Chapter 2

Motion along a straight line



2.2 Motion

« Kinematics: the study of motion
without regard to the cause

 |deal case

« Particle model: point particle
represents object under consideration

1D motion

partic|e on a grid. The grey mass can be
simplified to a point mass (the black
circle). It becomes practical to
represent point mass as small circle.
or dot, as an actual point is invisible.



2.3 Position and displacement

The location of an object is usually given in terms
of a standard reference point, called the origin.

« Positive direction is taken to be the
direction where the coordinates are
Increasing

* Negative direction as that where the
coordinates are decreasing.

Displacement: Change in position

For motion along the x direction (horizontal),
displacement is designated Ax:

AX = X, = X4
where x; and x, are the initial and final positions
Displacement is a vector quantity

Example: Ax = -4 m ==mm) object has moved in
the direction defined as negative by 4 m
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2.4 Average Velocity and Average Speed

x(m)

A common way to describe the
motion of an object is to show a
graph of the position as a
function of time.

At x=2 mwhent=4s.

L R

- Plotted here.
1 1 1 1 1 1 1 x (11])
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i(s)

It is at position x=-5m
when time t=0s.
That data is plotted here.

At x=0m when t=3 s.
Plotted here.

A e S
Average velocity, or v, IS Ax Xy — X
defined as the displacement per Vayg = = )
time interval : Af [ — 1

Average velocity has the same
sign as the displacement

Sl units for velocity: m/s



2.4 Average Velocity

The magnitude of the slope of the x-t graph yields the average velocity

Here, the average velocity is:

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

Start of interval

6 m
Vavg = 5 = 2 Ms.
38
x (m)
This vertical distance is how far
4 l e 1 it moved, start to end.:
V. = 810 OT Ths line |
3 avg = 501 : Ax=2m-(4m)=6m
_rise  Ax
2 Crun Af
1
0
-1

|
I - This horizontal distance is how long
ST took, start to end:

____________ I
S At=45-15=35s




2.4 Average Speed

« Average speed: ratio of the total
distance traveled to the total time
duration

« Scalar quantity -- does not carry any
sense of direction

total distance
Save A +




Example: displacement

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of yvour drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x; = 0 to a second
position of x, at the station. That second position must be at
x; = 84 km + 2.0 km = 10.4 km. Then your displacement Ax
along the x axis is the second position minus the first position.

Ax=x, —x; =104 km - 0= 104 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.



Example: time interval

(b) What is the time interval A7 from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval Aty (= 0.50 h),
but we lack the driving time interval Azy,. However, we
know that for the drive the displacement Ax,, is 8.4 km and
the average velocity v, g 1S 70 km/h. Thus, this average

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

§ _ Axy,
avedr — ﬁ -
Idr

Rearranging and substituting data then give us

Ax g4 3.4 km
Aty = L — = 0.12 h.
T ypear  70km/h

SG._. At = ﬂfd[ + &lek
= 0.12h + 0.50 h = 0.62 h. (Answer)




Example: average velocity

(c) What is your average velocity v,,, from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that v,,, for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find
- Ax 104 km
‘v T A0 T T062h
= 16.8 km/h =~ 17 km/h.

(Answer)

To find v,y, graphically, first we graph the function x(f) as
shown in Fig, 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points: that is, v,y is the ratio of the rise (Ax = 10.4
km) to the run (At = 0.62 h), which gives us v,,, = 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your

average speed from the beginning of your drive to your

return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km + 2.0 km + 2.0
km = 12.4 km. The total time interval is 0.12h + 0.50 h +
0.75 h = 1.37 h. Thus, Eq. 2-3 gives us

12.4 km

Sovy = = 9.1 km/h. Answer
e 1.37h ( )
Driving ends, walking starts.

x
12
_ ST Slope of this
10 Walking line gives
by I
8 | average
: velocity.
|

—— How far:
Ax =10.4 km

At =0.62h



2.5: Instantaneous Velocity & Speed

Average velocity is the

* Instantaneous velocity: velocity of a slope of this line. -
particle at a particular instant ;e —
: / " shorter, average
o % A velocity approaches
* Here At approaches a limiting value: £ instantaneous
= velocity at time ;.
2}
O
m |
_ Ax dx
v = liIm — = :

Art—0 Af dt

« V (instantaneous velocity) : slope of The slopes of 3 tangent
the tangent (derivative) of the lines give the instantaneous
" : i velocity at 3 different times.
position-time graph at that particular

instant of time

* Vector quantity -- has with it an
associated sense of direction

Position, x




. . ®
Clicker question
* The figure shows position vs time graphs for

four objects. Which starts slowly and then
Speeds up?




2.5: Instantaneous Velocity and Speed
Derivatives:

* In calculus, the derivative yields the result of the limiting
procedure.

— Derivatives of polynomial functions are straightforward:
dot")
=bnt™
dt

— Other common derivatives include the trig functions:

d(sin bt): st
dt

d (cos bt): hsinbt
dt




Example: instantaneous velocity

Figure 2-6a 1s an x(f) plot for an elevator cab that is mitially
stationary, then moves upward (which we take to be the pos-

itive direction of x), and then stops. Plot v(f).
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Slopes on the x versus t graph
Slope  are the values on the v versus t graph.

are the values on the a versus t graph.

KEY IDEA

We can find the velocity at any time from the slope of the
x(f) curve at that time.

Calculations: The slope of x(f), and so also the velocity, is
zero in the intervals from O to 1 s and from 9 s on, so then
the cab is stationary. During the interval be, the slope is con-
stant and nonzero, so then the cab moves with constant veloc-
ity. We calculate the slope of x(1) then as

Ax 24m— 4.0m
R = T 5
AT R0s—30s  THOmSs (2-5)

The plus sign indicates that the cab is moving in the positive
x direction. These intervals (where v = 0 and v = 4 m/s) are
plotted in Fig. 2-6b. In addition, as the cab initially begins to

move and then later slows to a stop, v varies as indicated in
the intervals 1 s to 3s and 8s to 9 s. Thus, Fig. 2-6b is the
required plot. (Figure 2-6¢ is considered in Section 2-6.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(¢) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(f) graph indicates only
changes in x. To find such a change in x during any interval,
we must, in the language of calculus, calculate the area
“under the curve” on the v(¢) graph for that interval. For
example, during the interval 3 s to 8 s in which the cab has a
velocity of 4.0 m/s, the change in x is

Ax = (4.0m/s)(8.0s — 3.05) = +20 m. (2-6)

(This area is positive because the v(f) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by 20
m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.



2.6: Average and instant accelerations

Average acceleration: change in velocity per change in time. As such,

v — vy Av

fh — 1 At

” aurg

The velocity is v, at time t;, and the velocity is v, at time t,

The instantaneous acceleration is defined as: o= dv
dr

In terms of the position function, the acceleration can be defined as:

. Av Qv dv d (rf,x) d*x
a=m :d'[ ‘ ‘" dt — dt \dr ) di?*

At-0 At

Sl units for acceleration: m/s?




2.6: Average and instant accelerations
Position, velocity, and acceleration:

Individual values of position,
velocity, & acceleration not
related:

* Velocity depends on the
time rate of change of
position

» Acceleration depends on
the time rate of change of
velocity

* An object can be at position
x = 0 and still be moving

* An object can have zero
velocity and still be
accelerating

......... At the peak
P of its flight,
| the ball is
: instantaneously
5, | at rest.
= [
) |
) |
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|
Vg I Just before the peak,
: v is positive; just
| . after, it’s negative,
¥
H
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Time, ¢
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At the peak of its trajectory,
a ball has an instantaneous zero
velocity, but is still experiencing

acceleration.
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Acceleration is the slope of the
velocity vs time graph



2.6: Average and instant accelerations

Colonel J. P. Stapp in a rocket sled, which

. . . d dd h [ locities.
If a particle has the same sign for velocity and HNAErgoes SHEden ehange i TEelies

acceleration, then that particle is speeding up.

Conversely, if a particle has opposite signs for the
velocity and acceleration, then the particle is slowing
down.

1D Kinematics Simulations:

Our bodies often react to accelerations but not to
velocities.

« Afast car often does not bother the rider

« Asudden brake is felt strongly by the rider

« Common in amusement car rides, where the
rides change velocities quickly to thrill the
riders.

The magnitude of acceleration falling near the Earth’s
surface is 9.80 m/s?; often referred to as g.



http://www.physicsclassroom.com/mmedia/

Example: acceleration

A particle’s position on the x axis of Fig. 2-1 is given by which has the solution

x=4-201+10,

= =*3s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

with x in meters and f in seconds.

(a) Because position x depends on time ¢, the particle must
be moving. Find the particle’s velocity function v(f) and ac-
celeration function a(t).

(c) Describe the particle’s motion for 7 = 0.

Reasoning: We need to examine the expressions for x(f),

KEY IDEAS

(1) To get the velocity function v(r), we differentiate the po-
sition function x(¢) with respect to time. (2) To get the accel-
eration function a(r), we differentiate the velocity function
v(1) with respect to time.

Calculations: Differentiating the position function, we find
v=—-27+ 3t (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a = +6t, (Answer)
with @ in meters per second squared.

(b) Isthere ever a time when v = 0?

Calculation: Setting v(1) = 0 yields
0=-27+38,

v(f),and a(1).

At t =0, the particle is at x(0) = +4 m and is moving
with a velocity of v(0) = —27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) = 0 because just
then the particle’s velocity is not changing.

For 0 <t << 3 s, the particle still has a negative velocity,so
it continues to move in the negative direction. However, its
acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing.

Indeed, we already know that it stops momentarily at
t = 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting 1 = 3 s into the
expression for x(), we find that the particle’s position just then
1sx = —50 m. Its acceleration is still positive.

Fort > 3 s, the particle moves to the right on the axis. Its
acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.



2.7: Constant acceleration
When the acceleration is constant, its average and instantaneous values are the same.

e Fﬂ _I_ f."f- ...... (1)
Here, velocity at t=0 | _ _ Y~V
ere, velocity a is v, 4=y, = —"
o o X — Xy )
Similarly Vi =~ ‘ X = Xg + Vol
Finally leading to X — Xg = vyl - %m‘z, ..... (2)

Eliminating t from the Equations (1) and (2):

vE=vi+ 2a(x —xp). O



2.7: Constant acceleration

When acceleration is constant,
position, velocity, acceleration, &
time are related by:

V=V, +at

— 1
X=X, +3(V, +V)t
— 1 nt2
X=X, +V,t+3at

2 2
Ve =V, +2a(X—X,)
For which, Xx,, v, are initial

values attimet=0; x and v are
the values at an arbitrary time, t

Constant acceleration:

* Velocity is a linear
function of time

» Position is a quadratic
function of time

With no
Acceleration causes the acceleration
position-time graph to position changes
curve upward. at a steady rate.

ay 'éﬁx 4
X Tamanrmmsmammmaaaas AN
[
[
= | l 2
& [ 24
=S [
= / " | L
£ Slope ~ "0
X (= 1)
0 K] I
[
|}x0
|
I

Time, ¢ t
Withvy = 0anda = 0, pésition doesn’t change.



2.7: Constant acceleration

 Integrating constant
acceleration graph for
a fixed time duration
yields values for

Position

velocity graph durin
€ OC_ ty grap du g 0 t Slopes of the position
that time. (a) graph are plotted on
v the velocity graph.
« Similarly, integrating .
velocity graph will <
yield values for 8
- 0
osition graph.
P grap 0 t Slope of the velocity
(&) graph is plotted on the
a acceleration graph.

Acceleration

(c)



Clicker question

A speeding motorist zooms past a stationary police carr,
which then heads after the speeder. The police car starts
with zero velocity and is going at twice the car’s velocity
when it catches up to the car. So at some intermediate
Instant the police car must be going at the same velocity as
the speeding car. When is that instant?

A. Closer to the time when the police car starts chasing

B. Closer to the time when the police car catches the
speeder

C. Halfway between the times when the two cars coincide



Example: constant acceleration

Figure 2-9 gives a particle’s velocity v versus its position as it
moves along an x axis with constant acceleration. What is its
velocity at position x = 07

KEY IDEA

We can use the constant-acceleration equations: in particu-
lar, we can use Eq. 2-16 (v = vj + 2a(x — x,)), which relates
velocity and position.

First try: Normally we want to use an equation that includes
the requested variable. In Eq. 2-16, we can identify x; as 0 and
vg as being the requested variable. Then we can identify a sec-
ond pair of values as being v and x. From the graph, we have

The velocity is 8 m/s when
the position is 20 m.

The velocity is 0 when the
position is 70 m.

x (m)

Fig. 2-9 Velocity versus position.

two such pairs: (1) v =8 m/s and x = 20 m, and (2) v = 0 and
x = 70 m. For example, we can write Eq.2-16 as

(8 m/s)? = vj + 2a(20 m — 0).

However, we know neither vy nor a.

(2-19)

Second try: Instead of directly involving the requested
variable, let’s use Eq. 2-16 with the two pairs of known data,
identifying vy =8 m/s and x; =20 m as the first pair and
v = 0m/s and x = 70 m as the second pair. Then we can write

(0 m/s)?> = (8 m/s)?> + 2a(70 m — 20 m),

which gives us a = —0.64 m/s%. Substituting this value into
Eq. 2-19 and solving for v, (the velocity associated with the
position of x = 0), we find

vp = 9.5 m/s. (Answer)



2.9: Free-Fall Acceleration

Free fall: In vacuum, all objects close to the Earth’s surface
fall towards the Earth’s surface with the same constant
acceleration.

The acceleration of gravity at any pointis exactly the same
for all objects, regardless of mass.

“an

Use the constant acceleration model with “a” replaced by “-g”,
where g = 9.8 m/s? is essentially constant for motion close to
the Earth’s surface.

In vacuum, a feather and an apple will fall at the same rate.

Demo:

Therefore the equations for constant acceleration apply:

In a coordinate s¥stem with y axis upward, they read
V=V,—9

Y=Y, +%(v0 +v)t
y =Y, +V,t—1gt?

2

v =V§—29(y—y0)



http://www.youtube.com/watch?v=PE81zGhnb0w&feature=related
http://www.youtube.com/watch?v=PE81zGhnb0w&feature=related

Example: free fall

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s. =

(a) How long does the ball take to reach its maximum
height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall accelerationa = —g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a., and the initial velocity
vy = 12 m/s, and seeking 7, we solve Eq. 2-11, which contains

B)Iyi }.
v=10at

highest point

= During
descent,
During ascent,—._| a=—5
a=—g, ™ speed

increases,

speed decreases,
and velocity

and velocity

becomes less becomes
positive more
negative

Fig. 2-11 A pitcher tossesa

baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling |
objects, provided any effects X
from the air can be neglected.

those four variables. This yields

v — v
f = = 5
a —0.8 m/s

(Answer)

(b) What is the ball’'s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
vo = 0. We can then write Eq. 2-16 in y notation,set y — y; =
vand v = 0 (at the maximum height), and solve for y. We get

vi—vi 0 —(12m/s)?

- = 73m.
2a 2(—9.8 m/s?) m

y = (Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v, a = —g, and displacement y —
vo = 5.0 m, and we want 7, so we choose Eq. 2-15. Rewriting
it for y and setting vy = 0 give us

y = vyl — %gfz..
or 5.0m = (12 m/s)r — (3)(9.8 m/s?)r2.

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4912 — 12t + 5.0 =0.
Solving this quadratic equation for ¢ yields

t=053s and r=19s (Answer)

There are two such times! This is not really surprising
because the ball passes twice through v = 5.0 m, once on the
way up and once on the way down.



Example: free fall

* A ballis thrown straight up at 7.3 m/s,

« Settin = 0 in the third equation gives a
leaving your hand 1.5 m above the ngy="o! 4 9

guadratic in time; the result is the two

ground. Find the maximum height and values for the time when the ball is on the
time when it hits the floor. floor:
— At the maximum height the ball is t=-0.18s,t=1.7s

instantaneously at rest (even though it's

. .  The first answer tells when the ball would
still accelerating).

have been on the floor if it had always

— Solving the last equation with been on this trajectory; the second is the
v = 0 yields the maximum height: answer we want.

We’re given the The curve is flat at

initial speed and ' the top since speed
2 heightt @ |77=77°2 . is instantaneously
0 = V0 — Zg y - yO SN ! W\ Zero.
<] . \ """ We want this
or :-{f? height . ..
vj (7.3 m/s)2 Hand 3o=r.§;¢e -----------------
y=y,+—=1lom+ ~=42m /
29 (2)e8ms’)
FIOOF =0 :1’ 8
: il .:an(l this
Here is another time.

time the ball
would have been
at floor level.



Clicker question

Standing on a roof, you simultaneously
throw one ball straight up and drop another
from rest. Which hits the ground moving
faster?

A. The ball dropped from rest
B. The ball thrown straight up



2-10: Graphical integration in motion analysis

Starting from: a = dv/dt
a Area
. I - .
We obtain: v — Vg = J ‘ 4 di. | This are:?a gives ’Fhe
fy | | change in velocity.
Let v, = velocity at time t =0 h 4 :
v, = velocity at time t = t;
(a)
Note that: i
f“ g — (area between acceleration curve) Area This area gives the
0 aat= and time axis, from f; to f | | ﬂhange in pusitiﬂn.
|
: ly £ |
Similarly, we obtain Xy — xg = f v dt. )
in

Let x, = position at time t = 0
X, = position at time t = t;

h df — area between velocity curve)
N VA= 1" and time axis, from Lhtot, )



Example: graphical solution

“Whiplash injury” commonly occurs in a rear-end collision
where a front car is hit from behind by a second car. In the
1970s, researchers concluded that the injury was due to the
occupant’s head being whipped back over the top of the seat
as the car was slammed forward. As a result of this finding,
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end collisions,
a volunteer was strapped to a seat that was then moved
abruptly to simulate a collision by a rear car moving at
10.5 km/h. Figure 2-13a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time
t = 0. The torso acceleration was delayed by 40 ms because
during that time interval the seat back had to compress
against the volunteer. The head acceleration was delayed by
an additional 70 ms. What was the torso speed when the head
began to accelerate? =

KEY IDEA

We can calculate the torso speed at any time by finding an
area on the torso a(7) graph.

Calculations: We know that the initial torso speed is vy = 0
at time f; = 0, at the start of the “collision.” We want the
torso speed v, at time #; = 110 ms, which is when the head
begins to accelerate.

area between acceleration cul‘ve)
vy — Vg = ) . .
! 0 and time axis, from #; to 1y

100

Head

50

a (m/s?)

Torso

0 40 80 120 160

The total area gives the
change in velocity.

For convenience, let us separate the area into three regions
(Fig.2-13b). From 0 to 40 ms, region A has no area:

areay = (.

From 40 ms to 100 ms, region B has the shape of a triangle,
with area

areay = %(0.060 $)(50 m/s?) = 1.5 m/s.

From 100 ms to 110 ms, region C has the shape of a rectan-
gle, with area

areac = (0.010 s)(50 m/s?) = 0.50 m/s.
Substituting these values and v, = 0 into Eq.2-26 gives us
v —0=0+ 1.5m/s + 0.50 m/s,

or vy =2.0m/s = 7.2 km/h. (Answer)



Summary

« Position, velocity, and acceleration are the fundamental quantities
describing motion.

— Velocity is the time rate of change of position.
— Acceleration is the time rate of change of velocity.

Rate of
change

Rate of
change

Position Velocity Acceleration
- When acceleration is constant, simple V=V, +at
equations relate position, velocity,
acceleration, and time. X=X, + %(VO + V)t
- Animportant case Is the acceleration _ t 4 Lat?
due to gravity near Earth’s surface. X=Xy Vol +34a
 The magnitude of the gravitational Ve =V + 2a(x — X )
acceleration is g = 9.80 m/s? 0 0



