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Outline

Part I: Introduction and Neutrinos as Probes

◮ Neutrinos in the SM, brief introduction.

◮ Neutrino experiment challenges

◮ ν as Probes : Electroweak

◮ ν as Probes: Nucleon structure and QCD

Part II: Neutrino oscillations beyond the SM

◮ Neutrino mass and oscillations.

◮ The story of neutrino oscillations.

◮ Some remaining questions and future
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Neutrino Mass
◮ Direct limits from decay kinematics

mνe < 2.2 eV 3H β-decay

mνµ < 0.16 MeV π+ decay

mντ < 18.2 MeV τ decay

Most sensitive

◮ Measure the end point energy of

the electron in Tritium β-decay
3H → 3He + e− + νe
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State of the Art (Katrin)

◮ Katrin experiment (starts 2014)

◮ Same technique
→ sensitivity ∼0.2 eV

◮ Discovery potential if

mνe >0.35 eV.

(me =
`
P

i |Uei|2m2
i

´1/2
)

◮ Reaching the sensitivity limit of this
technique.
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Neutrino Mass from Cosmology

◮ Neutrinos contribute to the (hot)

dark matter of the universe and
affect structure formation.

◮ Cosmological observables
(CMB, lensing, galaxy and

cluster distributions, etc.) are
sensitive to total neutrino mass

sum (3 active + sterile)

Current upper bound from cosmology
Σmν < 0.23 eV at 95% C.L. (Planck+WP+highL+BAO)

◮ Many model assumptions needed extract neutrino mass sum from observables.

Neutrino mass and cosmology Y.Y.Y. Wong, Ann. Rev. Nucl. Part. Sci.(2011) 61:69-98.
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Neutrino Mass from Oscillation

◮ Absolute mass scale

⊲ cosmology and β-decay (so
far only upper limits)

◮ How do we know neutrinos

mass is non-zero?

⊲ Lower limits from oscillation
experiments for two of three

active neutrinos.

⊲ ∆m2
atm ⇒ heaviest neutrino

m ≥ 0.04 eV

◮ Currently the most sensitive way to study neutrino mass is to catch one in the act

of oscillating...
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Neutrino Flavor and the SM
◮ In SM there are three flavors of neutrinos and each has a corresponding

charged-lepton.
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Flavor change does not occur in SM interactions of leptons.

◮ Each neutrino produces its associated
charged-lepton in CC interactions.
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◮ Flavor changing neutral currents
(FCNC) not observed.
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◮ Conservation of lepton flavor number also observed for charged-leptons

Br(µ → eγ ) < 6 × 10−13

– p. 7/49



Neutrino Oscillation and the SM
◮ Neutrino oscillation is a mechanism for flavor change which requires that masses

are not zero and not degenerate.

Standard model neutrinos

◮ are massless mν = 0

◮ Leptons don’t mix flavors

∆Le= ∆Lµ=∆Lτ = 0

Neutrino oscillation requires

◮ mν 6= 0 and mi 6= mj

◮ Lepton flavor mixing.

◮ Discovery of neutrino oscillation was the first confirmed physics beyond the

Standard Model (Nobel Prize 2002, Ray Davis and Masatoshi Koshiba).
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Neutrino Oscillation

Weak interaction
eigenstates

Mixing between 2 generations:
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Mass eigenstates

◮ Produce a neutrino in a pure flavor eigenstate (α), it is a mixture of mass
eigenstates.

◮ Mass eigenstates evolve in time νi(t) = νi(0) · e−iEit.

◮ The relative phases of the mass states induce “flavor oscillation” as the state
propagates over a time t (or distance L = ct).

◮ Probability of observing the state (β) at a later time t ( or after propagating

through path length L from the production point) is

Transition probability

P (να → νβ) = sin2 2θ sin2
`

1.27∆m2L/E
´

θ is the mixing angle

∆m2 = (m2
i − m2

j ) in eV2

E is the neutrino energy in GeV

L is the distance traveled in km
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Transition Probability

Transition probability

P (να → νβ) = sin2 2θ sin2
`

1.27∆m2L/E
´

θ is the mixing angle

∆m2 = (m2
i − m2

j ) in eV2

E is the neutrino energy in GeV

L is the distance traveled in km

Flavor composition ’oscillates’ between the two states as it propagates.

◮ Pure να beam with
Eν = 2 GeV.

∆m2=2.5×10−3
eV2

sin2 2θ=1
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Three Flavor Oscillation

Weak

eigenstates
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Mass

eigenstates

Pontecorvo-Maki-Nakagawa-Sakata Mixing Matrix (PMNS),
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Oscillation Experiments measure 6 parameters.

◮ Three mixing angles θ12, θ13, θ23 & phase δ.

◮ Two independent mass differences: ∆m2
23, ∆m2

12

Third comes from constraint: ∆m2
23 + ∆m2

12 + ∆m2
31=0
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Matter Effects
◮ What if neutrinos are not propagating in vacuum?

ν ’s interact with n,p,e−

Relevant interactions

◮ Coherent forward elastic scattering-
preserves coherence of ν states,

(doesn’t change momenta, spins, etc).

◮ Only alter oscillations if they differ

amongνe, νµ, and ντ .

same νe, νµ, ντ

only νe

p,n,e− p,n,e−

Z
o

ν ν

Matter Effect

◮ Alter energy levels of propagating
eigenstates (changes the effective mass).

⊲ raises effective mass of νe

⊲ lowers effective mass of νe.

◮ Increases with neutrino energy.

◮ Sensitive to the sign of ∆m2.

Interaction potential energy term

V = ±
√

2GF Ne

+ for νe, − for νe

Ne is electron density.

Analgous to the effect of medium on propa-
gation of light → index of refraction.
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The Story of ν Oscillations

Astrophysical sources: First early hints and discoveries.

Solar

◮ νe < few MeV

Atmospheric

◮ few GeV νµ&νe

Manmade Sources: Confirmation + precision measurements.
Reactors

◮ Point source <10 MeV νe.

◮ First neutrino detection (1956).

Accelerator
◮ Collimated beam (mainly νµ)

◮ Energies 0.5-500 GeV.
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Solar Neutrinos

What is the Sun’s energy source???

⋆ Mid-1800’s: Chemical process

• Sun would burn out in a few thousand years.

⋆ Late 1800’s: Kelvin-Helmholtz propose

gravitational collapse.

• Energy supply for ∼25 million years...

◮ 1929 Atkinson and Houtermans propose fusion.

What do Neutrinos have to do
with this?

νe’s are a fusion by-product.

Detection of νe’s from the sun
is definitive evidence for fusion.
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Challenges of Solar Neutrino Detection

⋆ Goal (mid-60’s): devise experiment to detect solar neutrinos.

◮ Neutrino production rate predicted from Solar models (1960’s J. Bahcall).

◮ Sun emits around 2 × 1038 neutrinos per second !
... more than 40 billion neutrinos per second per cm2 arrive at Earth.

◮ Most of the neutrinos have too little energy to detect (pp νe sub-MeV).

◮ Expected signal rate is very small (<1 interaction per day in a very large detector).

◮ There are many sources of background (radioactive impurities, cosmic rays etc. )
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Enter Ray Davis

Detector method based on the neutrino capture reaction: νe + 37Cl → 37Ar + e−

Ray’s Recipe:

1. Pour 100,000 gallons of (ultrapure)

perchlorethylene (C2Cl4) in a huge
(ultrapure) tank.

2. Bury tank 4,800 ft. deep in Homes-
take gold mine.

3. Wait 158 days.

4. Separate out the 53 37Ar atoms
produced from the remaining

100,000 gallons of fluid.

5. Repeat every few months for ∼20

years.

It worked ! (sort of...)
Φνe (meas.)

Φνe (SSM)
= 0.34 ± 0.06
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The Solar Neutrino Problem

1. We don’t understand the sun (or any star).

2. We don’t understand the neutrinos.

◮ New techniques agreed with Davis’s

results (Gallex and SuperKiokande).

⊲ SK active detection (Eν > 5MeV)
νee

− → νee
−

◮ Common feature of experiments: sensitive

to νe’s only, (by design).
Neutrino image of the sun

◮ Neutrino oscillation hypothesis:νe’s convert to another flavor and “disappear”
before reaching the earth.

Need a new definitive experiment: SNO (Sudbury Neutrino Observatory)

◮ Most Important Feature: Sensitive toALL three ( νe, νµ, ντ ) types of neutrinos.
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SNO Definitive Results

◮ 1000 tons of heavy water D2O

(deuterium is a weakly bound state of n & p)

◮ Turned on in 1999 in Sudbury nickel

mine, 6800 ft underground.

(CC) νe + d → p + p + e− only φνe

(NC) νx + d → p + n + νx φνe + φνµ + φντ

(NC&CC) νx + e− → νx + e− φνe + φνµ + φντ

◮ Measured νe rate agrees with previous expts. (Davis was right!)

φνe

φνe + φνµ + φντ

= 0.340 ± 0.038

◮ Measured total flux agrees with solar model prediction. (Bahcall was right!)

Measured φνe + φνµ + φντ = (4.94 ± 0.42) × 106cm−2s−1

Theory φT OT AL = (5.69 ± 0.91) × 106cm−2s−1

Verdict: Neutrino flavor change!
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Atmospheric Neutrinos

Expected flavor ratio N(νµ)/N(νe) ∼ 2

◮ Circa 1990 most experiments measured a
ratio of νµ to νe that is 40% too low.

Measured ratio N(νµ)/N(νe) ∼ 1.2

◮ Atmospheric neutrino anomaly “too few νµ”

⊲ Could be explained by νµ disappearance.
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Atmospheric Neutrinos (cont’d)
◮ Oscillation Hypothesis ⇒ Path length dependent rate.

◮ Source provides variable path length (50km-12,700km) ⇒ Zenith angle
dependence.

◮ Smoking gun for oscillation hypothesis: Super K measures zenith angle

dependence.

⊲ νµ deficit but no νe excess ⇒ Mostly νµ → ντ .
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Accelerator ν Oscillation Experiments

Select the beam energy E and the pathlength L to tune for a particular signal.

P (να → νβ) = sin2 2θ sin2
`

1.27∆m2L/E
´

Probe atmospheric signal region ∆m2 ≈ 10−2 − 10−3
eV2

Need long-baseline L
E

≈ 103 − 102
(km/GeV).

∆m2 =2.5×10−3 eV2

◮ Set L = 1000 km

◮ Beam range should cover first
oscillation dip.

⊲ Energies 1-10 GeV.
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νµ Disappearance with a Long-baseline

K2K

◮ KEK beam to SuperKamiokande

◮ L=250km, 〈Eν〉=1.3GeV

◮ Completed 2004 (9 × 1019PoT).

Far Detector

735 km

11.1 km

Fermilab Soudan

Near Detector
0.98 kT 5.4 kT

◮ L=735 km, < E >= 3 GeV

◮ Completed 2012

⊲ Neutrino mode > 1021 PoT

⊲ Antineutrino mode 3.3 × 1020 PoT
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Designing a LBL Experiment

Near Detector measures spectrum at L=0.

Far Detector measures spectrum at L
“identical” detectors
reduce systematic errors.

Which flavor ? ◮ Optimize detector to see the associated final state lepton.

MINOS

Fe-scint., coarse-sampling
• Long µ track

Nova/Minerνa

Scintillator strips, fully active
• νe shower and NC πo.

OPERA/DoNuT

Emulsion-tracker.
• τ -decay kink.
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Muon Neutrino Disappearance

Reconstruct Eν = Eµ + EHAD and measure spectral distortion.

νµ Survival probability P (νµ → νµ) = 1 − sin2 2θ23 sin2
(

1.27∆m2

32

L
E

)
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Muon Neutrino Disappearance

Reconstruct Eν = Eµ + EHAD and measure spectral distortion.

νµ Survival probability P (νµ → νµ) = 1 − sin2 2θ23 sin2
(

1.27∆m2

32

L
E

)
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Muon Neutrino Disappearance

Reconstruct Eν = Eµ + EHAD and measure spectral distortion.

νµ Survival probability P (νµ → νµ) = 1 − sin2 2θ23 sin2
(

1.27∆m2

32

L
E

)
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MINOS Disappearance Oscillation Results
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Atmospheric Oscillation Parameters

Two-flavor disappearance
∆m2

32 = 2.41+0.09
−0.10 × 10−3 eV2

sin2(2θ23) > 0.89 at 90% CL.

SK says ⇒ Mostly νµ → ντ .

◮ ντ Appearance

⊲ OPERA (since 2006)

3 ντ events.

◮ Next Gen: Optimize for νe

appearance. (Prob≤5%).
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T2K** ** PRD 85, 031103(R) (2012)

* Neutrino 2012
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Reactor Disappearance Experiment

◮ Intense source :

νe from β-decays of n-rich
fission products

◮ Energy is fixed:

range 1-10 MeV E ∼ 3.6MeV

Pνe→νe ≈ 1 − sin2 2θ sin2

„

∆m2L

4E

«

Select L to design reactor experiment:
1.27∆m2(eV2)L(km)

E(GeV)
∼ π

2

Amplitude of oscillation → θ
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Reactor Disappearance Experiment (cont’d)

Pνe→νe ≈ 1 − sin2 2θ13 sin2

„

∆m2
31L

4E

«

− cos4 θ13 sin2 2θ12 sin2

„

∆m2
12L

4E

«

Atmospheric ∆m2
31 = 2.4 × 10−3eV2.

L∼2 km

Short-baseline

Solar ∆m2
12 = 7.6 × 10−5eV2.

L∼60 km

Long-baseline

◮ KamLAND experiment: optimized
for ∆m2

sol:

⊲ Practical: Kamioka mine

overburden 2700 m.w.e.
(reduce backgrounds).

⊲ 55 reactors within Japan. →
Mean flux weighted reactor
distance ∼180 km.
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KamLAND Results

Eprompt = Eν − 0.8 MeV
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The Big Picture (Pre 2012): Mixing
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“Atmospheric”

Super-K, MINOS
K2K & Opera

∆m2

23
& θ23

“Mixed”

θ13 & δ ??
Hints: Small

“Solar”

Super-K, SNO
KAMLAND & others

∆m2

12
& θ12

√
θ12 = 33.5◦ ± 1◦

√
θ23 = 45◦ ± 4◦

× θ13 (< 11◦@90%CL)

× CP violating phase: δ
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The Big Picture: Masses

∆m

∆m2

2
atm

sol

√
∆m2

12 = (7.65 + ±0.23) × 10−5 eV2

√
sign of the mass difference, ∆m2

21 > 0.
√

∆m2
32(≈ ∆m2

31) = (2.40± 0.12) × 10−3 eV2

Constraint: ∆m2
32 + ∆m2

12 + ∆m2
31=0

× sign of the mass difference, ∆m2
31 > 0?.
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ν disappearancee

Hunt for θ13

LBLAccelerator
νe appearance

ReactorSBL

Pνe→νe = 1-sin2 θ13 sin2 1.27∆m2
31L

E
+

smaller
sol.term

Pνµ→νe = sin2 2θ13 sin2 θ23
1.27∆m2

32L

E

+ terms (δ, matter effects:sign(∆m2
31))

◮ Double Chooz

◮ Daya Bay

◮ Reno

◮ T2K

⊲ L=295 km,
〈Eν〉 ≈0.6 GeV

◮ NOνA (starts this summer).

⊲ L=810 km, 〈Eν〉=2GeV
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Short-Baseline Reactor Experiments

Small mixing ⇒ need near detectors.

◮ Near (range ≈300m-550m)
close to reactor to measure flux for
normalization (reduce systematics).

◮ Far (range ≈ 1380m-1985m)
near the first oscillation maximum to
maximize sensitivity.(less affected by θ12).
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Daya Bay First Results (March 2012)

◮ Design allows comparison of Near site

measurements (control of syst. uncertainties).

FARmeas

FARexp
= 0.944±0.007(stat)± 0.003(syst)

sin2 2θ13 =

0.092±0.016(stat)± 0.005(syst)

◮ 5.2σ (rate only)

◮ Spectral distortion consistent (not

used in fit).
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LBL Accelerator νe appearance

Common Design Features

◮ Large fine-grained Far and Near detectors: better optimized for νe identification.

◮ Neutrino detectors positioned off the beam axis to reduce backgrounds.
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Why Off-axis Neutrino Beams?
νµ → νe appearance:
Small signal and large background/

◮ NC events with π◦ (→ 2γ).

◮ Beam νe contamination (from µ and K decay).

Off-axis design (Eν depends on θ)

◮ π decay kinematics limit max. Eν in beam as a
function of off-axis angle θ

Eν =
Eπ(1 − m2

µ

m2
π

)

(1 + γ2θ2)

Off-Axis Beam features

• Narrows spectrum (removes
high-energy tail feed-down source
of NC-πo).

• Less beam νe contamination.

• Higher flux in the LE signal region.
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νµ → νe Appearance

◮ The disadvantage/advantage of νe appearance expts with long-baseline

beams is that they are sensitive to three unknowns (θ13, δ, sign(∆m2
13))

P (νµ → νe)vacuum =

sin2 θ23 sin2(2θ13) sin2 ∆atm

+ cos2 θ23 sin2(2θ12) sin2 ∆⊙

∓ Jr sin δCP sin2 ∆atm sin ∆⊙

+ Jr cos δCP sin ∆atm cos∆atm sin ∆⊙

(- neutrinos, + antineutrinos)

Jr = cos θ13 sin(2θ13) sin(2θ12) sin(2θ23)

◮ dominant term ≈ 1
2

sin2(2θ13) at osc. max.

◮ small for accelerator longbaseline L/E’s

◮ sub-leading CP violating phase terms.

∆⊙ = 1.27∆m2
12L/E

∆atm = 1.27∆m2
13L/E

◮ Sub-leading terms sensitive to δCP . (Different sign for ν and ν).

◮ Include matter effects ⇒ sensitive to sign ∆m2
13 and changes sign for ν vs. ν.
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sin
2
2θ13 Measurement Summary

◮ mid-2012: results from 5 experiments
(reactor+accelerator).

◮ Daya Bay October 2012 update
(significance 7.7σ)

sin2 2θ13 = 0.089±0.010(stat) ± 0.005(syst)

√
θ12 = 33.5◦ ± 1◦

√
θ23 = 45◦ ± 4◦

√
θ13 = 8.7◦ ± 0.5◦
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Oscillations What’s Next?
◮ Is CP symmetry violated in the neutrino sector? → size of δ.

◮ Ordering of the masses → is m3 the heaviest or the lightest?

◮ Are there additional (sterile) neutrino states?

◮ Theory questions: pattern of masses and mixing?

Planning a next generation optimized for δ and hierarchy sensitivity.

◮ Includes very long baseline L∼1300 km beam Fermilab → Sanford (SURF).
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LBNE Snapshot

◮ High-intensity proton beam (>700 kW).

◮ Beam Covers 1st (2.4 GeV) and 2nd

(0.8 GeV) oscillation maxima.

⊲ Sensitivity to δ → effect differs.

◮ 34 kt LAr TPC Far Detector
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CP Violation Matters
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Summary and Outlook

We are making progress towards un-
derstanding neutrino interactions and

properties

◮ Neutrino have a long history of
probing the standard model.

◮ Recent revolution understanding
properties→ Discovery of mass

and mixing

⊲ Mass splittings and all mixing
angles known!

Exciting times for neutrino physics!

◮ Apologies for the many important topics not covered (0νββ, sterile neutrinos, SB neutrino
oscillation anomalies, etc.)

◮ Many thanks to previous lecturers for slides (D. Schmitz, J. Morfin, G. Perdue, etc.) – p. 42/49



Extra
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LBNE LarTPC
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LBNE Spectra
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CKM vs. PMNS
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Cosmological Mass measurements

Astropart. Phys. 35, 177 (2011)
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Computing Oscillation Probabilities

P (νµ → νe) = |〈νe|νµ(t)〉|2

|νe〉 = Ue1|ν1〉 + Ue2|ν2〉 + Ue3|ν3〉
|νµ(0)〉 = Uµ1|ν1〉 + Uµ2|ν2〉 + Ue3|ν3〉
|νµ(t)〉 = Uµ1 exp−iE1t |ν1〉 + Uµ2 exp−iE2t |ν2〉 + Ue3 exp−iE3t |ν3〉

∆E for two different mass states in high-energy approximation p >> m

Ei =
q

p2 + m2
i = p(1 + (

mi

p
)2)

1
2 ≈ p(1 + (

1

2
)(

mi

p
)2) ≈ (E + (

m2
i

2E
)

∆E ≈
m2

i − m2
j

2E

Write in terms of ∆m2 =
“

m2
i − m2

j

”

and path length c = 1 ⇒ t = L

General expression P (να → νβ) =

δαβ − 4Σi>jℜ
“

U∗
αiUβiUαjU∗

βj

”

sin2

„

∆m2
ijL

4E

«

+ 2Σi>jℑ
“

U∗
αiUβiUαjU∗

βj

”

sin

„

∆m2
ijL

2E

«
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Flavor Composition of Neutrino Mass States
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