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» Part I — Basics
» Introduction
» Monte Carlo techniques
» Part II — Perturbative physics

» Hard scattering
» Parton showers

» Part IIl — Non—perturbative physics

» Hadronization
» Hadronic decays
» Comparison to data

Stefan Giescke - CTEQ School 2013 2/91



Thanks to my colleagues

Frank Krauss, Leif Lonnblad, Steve Mrenna, Peter Richardson,
Mike Seymour, Torbjorn Sjostrand.

Stefan Gieseke - CTEQ School 2013 3/91



Introduction

Stefan Gieseke - CTEQ School 2013 4/91



We want to understand

%t < Final states .
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LHC experiments require
sound understanding of signals and backgrounds.

/]\

Full detector simulation.

/]\

Fully exclusive hadronic final state.

T

Monte Carlo event generator with
parton shower, hadronization model, decays of unstable
particles.

/l\

Parton level computations.
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real life virtual reality

Machine Event Generator
LHC, Tevatron ... Herwig, Pythia, Sherpa ...
Detector, Data Acquisition Detector Simulation
CMS, ATLAS, CDF ... Geant 4 ...

~. /

Event Reconstruction
ORCA ...

A

Analysis quick and dirty
ROOT ...
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» Complex final states in full detail (jets).
» Arbitrary observables and cuts from final states.
» Studies of new physics models.

» Rates and topologies of final states.

» Background studies.

» Detector Design.

» Detector Performance Studies (Acceptance).

» Obvious for calculation of observables on the quantum

level
|A|* — Probability.
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Partonic cross section from Feynman diagrams
do = doj,,qdP(partons — hadrons)

Note, that
/ dP(partons — hadrons) =1,

» o0 remains unchanged
» introduce realistic fluctuations into distributions.
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Divide and conquer

Partonic cross section from Feynman diagrams
do = dopaqdP(partons — hadrons)
Note, that
/ dP(partons — hadrons) =1,

» o0 remains unchanged
» introduce realistic fluctuations into distributions.

Simulation steps governed by different scales
— separation into (Qp ~ 1GeV > Aqcp)

dP(partons — hadrons) = dP(resonance decays) [T > Qo]
x dP(parton shower)  [TeV — Qo]
x dP(hadronisation) [~ Qo]
x dP(hadronic decays) [O(MeV)]
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dP(partons — hadrons) = dP(resonance decays) T > Qo
x dP(parton shower)  [TeV — Qp
x dP(hadronisation) [~ Qo
x dP(hadronic decays) [O(MeV)

Quite complicated integration.
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dP(partons — hadrons) = dP(resonance decays) T > Qo
x dP(parton shower)  [TeV — Qp
x dP(hadronisation) [~ Qo
x dP(hadronic decays) [O(MeV)

Quite complicated integration.

Monte Carlo is the only choice.
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Monte Carlo Methods
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Introduction to the most important MC sampling
(= integration) techniques.

1. Hit and miss.

2. Simple MC integration.

3. (Some) methods of variance reduction.

4. Multichannel.
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Example: f(x) = cos(x).
1 T T T
0.9

Probability density:

cos(lx)

dP = f(x)dx o

0.7 - 4
. .1s . 0.6 - B
is probability to find value x. o i
0.4 4
0.3 |- 4
0.2 B

0.1 |- o
0 1 1 1 1 1 1 1
0 02 04 06 08 1 1.2 14

Probability ~ Area
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Example: f(x) = cos(x).

Probability density:
dP = f(x)dx

is probability to find value x. O

. S~

F(x) = / Flx)dx
X0
is called probability distribution.
Probability ~ Area
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Hit and Miss

Example: f(x) = cos(x).
Hit and miss method: ple: f(x) (x)

» throw N random points
(x,y) into region.
» Count hits Ny,

i.e. whenever y < f(x). =
Then N -
[~ V—hit,
N
approaches 1 again in our
example.

Every accepted value of x can be considered an event in this
picture. As f(x) is the "histogram’ of x, it seems obvious that the
x values are distributed as f(x) from this picture.
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Hit and Miss

This method is used in many event generators. However, it is
not sufficient as such.

» Can handle any density f(x),
however wild and unknown it is.

» f(x) should be bounded from above.
» Sampling will be very inefficient whenever Var(f) is large.

Improvements go under the name variance reduction as they
improve the error of the crude MC at the same time.
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Mean value theorem of integration:

I—/f )dx

= (x1 —x0){f (x))

N

1
N Y flxi)

i=1

~ (x1—x0)

(Riemann integral).

Sum doesn’t depend on ordering
— randomize x;.

Yields a flat distribution of events x;,
but weighted with weight f(x;) (— unweighting).
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» Probability density ma 100 1 E
f(x). Not necessarily
normalized.

» Integral F(x) known,

» P(x <x5)=F(xs) .

» Probability = "area’,
distributed evenly, 04 F ;

X
/ dP =r-area
X0

0 50 100 150 200

Sample x according to f(x) with

x=F"1 [F(xo) +r(F(x) — F(xo))] .
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Sample x according to f(x) with

x = F71[F(xo) +7(F(n1) — F(x0)) |
Optimal method, but we need to know

» The integral F(x) = [f(x)dx,
» It's inverse F~(y).
That’s rarely the case for real problems.

But very powerful in combination with other techniques.
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Error on Crude MC oyic = 6/v/N.
= Reduce error by reducing variance of integrand.
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Error on Crude MC oyic = 6/v/N.
= Reduce error by reducing variance of integrand.

Idea: Divide out the singular structure.

1= frav— [Lav~ (L) N

where we have chosen [pdV =1 for convenience.

Note: need to sample flat in pdV, so we better know [pdV and
it’s inverse.
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More interesting for divergent
integrands, eg

2/
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More interesting for divergent
integrands, eg

1
2/

with some wiggles,

p(x) =1—8x+40x> —64x> +32x* .

0 0.2 0.4 0.6 0.8 1
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More interesting for divergent

integrands, eg > ' ' Y=
f(@)
wiggles
1 4 4
2y/x
with some wiggles,

p(x) =1—8x+40x> —64x> +32x* .

i.e. we want to integrate

= . 0 0.2 04 0.6 0.8 1
2\/x
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Importance sampling — better example

» Crude MC gives 10° e E
result in reasonable S I= 4[7/63| —
‘time’. MCl e ]

» Error a bit unstable. 0 \.\ % are — 1| E

» Event generation - N _ ]

with maximum 02 b : i

weight wmax = 20. N
(that’s arbitrary.) i \

» hit/miss/events 10-3 h
with (W > Wmax) =
36566/963434 /617
with 1M generated T S R R R
events. 100 100 102 10* 10t 10° 106
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Want events:
use hit+mass variant
here:

f
37k/1IM evts

» Choose new random
number r

» w = f(x) in this case.

> if r < W/Wmax then
“hit”.

» MC efficiency =
hit/N.

» Efficiency for MC
events only 3.7%.

» Note the wiggly 0 0.2 0.4 0.6 0.8 1
histogram. &
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Now importance sampling, i.e. divide out 1/2/x.

/ol%"lx:/o1 (Z%/le/ﬁ zd%

1
= [ peava
1
= [ ptendp
1
_ / 1—8p2 +40p* — 64p° +32p8dp
0
SO,
dx
p =V, dp = m

x sampled with inverting the integral from flat random numbers
2
p,x=p=.
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5 T T
/(@)
746k /1M evts
4 -
1 1
PO / 3 |
A 2ﬁdx— | plx(p))dp
with 2 b -
dx
p =V, dp = 2% n ]
0 Il Il Il Il
0 0.2 04 0.6 0.8 1

Events generated with wmax =1, as p(x) <1, ncf guesswork
needed here! Now, we get 74.6% MC efficiency.
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Importance sampling — example

5 T T

f(z)
37k/1M evts

lP(x) _ ! 3 H .
[ L vdx= [ plx(p))dp

with 2k -
dx
= d = —
p \/§7 p zﬁ 1k 7
0 | | | |
0 0.2 0.4 0.6 0.8 1

Events generated with wmax =1, as p(x) <1, n(; guesswork
needed here! Now, we get 74.6% MC efficiency.
...as opposed to 3.7%.
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Crude MC vs Importance sampling.

100 £ - 4100 J
- F |
E oo T=47/63 — E 1=47/63 —— |1
I [Ivel - [ [paveel] 1
i MC error - I
10 E \‘-. Tue =11 - |4 1071 ¢
E . E
LY
102 f : : 10-2
1078 103

. ~is
1 1 1 1 1 1 1 1 1 Al

10° 10! 102 103 10* 10° 106 10° 10t 102 103 104 10° 106

100x more events needed to reach same accuracy.
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Typical problem: 107 . . .

> f(s) has multiple
peaks (x wiggles
from ME).

0 50 100 150 200
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Typical problem: 10

> f(s) has multiple
peaks (x wiggles
from ME).

» Usually have some
idea of the peak
structure.

102

1073

1074
0 50 100 150 200
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Typical problem: 10

> f(s) has multiple
peaks (x wiggles
from ME).

» Usually have some 107

idea of the peak
structure.

» Encode this in sum
of sample functions 107°
gi(s) with weights
a;, Zi o = 1.

8(s) =} 0igi(s) -

1074
0 50 100 150 200
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Now rewrite

Now gi(s)ds = dp; (inverting the integral).
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Now rewrite

Now gi(s)ds = dp; (inverting the integral).

Select the distribution g;(s) you’d like to sample next event
from acc to weights ;.

o; can be optimized after a number of trials.
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Works quite well:
e e e T B o
E Multichannel error ]
F Crude MC error ]
1072 F E
1073 F
107t |
s b
102 103 104 10° 108 107
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Some Remarks/Real Life MC

» Didn’t discuss random number generators. Please make
sure to use ‘good’ random numbers.

» Didn’t discuss stratified sampling (VEGAS).
Sample where variance is biggest.
(not necessarily where PS is most populated).

» Only discussed one—-dimensional case here. N—particle PS
has 3N — 4 dimensions. ..

» Didn’t discuss tools geared towards this, like RAMBO
(generates flat N particles PS).

» generalisation straightforward, particularly

1
MCError ~ TN
compare eg Trapezium rule Error ~ ﬁ
» Many important techniques covered here in detail! Should
be good starting point.
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Hard Scattering
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» Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

» OK for very inclusive observables.
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» Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

» OK for very inclusive observables.
» Starting point for further simulation.
» Want exclusive final state at the LHC (O(100)).
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Matrix elements

v

Perturbation theory/Feynman diagrams give us (fairly
accurate) final states for a few number of legs (O(1)).

v

OK for very inclusive observables.

v

Starting point for further simulation.
Want exclusive final state at the LHC (O(100)).
Want arbitrary cuts.

v

v

» — use Monte Carlo methods.
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Matrix elements

Where do we get (LO) |[M|? from?
» Most/important simple processes (SM) are ‘built in’.
» Calculate yourself (< 3 particles in final state).

» Matrix element generators:

MadGraph/MadEvent.
Comix/AMEGIC (part of Sherpa).
HELAC/PHEGAS.

Whizard.

CalcHEP /CompHEP.

generate code or event files that can be further processed.

v

vV vV v v

» — FeynRules interface to ME generators.
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From Matrix element, we calculate

1=
o= [fla o) TME daduds,
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From Matrix element, we calculate

1_
o= / filwr, 122, 1?) Y IMP © cuts) dvidrad,
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From Matrix element, we calculate

1_
o= / filwr, 122, 1?) Y IMP © cuts) dvidrad,

now,
3n—-2 n _.
—dxldxzdan =J(x H dx; (dcbn = (2n)* H )
1:1
such that
o [5G >d3“ (s = IS LMPO(euts))
1 & g(® 1 N
N )} x, ng '

i=1 P
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From Matrix element, we calculate

1_
o= / filrn, 1) (2, 1) £ LM © cuts) drdady

now,
3n—-2 n _.
—dxldxzdan =J(x H dx; do, = (2m)* H
1:1
such that

\

e >d3“ 2%, (3@ =JEffLIMPe(cuts))
N
; x,

We generate events ¥; with weights w;.

wj .

= I

Rl
.M*’Jz
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» We generate pairs (X;,w;).
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» We generate pairs (X;,w;).
» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)
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» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w.
p=—

wmax

Generate events with same frequency as in nature!
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Mini event generator

» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w.
p= —

)
wmax

where wpax has to be chosen sensibly.
— reweighting, when max(w;) = @Wmax > Wmax, as

Pi: Wi _ Wi 'wmax

wmax wmax wmax

9

i.e. reject events with probability (Wmax/Wmax) afterwards.
(can be ignored when #(events with w; > @Wmax) small.)
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» We generate pairs (X;,w;).

» Use immediately to book weighted histogram of arbitrary
observable (possibly with additional cuts!)

» Keep event X; with probability

w.
p=—

wmax

Generate events with same frequency as in nature!
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Some comments:

» Use techniques from above to generate events efficiently.
Goal: small variance in w; distribution!
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Some comments:

» Use techniques from above to generate events efficiently.
Goal: small variance in w; distribution!

» Clear from above: efficient generation closely tied to
knowledge of f(%;), i.e. the matrix element’s propagator
structure.

— build phase space generator already while generating
ME’s automatically.
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Parton Showers
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Quarks and gluons in final state, pointlike.
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Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Measure hadronic final states, long distance effects,
QO ~1GeV.
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Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.
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Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.

Dominated by large logs, terms

ZHQN
Do 1.

Generated from emissions ordered in Q.

og log
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Parton showers

Quarks and gluons in final state, pointlike.

» Know short distance (short time) fluctuations from matrix
element/Feynman diagrams: O ~ few GeV to O(TeV).

» Parton shower evolution, multiple gluon emissions
become resolvable at smaller scales. TeV — 1 GeV.

» Measure hadronic final states, long distance effects,
Qo ~ 1GeV.

Dominated by large logs, terms

ZHQN
Do 1.

Generated from emissions ordered in Q.
Soft and/or collinear emissions.

og log

Stefan Giescke - CTEQ School 2013 40/91



eTe~ annihilation

Good starting point: ee™ — ggg:
Final state momenta in one (x1,x2) = (x4,%5) —plane:
plane (orientation usually

averaged).
Write momenta in terms of

= (i=129),

xX; = Q0
0<x; <1 ,x1+x+x3=2,
q=(Q.0,0,0), i
Q=Eum .

Fig: momentum configuration of 4,7 and : for
given point (x1,x7), § direction fixed.
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Differential cross section:

do _O_Cpas X1+X2
dyide,  ° 27 (I1—x1)(1—x2)

Collinear singularities: x; — 1 or x, — 1.
Soft singularity: xq,x, — 1.
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eTe~ annihilation

Differential cross section:

do . Crog X1+ X2
dyide,  ° 27 (I1—x1)(1—x2)

Collinear singularities: x; =1 or x, — 1.
Soft singularity: x1,x, — 1.

Rewrite in terms of x3 and 6 = Z(q,9):

do B Crag 2 1—}—(1—)63)2
dcos@dx; 0 27 |sin?@ X3

Singular as 8 — 0 and x3 — 0.
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Can separate into two jets as

2dcos®  dcos@ dcos6
sinf 1—cos® 14cos6
dcos6 dcos6
1—cos® 1—cos6

de? de?

“er g
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Can separate into two jets as

2dcos®  dcos@ dcos6
sin2§  1—cosO * 1+cos6
dcos6 dcos6
1—cos® 1—cos6
de? dé6?
o7 T gz

So, we rewrite do in collinear limit as
de? OCS 1+ (1 — 2)2
do = Op Z 02 2 Z—de

jets
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Can separate into two jets as

2dcos®  dcos@ dcos6

sin® @ _1—C059+1+c056

_ dcos@ dcos6

" 1—cos® 1—cos6
de? dé?
o7 T gz

So, we rewrite do in collinear limit as

d? s 14 (12
do = oy Cr————>dz
E;S 62 21 z2

de 065
=00} g7 2,

jets

with DGLAP splitting function P(z).

Stefan Giescke - CTEQ School 2013
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Universal DGLAP splitting kernels for collinear limit:

462
do = O-Ojezt’s o7 ;X—TSC
1
Py-1qg(2) = Cr 1tz Py (2) ZCA%
N2
Py () = cpw Py sga(2) = Tr(1—22(1—2))
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Universal DGLAP splitting kernels for collinear limit:

d9 Ots
do=0p) — o7 E

jets

Note: Other variables may equally well characterize the
collinear limit:

de? dQ* dpr dF dt
62 Q@ p1 Pt

whenever Q?,p% ,t — 0 means “collinear”.

Stefan Giescke - CTEQ School 2013 44/91



Collinear limit
Universal DGLAP splitting kernels for collinear limit:

de? Ols
do=0p) — o7 E

jets

Note: Other variables may equally well characterize the
collinear limit:

de? d@ dp?  diP  dt

92 Q2 72 f

whenever Qz,pi,t — 0 means “collinear”.
» 0: HERWIG
» Q% PYTHIA < 6.3, old SHERPA.

> p,: PYTHIA > 6.4, ARIADNE,
Catani-Seymour showers in HERWIG++ and SHERPA.
> §: Herwig++.
Stefan Gieseke - CTEQ School 2013 44/91



Need to introduce resolution g, e.g. a cutoff in p, . Prevent us
from the singularity at 6 — 0.

Emissions below f; are unresolvable.

Finite result due to virtual corrections:

—086oOTC00  + (@% = finite.

unresolvable + virtual emissions are included in Sudakov form
factor via unitarity (see below!).
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Starting point: factorisation in collinear limit, single emission.

fAE g :
641 (t) = oa(to) /t o / dz 22 P(z) = o(to) [ dEW(t).

0 to
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Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

tdr [ o t
641 (t) = oa(to) /t o /Z dz 22 P(z) = o(to) [ dEW(t).

0 to

Simple example:
Multiple photon emissions, strongly ordered in ¢.

We want
Woum = Z’ Wain = Aé chpﬁ/%zq}jL/'%
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2 2 2 ;
4 6 dd)l) /‘<‘ =% arw(r).
AP

t t 2
=2 [t [ @ W(e)w(r') = 2 < dEW (¢ ))
to to 2.'

We used
t to1 1 t n
dty ... dt, W(t1)...W(t,) = — ( dtW(t)> )
to fo n! \ Ut
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

to
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

to

So, in total we get

oo t k ,
02(to) = 0a(to) Y i—:c ( dt W(t)) = o(to) (e2ft0 dtw(t) 1)

k=1"" \Jto
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

fo

So, in total we get

oo t k ,
02(to) = 0a(to) Y i—:c ( dt W(t)) = o(to) (eZItO dtw(t) 1)

k=1 \Jto

= oy (to) (ﬁ a 1)

Sudakov Form Factor
t
A(tg,t) =exp [— dt W(t)}
to
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Easily generalized to n emissions o’% by induction. i.e.

2 (ot "
W2+n = m ( dt W(t))

fo

So, in total we get

oo t k .
0-2(to) = 02(to) Z i—:c ( dt W(t)) = o(to) (eZItO dEw() 1)

k=1 \Jto

1
=) (e, 1)
Sudakov Form Factor in QCD

A(t,t) = exp [— t:dtW(t)] — exp [_ /t:% / asz(;’t)ﬁ(z,t)dz]
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Sudakov form factor

Note that

1
) ‘1> ’

Ga11202+0>2262+62<

= A%(tg,t) = — .
Gall

Two jet rate = A = P?(No emission in the range t — to) .

Sudakov form factor = No emission probability .
Often A(fg,t) = A(t).
» Hard scale t, typically CM energy or p, of hard process.

» Resolution t(, two partons are resolved as two entities if
inv mass or relative p above t.

» P2 (not P), as we have two legs that evolve independently.
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