions

(n = 1)

W2+1 =

∫ ∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
2

dΦ1

/∣∣∣∣∣
∣∣∣∣∣
2

=
2
1!

∫ t

t0

dtW(t) .

(n = 2)

W2+2 =

(∫ ∣∣∣∣ ∣∣∣∣2 +

∣∣∣∣ ∣∣∣∣2 +

∣∣∣∣ ∣∣∣∣2 +

∣∣∣∣ ∣∣∣∣2 dΦ2

)/∣∣∣∣∣
∣∣∣∣∣
2

= 22
∫ t

t0

dt′
∫ t′

t0

dt′′W(t′)W(t′′) =
22

2!

(∫ t

t0

dtW(t)
)2

.

We used∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn W(t1) . . .W(tn) =
1
n!

(∫ t

t0

dtW(t)
)n

.
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Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

W2+n =
2n

n!

(∫ t

t0

dtW(t)
)n

So, in total we get

σ>2(t0) = σ2(t0)
∞

∑
k=1

2k

k!

(∫ t

t0

dtW(t)
)k

= σ2(t0)
(

e2
∫ t

t0
dtW(t)−1

)
= σ2(t0)

(
1

∆2(t0, t)
−1
)

Sudakov Form Factor

in QCD

∆(t0, t) = exp
[
−
∫ t

t0

dtW(t)
]

= exp
[
−
∫ t

t0

dt
t

∫ z+

z−

αS(z, t)
2π

P̂(z, t)dz
]
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Sudakov form factor

Note that

σall = σ2 + σ>2 = σ2 + σ2

(
1

∆2(t0, t)
−1
)
,

⇒ ∆
2(t0, t) =

σ2

σall
.

Two jet rate = ∆
2 = P2(No emission in the range t→ t0) .

Sudakov form factor = No emission probability .

Often ∆(t0, t)≡ ∆(t).
I Hard scale t, typically CM energy or p⊥ of hard process.
I Resolution t0, two partons are resolved as two entities if

inv mass or relative p⊥ above t0.
I P2 (not P), as we have two legs that evolve independently.
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