

Post-Higgsteria

Tom LeCompte

High Energy Physics Division Argonne National Laboratory

(With thanks to the ATLAS and CMS Collaborations)

Yesterday's Summary

- A new boson is observed by both ATLAS and CMS, with independent $^{\sim}5+\sigma$ significance.
 - It's seen convincingly in 2 channels, and in both the 7 TeV and 8 TeV datasets.
 - Other channels provide weaker support, but do not contradict this.
- Its mass is somewhere between 125 and 126.5 GeV
 - An interesting number: too light to be heavy, and too heavy to be light
- This boson's properties match the SM Higgs Boson to within our ability to measure
 - In particular, it couples strongly to the electroweak boson sector (more later)

Today we are going to discuss the question: it's a boson. But is it the *Higgs* Boson?

But first...the new data

- Since the July 4th announcement
 - The 8 TeV dataset has almost quadrupled
 - The total dataset has roughly tripled
- The 8 TeV pileup is not substantially worse (19.1 vs. 20.7 events)
 - The biggest change is between 7 and 8 TeV, not early and late 8 TeV running
- Of course, there were some analysis tweaks and improvements too

Higgs to two photons

Was 4.5σ

Now 7.4σ

Higgs to ZZ*

Was 3.4 σ Now 6.1 σ

Higgs to WW*

Was 2.8σ

Now 3.8σ

Putting it together

- ATLAS: $7.1\sigma + 6.4\sigma + 3.8\sigma \text{trials factor (80)} = 9.6\sigma$
- CMS: $3.2\sigma + 6.7\sigma + 3.9\sigma \text{trials factor (80)} = 7.5\sigma$
- Both (*one* trials factor): $p = 10^{-39}$, corresponding to 13 σ

This really, really not a statistical fluctuation.

Consistency

- The WW* mass resolution is poor (30 GeV), because of the two missing neutrinos.
 - Mass and signal strength are correlated.
- Nevertheless, the agreement is pretty good between the three channels
 - Enough for us to conclude we are seeing one thing and not three things.

Called "The Banana Plot", for obvious reasons

The Higgs Mass Doesn't Make Any Sense

- The Higgs mass makes perfect sense at tree level
- Radiative corrections are of order $\delta m^2(H) \simeq \alpha_{\rm weak} \Lambda^2/4\pi$
 - Where Λ^2 is the scale of new physics
 - There is potentially a lot of new physics up there including gravity at the Planck scale
 - This will drive the Higgs mass up and up and up
- To keep the Higgs mass light, these new contributions must cancel
- e.g. $\delta m^2(H) = 36,127,890,984,789,307,394,520,932,878,928,933,023$ Thanks to 36,127,890,984,789,307,394,520,932,878,928,917,398 Michael Dine!
- This looks absurd, unless this is the result of some symmetry
 - But that symmetry cannot be too exact, or the Higgs mass gets driven too low: perhaps even below the Z mass.

This is what I meant by "too light to be heavy, and too heavy to be light."

The Higgs Mechanism in Three Slides

- Write down a theory of massless weak bosons
 - The only thing wrong with this theory is that it doesn't describe the world in which we live
- Add a new doublet of spin-0 particles:
 - This adds four new degrees of freedom (the doublet + their antiparticles)

$$\left(oldsymbol{arphi}^{oldsymbol{\phi}^{+}}
ight)\left(oldsymbol{arphi}^{oldsymbol{\phi}^{-}}
ight)$$

- Write down the interactions between the new doublet and itself, and the new doublet and the weak bosons in just the right way to
 - Spontaneously break the symmetry: i.e. the Higgs field develops a non-zero vacuum expectation value
 - Like the magnetization in a ferromagnet
 - Allow something really cute to happen

The Really Cute Thing

- The massless w^+ and ϕ^+ mix.
 - You get one particle with three spin states
 - Massive particles have three spin states
 - The W has acquired a mass

- The same thing happens for the $\mathbf{w}^{\scriptscriptstyle\mathsf{T}}$ and $\mathbf{\phi}^{\scriptscriptstyle\mathsf{T}}$
- In the neutral case, the same thing happens for one neutral combination, and it becomes the massive Z⁰.

- The other neutral combination doesn't couple to the Higgs, and it gives the massless photon.
- That leaves one degree of freedom left, and because of the non zero v.e.v. of the Higgs field, produces a massive Higgs.

How Cute Is It?

- There's very little choice involved in how you write down this theory.
 - There's one free parameter which determines the Higgs boson mass
 - There's one sign which determines if the symmetry breaks or not.

- The theory leaves the Standard Model mostly untouched
 - It adds a new Higgs boson which we can look for
 - It adds a new piece to the WW → WW cross-section
 - This interferes destructively with the piece that was already there and restores unitarity

Is This The Higgs Boson?

- It must be a boson it's undergoing a two-body decay to two spin-1 objects.
 - Making it a fermion requires a three-body decay.
- It must be spin-0 or spin-2.
 - Spin-1 is prohibited by spin-statistics
 - A spin-1 particle cannot decay to two identical massless spin-1 particles
 - Theorem by Yang and also Landau
 - Spin-2 is possible, but theoretically disfavored.
- This particle strongly (factor ~30x) prefers to decay to ZZ* and WW* than γγ
 - Despite the fact that one Z or W must be way off-shell
 - This is naturally explained if this is a Higgs, because the longitudinal piece of the W or Z in a sense is the Higgs.

This particle may not be "the" Higgs. However, one cannot write a theory of EWSB that ignores this particle and have any hope of it being right.

A Goofy Model

Theory: This isn't the Higgs at all. It's a bound state of two new charged, colorless spin-½ fermions, weighing a ~TeV, and bound by a ~TeV.

Predictions:

- There will be two states, a 0^- pseudoscalar (η^*) and a 1^- vector (ϕ^*) .
- There will not be any excited states
 - The potential looks a lot like a δ -function, which has only one bound state
- These states will have almost the same mass (hyperfine splitting goes as 1/m)
- The $\gamma\gamma$ decay is only from the η^* ; the others can be from either state.
 - This is a consequence of the Landau-Yang theorem.

Testing the Goofy Model

- The Goofy Model predicts two states, one that decays to γγ and one that does not. How consistent are the masses in the γγ and ZZ* channels?
 - ATLAS (GeV):
 - Diphoton: $125.5 \pm 0.7 \pm 0.6$
 - ZZ^* : 124.3 ± 0.6 ± 0.5
 - $\Delta m = 2.3 \pm 0.7 \pm 0.6$
 - CMS (also GeV):
 - Diphoton: $125.4 \pm 0.5 \pm 0.6$
 - ZZ^* : 125.8 ± 0.5 ± 0.2
 - $\Delta m = 0.4 \pm 0.7 \pm 0.6$

are driven by a small number of events. Historically, they have shown substantial

The ZZ* measurements scatter with time.

Uncertainties have been symmetrized; selected for the $\Delta m = 0$ direction. The CMS Δm calculation is my own.

More Testing of the Goofy Model

- The Goofy Model makes a prediction of spin and parity: 0⁻ and 1⁻
- The Standard Model also makes a prediction: 0+
- In $\gamma\gamma$, there is exactly one unconstrained variable (θ^*)
- In ZZ*, there are a plethora of angles and masses (7 independent)
- Measuring these quantities allows us to infer the spin-parity

How This Works

- The experiments construct likelihoods for the various spin-parity hypotheses
 - Based on the 7 (or 1) observed variables
- They then look at these likelihood <u>ratios</u> for large numbers of Monte Carlo

pseudoexperiments with a specified J^P hypothesis comapred to the SM O⁺ hypothesis...

..and then see where the data falls.

Here the CMS ZZ* observation (red arrow) is at a value where ~40% of the 0+ pseudoexperiments are as large or larger, but only 0.16% of the 0-pseudoexperiments are.

The data favor 0 +.

The Results:

J ^P hypothesis	Channel	ATLAS	CMS
0-	ZZ*	2.2%	0.16%
1-	ZZ*	6%	<0.1%
	WW*	1.7%	
1+	ZZ*	0.2%	<0.1%
	WW*	8%	
2+ _m	ZZ*	17%	1.5%
	WW*	5%	14%
	WW*	0.7%	

- The data clearly favor 0+
 - The SM Value...again
- The Goofy Model is in serious trouble

But why are the exclusions so different between the experiment?

Behind the Curtain

- These are based on a few events the position of a single event in a distribution can make a huge difference in the final answer.
- Likelihood ratios have the problem that they treat the case where $p_0 = 50\%$ and $p_1 = 0.5\%$ identically to the case where $p_0 = 10^{-9}$ and $p_1 = 10^{-11}$
 - The proponents call this a "feature"

19

Opening the Black Box

- This is not nearly as complicated as it looks.
- Think about conservation of energy in $H \rightarrow ZZ^*$ decays:
 - $m(H) = m_{12} + m_{34} + kinetic energy$
 - If $m_{12} = m(Z)$, m_{34} + kinetic energy = 35 GeV for a 126 GeV Higgs
 - Therefore, kinetic energy = $L^2/2I = 35 m_{34}$
 - The m₃₄ distribution serves as a proxy for the decay's orbital angular momentum
- As an example, consider 0⁻ vs. 0⁺
 - The 0^- is a P-wave decay and the 0^+ is S-wave.
 - The m₃₄ distributions differ
 - These are both spin-0, so the Higgs decay angles are both isotropic no separation
 - Unlike the W, the Z decays to leptons don't "remember" their spin very well (the decay is almost pure axial)
 - · Again no (well, very little) separation
 - So the MVA is really mostly looking at a single variable

Historical Aside

- At the time of discovery, the data in hand were already enough to exclude most non-0⁺ hypotheses.
- There is simply too many high mass Z*s in the data otherwise
- It's unusual to get this many high mass Z*s in the data even if the particle is 0+
 - A statistical fluctuation that is somewhat unlikely in the 0⁺ case, but very, very unlikely in the other cases.

We made no claim at the time – because our *expected* sensitivity was too low to make a distinction.

The Two Higgs Doublet Model

- This is a simple extension of the Higgs mechanism. Instead of one doublet, there are two.
 - This gives five scalar particles, usually called h⁰, H⁰, H[±], and A⁰
 - Eight degrees of freedom minus three longitudinal components of the W&Z equals five
 - The A⁰ is special it does not couple to gauge bosons at tree level
 - This is not because it's a CP-odd particle, but because it's a CP-odd Higgs
- There are special, limiting cases of this model
 - One Higgs couples to fermions, one to bosons ("Type I")
 - One Higgs couples to u-type quarks and one to d-type ("Type II")
 - Supersymmetry requires a 2HDM of this type
 - One couples to the top quark, one to the other quarks
 - The list goes on and on...
- This model is not particularly goofy

This serves as a prototype for models with a complex Higgs sector.

Testing the 2HDM

- Method 1 discover SUSY
 - The less said about that, the better
- Method 2 discover one of the additional Higgs bosons
 - Good plan but no success yet
- Method 3 probe the couplings of the 125 GeV Higgs and look for discrepancies
 - Ongoing see plot
 - However, this plot is very
 misleading. It looks like we are
 measuring 16 separate things,
 when we aren't.

What Information Do We Have?

- Two facts to glean from yesterday's slide
 - The four production mechanisms give production information
 - Since gg dominates, the other channels have low yields and high uncertainties

Categorizing Production

- The basic idea:
 - If the event has a lepton, it's VH
 - If the event has two forward jets, it's VBF
 - Otherwise, it's gg
- This can only be done statistically
- MVAs can make incremental improvements

Do We See VBF Production?

- Yes, at the 3.3σ level
- However, this requires the combination of all channels
 - No individual channel has a compelling signal by itself
- Also, this means at best, production rates via VBF can be determined to 30%.

What Other Information Do We Have?

- We have yields i.e. cross-sections times branching fractions for the processes we observe:
 - $\gamma\gamma$, WW and ZZ.
- We have limits for the processes we haven't yet "discovered"
 - VH production and H $\rightarrow \tau \tau$
 - These can be two-sided limits (if we can exclude σ = 0 at 95% CL but not 5σ)
 - Otherwise, these are upper bounds
- We combine these in...you guessed it...a giant fit.
 - However, we don't fit 16 values simultaneously
 - There's simply not enough information for that
 - There's even less information than it looks like.
 - Fermiophobic Higgs
 - We do limited fits, holding the other values to their SM values

Testing the Type I 2HDM

Ϋ́F

- Scale all fermionic couplings by $\kappa_{_F}$ and all bosonic couplings by $\kappa_{_V}$
- Both experiments are consistent with the SM at the 10's of percent level
- The two allowed regions arises because of an uncertainty of the relative sign of two couplings
 - This happens when you have one large and one or more small

W and Z Relative Ratios

Scale the W and Z couplings by κ_W and κ_Z , and check that λ_{WZ} = κ_W/κ_Z is consistent with 1.

(similar to last slide)

- This is called a test of "Custodial Symmetry"
 - This is essentially a Clebsch-Gordon coefficient. In the SM this is unity.
- While $\lambda_{WZ} = 1$ is compatible with the CMS data, so is $\lambda_{WZ} = 3/4$.
- ATLAS gets 0.82 ± 0.15
- For most successive results, we set $\lambda_{WZ} = 1$
 - This allows us to combine WW* and ZZ* data
 - You can decide for yourself if you think this is scientifically justified
 - For the record, I think it is but this is part of the art of science.

Understanding This Plot

- These are not sixteen measurements
- These are measurements of
 2, 3 or 4 model parameters
 under varying assumptions
- All of these are consistent with the SM Higgs hypothesis at better than the 2σ level
- One cannot get a measure of the overall agreement by calculating a χ^2
 - The values are correlated

The Better Plots

- These are the principle inputs to the fits
- Since the inputs show no evidence for BSM physics, one should not be surprised that the fits do not either

A Few Words on 2HDMs

- Today, the only fermion we are reasonably sure couples to the Higgs is the top
 - We see it in gg fusion, and we infer that this is from a top quark loop
 - It sure would be nice to see others
- In a 2HDM, one Higgs looks more like the SM Higgs than the other
 - This is tautologically true
 - What is not, though, is that in most models that are compatible with observation, one looks a lot more like the SM Higgs than the other
 - That makes finding new physics by looking for coupling deviations difficult
- Searching for the other Higgs bosons is of very high priority

Conclusions

- The 125 GeV Higgs discovered a year ago is there in the new data
- We are sure it's a boson, and the evidence suggests that it's a scalar (0+) boson.
- As far as we can tell, its couplings are consistent with the SM
 - The total cross-section is about right (ATLAS a little high, CMS a little low)
 - The fraction produced by VBF seems about right
 - The fermion/boson coupling strengths seem about right
 - This is a statement more about the top quark than the other fermions
 - The WW*/ZZ* ratio is a little off in both experiments, but we as a community have decided we can live with it
- The large coupling to WW* and ZZ* means this boson plays an important role in electroweak symmetry breaking
 - We do not know if this is a causative role
 - We do not know if this is a unique role
- It's mass makes no sense, and is a sign of new physics (somewhere...)
- The next logical step is the LHCs 13.X TeV run

$$\sigma \cdot \text{BR} (gg \to H \to \gamma \gamma) = \sigma_{\text{SM}}(gg \to H) \cdot \text{BR}_{\text{SM}}(H \to \gamma \gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

$$\sigma(gg \to H) * BR(H \to \gamma\gamma) \sim \frac{\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H) * BR(H \to \gamma\gamma) \sim \frac{\kappa_V^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(gg \to H) * BR(H \to ZZ^{(*)}, H \to WW^{(*)}) \sim \frac{\kappa_F^2 \cdot \kappa_V^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H) * BR(H \to ZZ^{(*)}, H \to WW^{(*)}) \sim \frac{\kappa_V^2 \cdot \kappa_V^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\sigma(qq' \to qq'H, VH) * BR(H \to \tau\tau, H \to b\bar{b}) \sim \frac{\kappa_V^2 \cdot \kappa_F^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$