Chapter 15

Oscillations



15.1 Simple Harmonic Motion

Oscillatory Motion: Motion which is periodic in
time; motion that repeats itself in time.

« Examples:
. Power line oscillates when the wind blows past.

. Earthquake oscillations move buildings —
sometimes the oscillations are so severe, that
the system exhibiting oscillations break apart.

SHM:

e |f the motion is a sinusoidal function of time, it is
called simple harmonic motion (SHM).

* Mathematically SHM can be expressed as:

X(t) = X, cos(at + @) !

* Xy IS the amplitude (maximum displacement of the system)
« tisthetime

* w is the angular frequency

« @ is the phase constant or phase angle
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15.2 Simple Harmonic Motion

* In the figure snapshots of a simple oscillatory
system is shown. A particle repeatedly moves back
and forth about the point x = 0.

« The time taken for one complete oscillation is the
period, T. In the time of one T, the system travels
from x = + x,,, to — X,,,, and then back to its original
position X,.

« The velocity vector arrows are scaled to indicate the
magnitude of the speed of the system at different
times. At x = +x,,, the velocity is zero.

» Frequency of oscillation: number of oscillations
that are completed in each second.

« The symbol for frequency is f, and the Sl unit is
the hertz (abbreviated as Hz).
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15.2 Simple Harmonic Motion

Figure a plots the displacement of two
SHM systems that are different in
amplitudes, but have the same period.

Figure b plots the displacement of two
SHM systems which are different in periods
but have the same amplitude.

The value of the phase constant term, ¢,
depends on the value of the displacement
and the velocity of the system at time t = 0.

Figure c plots the displacement of two SHM
systems having the same period and
amplitude, but different phase constants.

Displacement

Displacement

Displacement
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15.2 Simple Harmonic Motion

For an oscillatory motion with period T,

X({t)=x({t+T)

The cosine function also repeats itself when the argument increases by 2.
Therefore,

o(t+T)=wt +27
—> ol =27

—9w=§z=2ﬁ
T

Here, o is the angular frequency, and measures the angle per unit time. The Sl
unit is radians/second. To be consistent, ¢ then must be in radians.



15.2 Simple Harmonic Motion

The velocity of SHM: X
dx(t) d \
v(t) = . [ x,, cos(at + ¢] o |
Sv(t)= —a)xm sin(wt + @) — |

The maximum value (amplitude) of velocity is

|
|
i
oX.,. The phase shift of the velocity is n/2, making X, I
|
|

the cosine to a sine function. =
kS| 0
The acceleration of SHM is: - o :
Smo[ |
dv(t) d . (5 |
a(t) = ( ) 29 ax sin(et + )] Lo
t +&}2xm = : |
|

—a(t) = —a)zxm cos(wt + @)

—a(t) = -o’x(t)

Acceleration

3 -0«

m

The acceleration amplitude is ®w?x,,. (¢)

In SHM a(t) is proportional to the displacement but opposite in sign.




15.2 Simple Harmonic Motion
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(a) Velocity is zero wheni displacement:is largest.
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15.3 Force Law for SHM

From Newton’s 2"d |aw:

F =ma=—-(mo°)x = -kx

SHM is the motion executed by a system subject to a force that is
proportional to the displacement of the system but opposite in sign.

The block-spring system shown on the
right forms a linear SHM oscillator.

The spring constant of the spring, kK, is
related to the angular frequency, o, of
the oscillator:

a):\/z—>T227z m
m Kk

I




Example: force law

A block whose mass m is 680 g is fastened to a spring
whose spring constant & is 65 N/m. The block is pulled
a distance x = 11 cm from its equilibrium position at
x =0 on a frictionless surface and released from rest
att=0.

(a) What are the angular frequency, the frequency, and
the period of the resulting motion?

A block whose mass m 1s 630 g is fastened to a spring
whose spring constant k is 65 N/m. The block is pulled
a distance x = 11 cm from its equilibrium position at
x =0 on a frictionless surface and released from rest
att=0.

(b) Whatis the amplitude of the oscillation?

KEY IDEA 5 yips block —spring system forms a linear

simple harmonic oscillator, with the block undergoing
SHM.

Calculations:
Eq. 15-12:

The angular frequency is given by

K 65 N/m
V= A= — 978 rad/
m 0.68 kg rad/s

= 9.8 rad/s.

)y =

(Answer)
The frequency follows from Eq. 15-5, which yields
w 9.78 rad/s

f=s =5 aq — S0Hz=16Hz (Answer)
The period follows from Eq. 15-2, which yields
Tr= Lf = ﬁ = 0.64s = 640 ms. (Answer)

pabbdaa  With no friction involved, the mechanical
energy of the spring—block system is conserved.

Reasoning: The block is released from rest 11 cm
from its equilibrium position, with zero kinetic energy
and the elastic potential energy of the system at a
maximum. Thus, the block will have zero kinetic en-
ergy whenever it is again 11 cm from its equilibrium
position, which means it will never be farther than 11
cm from that position. Its maximum displacement
is11 cm:

X,, = 11 cm. (Answer)



Example: force law
The maximum speed v,, is the velocity am-

A block whose mass m 1s 680 g is fastened to a spring  plitude ex,, in Eq. 15-6.
whose spring constant & is 63 N/m. The block is pulled
a distance x = 11 cm from its equilibrium position at
x =0 on a frictionless surface and released from rest

att =10,
(c) What is the maximum speed v,, of the oscillating ThlS maximum speed oceurs when the osc;ﬂlatmg block

is rushing through the origin; compare Figs. 15-4a and
15-4b, where you can see that the speed is a maximum
whenever x = 0.

Calculation: Thus, we have
Vi = @X,, = (9.78 rad/s)(0.11 m)

= 1.1 m/s. (Answer)

block,and where is the block when it has this speed?

A block whose mass m is 630 g is fastened to a spring

whose spring constant £ is 63 N/m. The block is pulled

* | its equilibrium ositi KEVIDEA Jyyy itude a,, of the maxi 1
a distance x = 11 cm from its equilibrium position at — ¢ magnitude a,, of the maximum accel-
v =0 on a frictionless surface and released from rest ~ €rationis the acceleration amplitude ', in Eq. 15-7.

att =1, Calculation: So, we have
(d) What is the magnitude a,, of the maximum acceler- a, = w’x,, = (9.78 rad/s)*(0.11 m)
ation of the block” =11 m/s%. (Answer)

This maximum acceleration occurs when the block is at
the ends of its path. At those points, the force acting on
the block has its maximum magnitude; compare Figs.
15-4a and 15-4¢, where you can see that the magnitudes

of the displacement and acceleration are maximum at
the same times.



Example: force law
A block whose mass m 13 630 ¢ 1s fastened to a spring
whose spring constant & 1s 63 N/m. The block is pulled
a distance x = 11 cm from 1ts equilibrium position af
x =0 on a frictionless surface and released from res
att =1,

(¢) Whatis the phase constant ¢ for the motion

A block whose mass m 13 630 g is fastened to a spring
whose spring constant £ 1s 65 N/m. The block is pulled
a distance x = 11 cm from its equilibrium position at
x =0 on a frictionless surface and released from rest
att =0,

(f) What is the displacement function x(t) for the
spring-block system?

Calculations: Equation 15-3 gives the displacement of
the block as a function of time. We know that at time 7 =
0, the block is located at x = x,,. Substituting these ini-
tial conditions, as they are called, into Eq. 15-3 and can-
celing x,, give us

1 = cos ¢. (15-14)
Taking the inverse cosine then yields
¢ = O rad. (Answer)

(Any angle that is an integer multiple of 27 rad also sat-
isfies Eq. 15-14; we chose the smallest angle.)

Calculation: The function x(f) is given in general form
by Eq. 15-3. Substituting known quantities into that
equation gives us

x(1) = x,, cos(wt + o)
= (0.11 m) cos|(9.8 rad/s)t + 0]
= (.11 cos(9.81), (Answer)

where x 15 in meters and ¢ 15 1n seconds.



15.4: Energy in SHM

* The potential energy of a linear oscillator is

associated entirely with the spring. E Ul + K()

U(t)

Energy

U(t) = % kx® = % kX, cos’(at +¢)

K(1)

« The kinetic energy of the system is associated
entirely with the speed of the block. 0 /9 T

K(t) =%mv2 =%mw2xm2 sin®(at +¢)=%kxm2 sin®(at + @)

 The total mechanical energy of the system: - /U +K(v)

U(x)

E=U +K=%kxm2

Energy

K(x)




Energy Time Position

15.4: Energy in SHM

v =0
B« mvwwwWAm
* In the absence of nonconservative forces, U K : /
the energy of a simple harmonic oscillator  —
is constant. B[ /VWVVVWNE
U K Y ¥
- Energy is transferred back and forth o D «=3 [WWWIE
between kinetic and potential modes. v K I
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Example: Energy in SHM

Many tall building have mass
dampers, which are anti-sway devices
to prevent them from oscillating in a
wind. The device might be a block
oscillating at the end of a spring and
on a lubricated track. If the building
sways, say eastward, the block also
moves eastward but delayed enough
so that when it finally moves, the
building is then moving back
westward.

Thus, the motion of the oscillator is
out of step with the motion of the
building.

Suppose that the block has mass of
m = 2.72 x 10° kg and is designed to
oscillate at frequency f = 10.0 Hz and
with amplitude x, = 20.0 cm.

(a) What is the total mechanical
energy E of the spring-block system?

The mechanical energy E (the sum of the

kinetic energy K = ?mv of the block and the potential
energy U = ikx of the spring) is constant throughout
the motion of the oscillator. Thus, we can evaluate E at
any point during the motion.

Calculations: Because we are given amplitude x,, of
the oscillations, let’s evaluate E when the block is at po-
sition x = x,,, where it has velocity v = 0. However, to
evaluate U at that point, we first need to find the spring
constant k. From Eq. 15-12 (w = \,'kfm) and Eq. 15-5
(w = 27f), we find
k = ma® = mQ2nf)?
= (2.72 X 10° kg)(27)*(10.0 Hz)?
= 1.073 X 10° N/m.
We can now evaluate E as
E=K+ U= .,,mv + lkr
= 0 + 3(1.073 X 10° N/m)(0.20 m)?

= 2147 X 107J = 2.1 X 10" 1. (Answer)



Example: Energy, continued

(b) What is the block’s speed as it passes through the
equilibrium point?

Calculations: We want the speed at x = 0, where the
potential energy is U = %kxz = 0 and the mechanical
energy is entirely kinetic energy. So, we can write

E =K+ U=3im?+ 3kx?
2,147 X 107) = 3(2.72 X 10° kg)v? + 0,
or v = 12.6 m/s. (Answer)

Because E 1s entirely kinetic energy, this 1s the maxi-
mum speed v,,,.



15.4: An Angular SHM

The figure shows an example of angular SHM. In a
torsion pendulum involves the twisting of a suspension
wire as the disk oscillates in a horizontal plane.

The torque associated with an angular displacement
0 is given by:

T =—KU

]\ JFixc(l end

Suspcn.\‘i(m wire

7 Reference line

K Is the torsion constant, and depends on the ) 1
length, diameter, and material of the suspension *\0 O
wire. The period, T, relates to k as: =

T =21 I_ Here, | is the rotational inertia of the oscillating disk.

K



Example: Angular SHM

Figure a shows a thin rod whose length L is 12.4 cm Suspension

and whose mass mis 135 g, suspended at its midpoint wire

from a long wire. Its period T, of angular SHM is measured

to be 2.53 s. An irregularly shaped object, which we b b
call object X, is then hung from the same wire, as in Fig. b, and its Rod

period T, is found to be 4.76 s. What is the |
rotational inertia of object X about its suspension axis? |

—

Answer: The rotational inertia of either the rod or

object X is related to the measured period. The rotational inertia of a (a) (5) Object X
thin rod about a perpendicular axis through its midpoint

is given as 1/12 mL2.Thus, we have, for the rod in Fig. a,

Now let us write the periods, once forthe rod [, = 5mL?* = (5)(0.135 kg)(0.124 m)?
and once for object X: — 173 X 104 kg m?.

[ [
T =27\~ and T, =27\-%
K K

The constant k, which is a property of the wire, is the same for both figures; only the periods
and the rotational inertias differ.

Let us square each of these equations, divide the second by the first, and solve the resulting
equation for I,. The result is

b= Lk AT0s
T2 (2.53 s)?
= 6.12 X 1074 kg - m>. (Answer)

= (1.73 X 107* kg-m?)



15.6: Pendulums

* In a simple pendulum, a particle of mass m is Pivod
suspended from one end of an unstretchable massless point
string of length L that is fixed at the other end.

« The restoring torque acting on the mass when its
angular displacement is 0, is:

r=-L(F,sind) =l !

m

* o iIs the angular acceleration of the mass. Finally,

o =— m?"é’and
T =27 E
g

» This is true for small angular displacements, 0.



15.6: Pendulums

A physical pendulum can have a complicated distribution
of mass. If the center of mass, C, is at a distance of h
from the pivot point (figure), then for small angular
amplitudes, the motion is simple harmonic.

The period, T, is:

T =21 I_ F,sin6
\/ mgh

Here, | is the rotational inertia of the
pendulum about O.




15.6: Pendulums

In the small-angle approximation we can assume that << 10 ° and use the
approximation sin ¢ = 6. Let us investigate up to what angle @ is the
approximation reasonably accurate?

@ (degrees) @ (radians) sin @
5 0.087 0.087
10 0.174 0.174
15 0.262 0.259 (1% off)
20 0.349 0.342 (2% off)

Conclusion: If we keep < 10 ° we make less than 1 % error.



Example: pendulum

In Fig. a, a meter stick swings about a pivot point at one end, at
distance h from the stick’s center of mass.

(a) What is the period of oscillation T?

KEY IDEA: The stick is not a simple pendulum because
its mass is not concentrated in a bob at the end opposite
the pivot point—so the stick is a physical pendulum.

Calculations: The period for a physical pendulum depends on the
rotational inertia, I, of the stick about the pivot point. We can treat the

stick as a uniform rod of length L and mass m. Then | =1/3 mL?, where
the distance h is L. Therefore,

T\ ms{h mg 4

: zﬂj TR
(3)(9.8 m/s)

(Answer)

Note the result is independent of the pendulum’s mass m




Example: pendulum, cont.:

(b) What is the distance L, between the pivot point O of the stick and the center of
oscillation of the stick?

Calculations: We want the length L, of the simple pendulum (drawn in Fig. b) that has

the same period as the physical pendulum (the stick) of Fig. a. 0

— .
1 1
T=2r\— =2r'\——
g 3g f?- III

Iy

21 _ A\ y Lhelc

Ly=5L = (5)(100cm) = 66.7 cm.  (Answer) ' |

- _._1_)_--"" y >




15.7: SHM and Uniform Circular Motion
« Consider a reference particle P’ moving in uniform
circular motion with constant angular speed (w).
« The projection of the particle on the x-axis is a point P, \
describing motion given by:

X(t) =X cos(at + ¢).

* This is the displacement equation of SHM.

« SHM, therefore, is the projection of uniform circular
motion on a diameter of the circle in which the circular
motion occurs.




15.8: Damped SHM

In a damped oscillation, the motion of the oscillator is
reduced by an external force.

Example: A block of mass m oscillates vertically on a
spring on a spring, with spring constant, k.

From the block a rod extends to a vane which is
submerged in a liquid. The liquid provides the externa
damping force, F.

Rigid support

= Springiness, k

Mass m

Vane

Damping, b




15.8: Damped SHM

Often the damping force, F, is proportional to the N
15t power of the velocity v. That is:

Rigid support

= Springiness, k

F, =-bv

From Newton’s 2"d law, the following DE results:

Mass m

2
d Z(+bd—x+kx=0
dt dt

m

Vane

The solution is:
Damping, &

—bt

X(t) = X_e2"m cos(@'t + ¢)

 Here o' is the angular frequency, and is given by:

| \/k b?
= — >
m 4m




15.8: Damped SHM

—bt
X(t) = X €2 cos(w't + ¢)

x, e 01?2
The figure shows the displacement +.\,,, W e )
function x(t) for the damped LAV
oscillator described before. The 1T INBIRRCNAYRRD "1 TRVAL — 1 ()
amplitude decreases as x,,, exp (- RIRIRVRIRVRI |
bt/2m) with time. L V- Y=Y e



Example: damped SHM

For the damped oscillator in the figure, m 250 g, k = 85 N/m,

and b =70 g/s.

(a) What is the period of the motion?

Because b <Vkm = 4.6 kg/s, the period is
approximately that of the undamped oscillator.

Calculation: From Eq. 15-13, we then have

/ m 0.25 kg
I =2 T 217‘\/85N/m = 0.34s. (Answer)

Rigid support

= Springiness, k

Mass m

Vane

Damping, &




Example: damped SHM, cont

(b) How long does it take for the amplitude of the damped oscillations to drop to half its
initial value?

KEY IDEA Jyyie amplitude at time  is X,, e~ bnzm,

Calculations: The amplitude has the value x,, at t = 0.
Thus, we must find the value of f for which

—bti2m — 1
Xm € = 2Xm:

Canceling x,, and taking the natural logarithm of the
equation that remains, we have In % on the right side and

In(ebmy = —bt/2m

_ 2mlIny;  —(2)(0.25kg)(In3)
L= b B 0.070 kg/s

=5.0s. (Answer)
3

Because T = 0.34 s, this is about 15 periods of oscillation.



Example: damped SHM, cont.

(c) How long does it take for the mechanical energy to drop to one-half its initial value?

KEY IDEA pyste Eq. 15-44, the mechanical energy at
time ¢ is 3ka2, ¢~

Calculations: The mechanical energy has the value
%kx};, at t = 0. Thus, we must find the value of f for which

172 —btim _ 1717 2
kam ¢ — E(Ekxm).

If we divide both sides of this equation by %kxi.? and
solve for t as we did above, we find
~mlns  —(0.25kg)(In3)

= = - 255,
T 000kgs 2> (Answen)




15.9: Forced oscillations and resonance

 When the oscillator is subjected to an external force that is periodic,
the oscillator will exhibit forced/driven oscillations.

« Example: A swing in motion is pushed with a periodic force of angular
frequency, wy.

* There are two frequencies involved in a forced driven oscillator:

I. o, the natural angular frequency of the oscillator, without the
presence of any external force, and

II. @y, the angular frequency of the applied external force.



15.9: Forced oscillations and resonance

Resonance will occur in the forced oscillation if
the natural angular frequency, o, is equal to .

This is the condition when the velocity amplitude
IS the largest, and to some extent, also when the
displacement amplitude is the largest. The
adjoining figure plots displacement amplitude as
a function of the ratio of the two frequencies.

N b=50g/s
(least
damping)

—)=70g/s

b= 140 g/s

Amplitude

0.6 08 1.0 12 14
W,/ ®

Example: Mexico City collapsed in September 1985 when a major earthquake
hit the western coast of Mexico. The seismic waves of the earthquake was

close to the natural frequency of many buildings



