Studies of the combination of νWT histogram and fit methods.

Peter Renkel, Robert Kehoe
2 Southern Methodist University, Dallas, Texas, USA

June 29, 2009

We have two general questions: "Can we combine two very correlated methods, νWT$_h$ and νWT$_f$? Do we gain in statistical error by combining them?" To answer these questions requires a careful evaluation of the source of the decorrelation observed and a verification that a combination does indeed improve the actual measured mass resolution. It also requires that we can properly estimate our final statistical uncertainty.

1 Decorrelation between νWT$_h$ and νWT$_f$

The source of the decorrelation can arise from several sources, such as the different forms of likelihood calculation in Eqs. 12 and 19. More important sources concern the shape differences between probability density histograms and functions due to binning, interpolation of empty bins, or the structure of the chosen fit functions. We discuss each of these in the subsections below.

1.1 Gaussian and Poisson Constraints

To test the impact of the Gaussian and Poisson constraints on the decorrelation between νWT$_h$ and νWT$_f$ methods, we have performed the latter using a fixed n_s and n_b. We obtain the results given in Table 1. The results for the νWT$_h$ method are also given for comparison. The observed shifts are very small and have no impact on the final measured mass from all channels.

1.2 Binning

To address the effect of coarse binning in the h_s and h_b, let us take the idealized case when we know our probability density functions (f_s and f_b) precisely, and we coarsely bin them to provide probability density histograms (h_s and h_b). We can then measure m_t in each of many pseudoexperiments using the histogram-based method and the function-based method. Because the histograms have
channel	ν_{WT_f}	ν_{WT_f} (no n_s and n_b constraints)	ν_{WT_h}
$e\mu$ | 166.5 | 166.5 | 172.8
ee | 181.1 | 181.2 | 181.6
$\mu\mu$ | 185.9 | 185.7 | 186.6
$e+\text{track}$ | 161.2 | 161.3 | 166.1
$\mu+\text{track}$ | 181.2 | 181.2 | 178.8

Table 1: Measured mass in binned and unbinned ν_{WT_f} methods. The ν_{WT_h} result is provided for comparison.

introduced a binning to the fit functions, there will be some evident decorrelation between the two measurements. However, combining the two methods would not be correct because all of the information is contained in the perfect f_s and f_b. The metric by which to judge the sensibility of the combination is the rms of the distribution of measured masses in many pseudoexperiments. These are the actual measurements, and we have gained sensitivity if a combination of the two methods gives an m_t that correlates better with the ‘true’ top quark mass than the original histogram and fit methods. In the scenario considered in this subsection, we will not observe any reduction in rms because the histogram adds no information.

This situation is approximated by the following test. We take the f_s and f_b for the ν_{WT_f}. We bin these functions in the μ_w vs. σ_w plane by taking the values of the probability density functions at the centers of the bins. The binning was taken to be exactly the same as for the h_s and h_b of the ν_{WT_h} method. We do not bin the m_t so that, for each choice of μ_w^i, σ_w^i, we still have an analytic function of m_t to fit and no parabolic fits are involved. The results are given in Table 2. We see that combining ν_{WT_f} and binned ν_{WT_f} does not help in this case.

<table>
<thead>
<tr>
<th>ν_{WT_f}</th>
<th>ν_{WT_f} binned</th>
<th>combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_t rms</td>
<td>5.3</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Table 2: Mass rms values for binned and unbinned ν_{WT_f} methods, plus their combination.

1.3 Interpolation in Histograms

The ν_{WT_h} method introduces an interpolation for bins which have zero entries. This interpolation introduces a potential difference in shape to the probability density histograms. In pseudoexperiments, we employed the linear interpolation used in the default analysis and compared this with a constant interpolation scheme. The observed difference in measured mass was < 100 MeV in all channels.
Table 3: Observed width of m_t as measured in 300 pseudoexperiments for the νWT_h, νWT_f, and combined analyses.

<table>
<thead>
<tr>
<th></th>
<th>νWT_h [GeV]</th>
<th>νWT_f [GeV]</th>
<th>combination [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass rms</td>
<td>5.27</td>
<td>5.31</td>
<td>4.60</td>
</tr>
<tr>
<td>Gaussian fit σ</td>
<td>5.24±0.25</td>
<td>5.21±0.25</td>
<td>4.66±0.21</td>
</tr>
</tbody>
</table>

Table 4: Calibration metrics for combined νWT measurement.

<table>
<thead>
<tr>
<th></th>
<th>slope offset pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>combination</td>
<td>1.007±0.018 −0.03 ± 0.15 1.001±0.020</td>
</tr>
</tbody>
</table>

1.4 Assumed Fit Function Shape

Now let us consider the actual case we have in this analysis where the fit functions are chosen *ad hoc* and are fitted to unmodified h_s and h_b. We know that the fit functions have a large χ^2/dof relative to the histograms, and therefore there is a shift in shape due to the chosen function. To determine if the fit functions are supplying unique information to measure m_t, we use the BLUE weight equations. Using our estimated correlation (85%) and the measured statistical and estimated systematic uncertainties, we obtain weights of 0.76 and 0.24 for νWT_h and νWT_f, respectively, for the data events. We combined the two sets of measurements (each with 300 pseudoexperiments) and the result is shown in Fig. 1. We see three mass distributions: for νWT_h, νWT_f, and the combination. The rms for the combination is smaller than the rms for νWT_h and the rms for νWT_f. The estimated statistical uncertainty for the combination is obtained from the 15% correlation coefficient, and the estimated statistical uncertainties from each pseudoexperiment corrected for the pull width. The agreement of this uncertainty with the mass rms demonstrates that our statistical errors are estimated correctly.

In Fig. 1 we fitted these three plots to gaussians, and the results are also shown. The numerical rms and fit values are given in Table 3. The conclusion of this study is that we are allowed to combine the measurements in our case.

2 Performance for combining νWT_f and νWT_h

The average expected statistical uncertainty for the combination is 4.8 GeV. To confirm that combining the νWT_f and νWT_h can correctly provide this estimate, we also tested the calibration of the combination. In 300 pseudoexperiments, we measured the slopes, offsets and pulls of the combined m_t measurement with the true m_t. The results are shown in Fig. 2 and Table 4.
Figure 1: (left) Mass distribution for ν_{WT_f}, ν_{WT_h} and combination and fits for this mass distributions.

Figure 2: (left) Calibration and slope for the combination of ν_{WT_f} and ν_{WT_h} and (right) pulls for the combination.
3 Acknowledgments

We would like to thank Aurelio Juste, Scott Snyder and Elizaveta Shabalina for helpful comments toward these studies.