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I. Introduction

The Standard Model of elementary particles and their interactions has two basic components:
the spontaneously broken SU(2)× U(1) electroweak theory, and the unbroken SU(3) color gauge
theory, known as Quantum Chromodynamics (QCD). If we date the birth of the theory of strong
interactions to the discovery of the neutron, QCD has existed for about a third of the ensuing time,
profoundly deepening and enlarging our view of the subject.

Perhaps it is worthwhile to recall the situation in strong-interaction studies at the time when
QCD emerged. Into the mid-sixties, the picture of strong interactions centered on general princi-
ples of scattering amplitudes (analyticity, unitarity, crossing, etc.) that could be developed without
information on elementary constituents. The idea was widely entertained that the strong inter-
actions were not to be described by a renormalizable field theory of point particles, which had
been so successful for quantum electrodynamics (Weinberg, 1977; Schweber, 1994). Whether
one accepted this viewpoint or not,1 in the absence of a viable theory of strongly interacting el-
ementary particles it was clearly necessary to rely on general properties of the scattering matrix.
Perturbative field theory, if utilized at all, could be employed primarily to illustrate and explore the
consequences of these properties (Eden, Landshoff, Olive, and Polkinghorne, 1966).

In this context, Regge theory (Regge, 1959; Chew and Frautschi, 1961; P.D.B. Collins, 1971),
and its allies and generalizations, such as the dual model (Veneziano, 1968; Mandelstam, 1974)
and Reggeon calculus (Gribov, 1968; Abarbanel, Bronzan, Sugar, and White, 1975; Baker and
Ter-Martirosyan, 1976), which described particles primarily as analytic features of the S matrix,
flourished. A large body of experimental data, including near-forward elastic (Giacomelli, 1976),
diffractive (Goulianos, 1983), and high-multiplicity inelastic scattering (Mueller, 1970; Frazeret
al., 1972) are still best understood in this language. These developments also gave rise, of course,
to string theory (Nambu, 1970; Goto, 1971; Green, Schwarz, and Witten, 1987). The weak and
electromagnetic interactions of hadrons with leptons was, and still is, profitably described by cur-
rent algebra (Gell-Mann and Ĺevy, 1960; Adler and Dashen, 1968), which provided elementary
operators, the currents, even without elementary particles. The currents themselves are linked
to strong dynamics by the partially conserved axial-vector current hypothesis, which led to an
effective field theory for pions (Weinberg, 1970) that remains today our fundamental picture of
low-energy strong interactions (Weinberg, 1979; Leutwyler, 1992). Into this rich and complex set
of investigations and viewpoints came partons and quarks.

The study of the strong interactions was transformed with the advent of accelerators in the
multi-GeV energy range. The famous SLAC experiments of the 1960s and 1970s were the first to
show the pointlike substructure of hadrons (Bloomet al., 1969; Friedman and Kendall, 1972). The
parton model (Feynman 1969; Feynman, 1972; Bjorken and Paschos, 1969) showed that elemen-
tary constituents, interacting weakly, could convincingly explain the central experimental results.
In the same period, the quark model (Gell-Mann, 1964; Zweig, 1964; Kokkedee, 1969) rational-

1For an impression of this intellectual climate, see the lectures of Chew and Dalitz, published side by side inDeWitt
and Jacob, 1965.
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ized hadron spectroscopy. Out of it grew the idea of color (Han and Naumbu, 1965; Greenberg,
1964), a new quantum number postulated in the first instance to avoid the apparent paradox that
the quark model seemed to require spin-1/2 quarks with bosonic statistics.

The idea of extending the global color model to a gauge theory (Fritzschet al., 1973; Gross and
Wilczek, 1973b; Weinberg, 1973) was in many ways a natural one,2 but the motivation for doing
so was incalculably strengthened by the newfound ability to quantize gauge theories in a manner
that was at once unitary and renormalizable,3 developed, in large part to describe electroweak
interactions. Concurrently, the growth of the technology of the renormalization group and the
operator product expansion (Wilson, 1969; Callan, 1970; Symanzik, 1970; Christ, Hasslacher, and
Mueller, 1972; Frishman, 1974) made it clear that any field theory of the strong interactions would
have to have an energy-dependent coupling strength, to harmonize the low-energy nature of the
strong interactions, which gives them their name, with their weakness at high energy (or short
distances). The concept of asymptotic freedom (Gross and Wilczek, 1973a; Politzer, 1973), which
is satisfied almost uniquely by quantum chromodynamics, brilliantly filled these demands.

As will appear in the following sections, asymptotic freedom is a perturbative concept. Yet, as
searches for free quarks, let alone gluons, continued to give null results, it became evident that the
perturbation theory of quantum chromodynamics had to be approached somewhat differently than
that of, say, quantum electrodynamics. The usual S matrix and cross sections for isolated quarks
and gluons in QCD all vanish, completely replaced by bound-state dynamics. This is the hypoth-
esis of “confinement”. After some time it also became obvious that although asymptotic freedom
is a perturbative prediction, confinement is not. The use of perturbation theory in quantum chro-
modynamics, that is, “perturbative QCD”, or pQCD, therefore developed rather slowly and even
haltingly, amid considerable scepticism. Nevertheless, many predictions of the theory, primar-
ily but not exclusively associated with inclusive processes, do not depend upon its long-distance
behavior. These short-distance predictions are the realm of perturbative QCD.

Since QCD remains an “unsolved” theory, with no single approximation method applicable
to all length scales, the justification for the use of perturbative QCD rests in large part directly
on experiment. In this regard, many of us remember vividly the rapid transformation of quantum
chromodynamics from a promising but controversial candidate theory to a full-fledged part of the
Standard Model, taken perhaps too confidently for granted. In this transformation, the achieve-
ments of lattice-based numerical studies also played an important role (Wilson, 1974; Kogut and
Susskind, 1975; Creutz, 1983).

Over time, it has become ever clearer that perturbative QCD naturally describes a large set of
high-energy, large-momentum-transfer cross sections. It is in this restrictive yet important area
that its formalism has developed, and in which it has proved an invaluable tool in the study of the
strong interactions. Beyond this, however, the very successes of a purely perturbative approach
challenge us to bridge the gap between perturbative and nonperturbative aspects of the theory.

2See in this connection the lectures of Gell-Mann and Wilczek inZerwas and Kastrup, 1992.
3Among the landmarks of this development areFaddeev and Popov, 1967; ’t Hooft, 1971a; ’t Hooft, 1971b; ’t

Hooft and Veltman, 1972; andLee and Zinn-Justin, 1972a, 1972b, 1972c.
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Every experiment in strong interactions tests QCD from some fixed “short” distance to its very
longest distance scales, over which the value of the strong coupling may change radically. From a
mathematical point of view, as well, QCD has special features. As we shall outline below, many of
the basic tests and predictions of the theory rely on arguments “to arbitrary order” in perturbation
theory. Thus, the very role of perturbative expansions in four-dimensional quantum field theories
is accessible in QCD as in no other component of the Standard Model. Perhaps the greatest legacy
of QCD will be in the theoretical and experimental methods that must still be developed to meet
its unique demands.

Our intention in this handbook is to review the basic ideas and methods of perturbative QCD,
especially in those areas for which there is ample experimental verification. This work is meant to
be a sourcebook on perturbative QCD, accessible and useful to experts and novices, experimental-
ists and theorists alike. In it, we have collected discussions of the basic ideas and applications of
the theory. While we have no intention of replacing more scholarly presentations of field-theoretic
techniques and experimental reviews, we have included in the next two sections and in the appen-
dices considerable introductory material on the basic concepts of QCD, its perturbative treatment,
and the parton model, out of which it grew. In the fourth section, we summarize the basic the-
orems upon which the perturbative treatment rests. We hope that sophisticated readers will find
useful the discussions, applications, and experimental reviews of specific processes and techniques
in the sections that follow. These are organized according to process, including electron-positron
annihilation, deeply inelastic scattering, and hadron-hadron cross sections, first those induced by
electroweak interactions and then those induced by QCD itself. We conclude with a description
of the “global” approach to nucleon parton distributions. For the simplest processes, we have ex-
hibited theoretical predictions explicitly. Given the complexity of many recent results, this is not
always possible, and we have relied in this case on references to the literature and, as is increasingly
becoming relevant, to specialized computer programs.

This article is the product of the CTEQ collaboration4 as a whole, consisting of both experi-
mentalists and theorists, and we have not attempted to enforce on ourselves an artificial uniformity
of presentation and style. We hope and believe, however, that readers will find below a coordinated
and fundamentally unified text. We should also like to think of this as an evolving document, and,
in this initial version, concentrate on inclusive high-energy reactions, for which the most basic re-
sults and processes are treated in detail. Directions abound for expansion, particularly toward mod-
erate energy, the perturbative-nonperturbative junction, and hadronic structure: elastic scattering,5

4Coordinated Theoretical-Experimental Project on QCD
5Brodsky and Lepage, 1989summarize this subject up to that time. Much recent work has discussed the roles of

Sudakov effects (Landshoff and Pritchard, 1980; Lepage and Brodsky, 1980; Mueller, 1981; Pire and Ralston, 1982;
Botts and Sterman, 1989; Li and Sterman, 1992) and “soft” physics (Isgur and Llewellyn Smith, 1989; Radyushkin,
1984; Jacob and Kroll, 1993).
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“small-x” evolution,6 pQCD in the Regge limit,7 Sudakov resummation techniques,8 asymptotic
behavior,9 QCD coherence,10 QCD in nuclei,11 and transparency,12, on the (supporting) roles of
pQCD in Monte Carlo simulations of event structure, QCD sum rules and heavy quark effective
theory, and much more.

6See especially the reviews ofGribov, Levin, and Ryskin, 1983; Levin and Ryskin, 1990; and the discussion of
modified evolution inMueller and Qiu, 1986.

7SeeKuraev, Lipatov, and Fadin, 1976; Balitskii and Lipatov, 1978; Lipatov, 1989; Faddeev and Korchemsky,
1995.

8For a variety of applications, seeCollins and Soper, 1981; Mueller, 1981; Sen, 1981; Sterman, 1987; Collins,
1989; Catani and Trentadue, 1991; Catani, Turnock, Webber, and Trentadue, 1993.

9Tkachov, 1983.
10See the reviews ofBassetto, Ciafaloni, and Marchesini, 1983; Dokshitzer, Khoze, and Troyan, 1989; Dokshitzer

et al., 1991.
11Reviewed inFrankfurt and Strikman, 1988.
12Brodsky, 1982; Mueller, 1982; Brodsky and Mueller, 1988.
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II. Field Theory Background

This section reviews a number of relevant facts about QCD as a field theory, primarily its
Lagrange density and Feynman rules, amplitudes and their renormalization, and the concepts of
asymptotic freedom and infrared safety. We assume here a general familiarity with elementary
methods in field theory. More detailed discussions of field theory topics may be found in text-
books. Asymptotic freedom, infrared safety and the renormalization group applied to QCD are
also covered in a number of useful reviews (Muta, 1987; Mueller, 1989; Sterman, 1991; Dok-
shitzeret al., 1991).

A. Lagrangian

The flurry of fields, indices, and labels in the telegraphic formulas that follow in this subsection
are probably accessible only after the benefit of a pedagogical introduction that must be found
elsewhere. We anticipate, however, that some number of readers may find these formulas a useful
refresher of memory. Others will be satisfied by the summary of perturbation theory rules in Fig.1,
and will wish to skip to subsectionB., which begins a review of quantum theoretic concepts much
less dependent on the technical content of QCD, but which, toward the end of this section, explain
what is special about QCD.

Quantum Chromodynamics is defined as a field theory by its Lagrange density,

LQCD
eff

[
ψ f (x), ψ̄ f (x),A(x), c(x), c̄(x); g,mf

]
= Linvar +Lgauge+Lghost , (2.1)

which is a function of fields [ψ f (quark),A (gluon), andc (ghost)] and parametersg andmf , where
f labels distinct quark fields.Linvar is the classical density, invariant under localS U(Nc) gauge
transformations, withNc = 3 for QCD.Linvar is of the form that was originally written down by
Yang and Mills (Yang and Mills, 1954),

Linvar =
∑

f

ψ̄ f

(
i /D[A] −mf

)
ψ f −

1
4

F2[A]

=

nf∑
f =1

4∑
α,β=1

Nc∑
i, j=1

ψ̄ f ,β, j

(
i(γ)µβαDµ, ji [A] −mfδβαδ ji

)
ψ f ,α,i

−1
4

3∑
µ,ν=0

N2
c−1∑

a=1

Fµν,a[A]Fµν
a[A] . (2.2)

In the second expression, we have written out all indices explicitly, using the notations

Dµ,i j [A] ≡ ∂µδi j + igAµa(Ta
(F))i j , (2.3)

and

Fµν,a[A] ≡ ∂µAνa − ∂νAµa − gCabcAµbAνc . (2.4)
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Let us describe what these formulas represent, working backwards from Eq. (2.4).
Fµν,a is the nonabelianfield strengthdefined in terms of thegluonvector fieldAµ

b, with N2
c − 1

group componentsb. g is the QCD (“strong”) coupling and theCabc,a,b, c = 1 . . .N2
c − 1, are real

numbers, called the structure constants ofS U(Nc), which define itsLie algebra. As mentioned
above, for QCD (Fritzschet al., 1973; Gross and Wilczek, 1973b; Weinberg, 1973), Nc = 3,
but for many purposes it is useful to exhibit theNc-dependence explicitly.Nc is often called the
“number of colors”.

The Lie algebra is defined by the commutation relations of theN2
c −1,Nc×Nc matrices (Ta

(F))i j

that appear in the definition ofDµ,i j , Eq. (2.3),

[Ta
(F),Tb

(F)] = iCabcTc
(F) . (2.5)

These commutation relations define the algebra. Here we have taken theTa
(F) to be hermitian,

which makes QCD look a lot like QED. Some useful facts about the algebra of generators are
listed in AppendixA:.

Dµ
i j [A] is thecovariant derivativein theNc-dimensional representation ofS U(Nc), which acts

on the spinorquarkfields in Eq. (2.2), with color indicesi = 1 . . .Nc. There arenf independent
quark fields (nf = 6 in the standard model), labeled byflavor f(= u,d, c, s, t,b). In the QCD
Lagrangian, they are distinguished only by their masses.

The quark fields all transform as

ψ′f ,α, j(x) = U ji (x)ψ f ,α,i(x) , (2.6)

under local gauge transformations, where

U ji (x) =

exp

i
N2

c−1∑
a=1

βa(x)Ta
(F)




ji ,

(2.7)

with βa(x) real. Defined this way,Ui j (x) for eachx is an element of the groupS U(Nc), which is
the local invariance that has been built into the theory. The corresponding transformation for the
gluon field is most easily expressed in terms of anNc × Nc matrix,Aµ(x),

[Aµ(x)] i j ≡
N2

c−1∑
a=1

Aµa(x)(Ta
(F))i j , (2.8)

which is the form that occurs in the covariant derivative. The gluonic field is then defined to
transform as

A′µ(x) = U(x)Aµ(x)U−1(x) +
i
g

[∂µU(x)]U−1(x). (2.9)

With these transformation rules, the gauge invariance ofLinvar is not difficult to check.
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The gauge invariance ofLinvar actually makes it somewhat difficult to quantize. This problem
is solved by adding toLinvar gauge-fixingandghostdensities,LgaugeandLghost, as in Eq. (2.1). The
former may be chosen almost freely; the two most common choices being

Lgauge = −λ
2

N2
c−1∑

a=1

(
∂µA

µ
a

)2
1 < λ < ∞,

Lgauge = −λ
2

N2
c−1∑

a=1

(n · Aa)
2 λ→ ∞, (2.10)

wherenµ is a fixed vector. The first defines the set of “covariant” gauges, the most familiar having
λ = 1, theFeynman gauge. The second defines the “axial” or “physical” gauges (Leibbrandt,
1987), since takingλ to infinity eliminates the need for ghost fields. Here, pickingnµ light-like,
n2 = 0, defines thelight-cone gauge. Forλ → ∞, a nonzero value ofn · A leads to infinite action,
and for this reason the physical gauges are often called “n · A = 0” gauges.

Finally, in the covariant gauges we must add a ghost Lagrangian (Feynman, 1963; DeWitt,
1967; Faddeev and Popov, 1967; ’t Hooft and Veltman, 1972)

Lghost = (∂µc̄a)(∂
µδad − gCabdA

µ
b)cd, (2.11)

whereca(x) and c̄a(x) are scalar ghost and antighost fields. In the quantization procedure, ghost
fields anticommute, despite their spin. In anS U(Nc) theory, the ghost fields ensure that the gauge
fixing does not spoil the unitarity of the “physical” S-matrix that governs the scattering of quarks
and gluons in perturbation theory.

B. Feynman Rules and Green Functions

The perturbation theory (Feynman) rules for QCD are summarized in Fig.1. With our choice of
(hermitian) generatorsTa

(F), the quark–gluon coupling is just like the QED fermion-photon vertex,
except for the extra matrix factorTa

(F). The remaining rules for vertices are not difficult to derive in
detail, but their essential structure is already revealed by the correspondence (∂ρφ)→ −iqρ, where
qρ is the momentum flowing into the vertex at any fieldφ.

As for the propagators, we pause only to notice some special features of physical gauges. In
then · A = 0 gauge, we have, from the propagator in Fig.1,

kµGµ
ν(k,n) = i

(
nν

n · k −
n2kν

(n · k)2

)
· (2.12)

Note the lack of a pole atk2 = 0 on the right-hand side of this relation. This means that the
unphysical gluon polarization that is proportional to its momentum does not propagate as a particle
in these gauges. The lack of a pole for the gluon scalar polarization is the essential reason why
ghosts are not necessary in physical gauges. This simplification also makes these gauges useful for
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(a) Propagators: Gluon, quark, and ghost lines of momentumk

ν,a µ,b i δba
k2+iε

[−gµν +
(
1− 1

λ

)
kµkν

k2+iε
] covariant gauge

i δba
k2+iε

[−gµν + kµnν+nµkν
n·k − n2 kµkν

(n·k)2 ] physical gauge

α, i
k →

β, j i
δi j

k2−m2+iε
[/k + m]βα

a b i δba
k2+iε

(b) Vertices (all momenta defined to flow in)

(i) (ii)

(iii) (iv)

(i) −ig[T(F)
c ] ji [γµ]βα

(ii) gCabck′α

(iii) −gCa1a2a3[g
ν1ν2(p1 − p2)ν3 + gν2ν3(p2 − p3)ν1 + gν3ν1(p3 − p1)ν2]

(iv)
−ig2[ Cea1a2Cea3a4(g

ν1ν3gν2ν4 − gν1ν4gν2ν3)
+ Cea1a3Cea4a2(g

ν1ν4gν3ν2 − gν1ν2gν3ν4)
+ Cea1a4Cea2a3(g

ν1ν2gν4ν3 − gν1ν3gν4ν2)]

Figure 1: Perturbation theory rules for QCD.
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many all-order arguments in pQCD. The price, however, is the unphysical poles atn · k = 0, which
are often thought of as principal values,

P
1

(n · k)α
≡ 1

2

[
1

(n · k + iε)α
+

1
(n · k− iε)α

]
. (2.13)

This definition, however, is awkward beyond tree level (when loops are present) and other defini-
tions (Mandelstam, 1983; Leibbrandt, 1987) are necessary to carry out loop calculations correctly
(Bassetto, Nardelli, and Soldati, 1991; Bassettoet al., 1993). In any case, it is often desirable to
back up results derived in physical gauges with calculations or arguments based on covariant gauge
reasoning.

The Feynman rules allow us to defineGreen functionsin momentum space. These are the
vacuum expectation values of time-ordered products of fields,

(2π)4δ(p1 + . . . + pn)Gα1···αn(p1, . . . , pn) =

n∏
i=1

∫
d4xie

−ipi ·xi

×〈0| T[φα1(x1) . . . φαn(xn)] |0〉 , (2.14)

where theαi represent both space-time and group indices of the fields, collectively denoted byφ.
At any fixed order in perturbation theory,Gα1···αn is given by the sum of all diagrams constructed
according to the rules of Fig.1. Corresponding to each of the fields in the matrix element, every
diagram will have an external propagator carrying momentumpi into the diagram, with free exter-
nal indicesαi. Essentially all of the physical information of the theory is contained in its Green
functions.

C. From Green Functions to Experiment

The route from Feynman rules, through Green functions to experimentally observable quanti-
ties is straightforward, but involves a number of steps which it may be useful to outline. In what
follows, we shall briefly review the roles of the S-matrix, cross sections, renormalization schemes
and regularization.

We do not address yet the issue of whether perturbation theory is of any use for reliable calcu-
lations of physical quantities in QCD.

1. The S-matrix and Cross Sections

By themselves, Green functions are not always direct physical observables. For one thing,
their external lines are not necessarily on-mass-shell, and, in a gauge theory, the Green functions
are not even gauge invariant. The relation between Green functions and physical quantities like
cross sections is, however, quite simple. Let us review the basic steps in a generic situation with
fieldsφα.
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First, a two-point Green function has a pole atp2 = m2. Near the pole, it has the form of a
“free” propagator (Fig.1) times a scalar constantRφ,

Gαβ(p)→ RφGαβ(p) f ree + finite . (2.15)

If the particles under discussion are hadrons, thenRφ and the physical massM are not perturbatively
calculable. If, nevertheless, we discuss the perturbativeS-matrix for quarks and gluons, thenRφ

andM can be computed as a power series in the coupling

Rφ = 1 + O(g2)

M = m+ O(g2) . (2.16)

TheS-matrixis simply the amplitude for the scattering of momentum eigenstates into other mo-
mentum eigenstates. In particle physics, the most important S-matrix elements describe the scat-
tering of two incoming particles into some set of outgoing particles. The S-matrix is derived from
Green functions by “reduction formulas”, of the general form

S ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn)) =
∏

i

ψ(pi , si)αi

×
G−1

αiβi
(pi) f ree

R1/2
φ

Gβ1···βn(p1, p2,−p3, . . . ,−pn) , (2.17)

where nowsi represents the spin (and other quantum numbers) of particlei. Hereψ(pi , si)αi repre-
sents the wave function of external particlei, given by

u(p, s) for an incoming Dirac particle

ū(p, s) for an outgoing Dirac particle

v̄(p, s) for an incoming Dirac antiparticle

v(p, s) for an outgoing Dirac antiparticle

ε(p, s) for an incoming vector particle

ε∗(p, s) for an outgoing vector particle. (2.18)

Once again,Gαiβi (pi) f ree is the free propagator, for fieldi, but with the correct physical mass of the
corresponding particle.

From the S-matrix, it is customary to define thetransition matrix Tby

S = I + iT , (2.19)

with I the identity matrix in the space of states. For momentum eigenstates,T contains an explicit
momentum-conservation delta function, which it is convenient to separate explicitly,

iT ((p1, s1) + (p2, s2) → (p3, s3) + . . . (pn, sn)) =

(2π)4δ4(p1 + p2 − p3 − . . . − pn)

×M((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn)) .

(2.20)
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It isM-matrix elements that are used to derive cross sections, by integrating the general infinitesi-
mal cross section,

dσ ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn))

=
1

4
√

(p1.p2)2 −m2
1m

2
2

dPSn

× |M ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn))|2 ,

(2.21)

overn-particle phase space,

dPSn =
∏

i

( d3pi

2ωi(2π)3

)
Ni(2π)4δ4(p1 + p2 −

n∑
j=3

pj) . (2.22)

HereNi = 1 for vector and scalar particles, as well as for Dirac particles when we normalize their
wave functions according tou(p, s)u(p, s) = 2m. For the other common choice,u(p, s)u(p, s) = 1,
we haveNi = 2m for Dirac fermions. If one integrates a differential cross section over the phase
space forn identical particles, then one should include an additional factor ofSn = 1/n! that
compensates for counting the same physical staten! times. When discussing the perturbative
expansion of a cross section, it is often useful to work directly with diagrams for|M|2. The rules
for this expansion are almost the same as for the S-matrix, and are summarized in AppendixB:.

2. UV Divergences, Renormalization and Schemes

Green functions, and consequently cross sections, calculated according to the unmodified Feyn-
man rules described above suffer a severe problem when we include diagrams with loops. These
are the ultraviolet (UV) divergences, associated with infinite loop momenta. We may think of
these divergences as due to virtual states in which energy conservation is violated by an arbitrarily
large amount. Let us see how these problems come about, and review how they can be solved in
perturbative calculations.

A typical one-loop integral UV divergence is illustrated by the diagram with scalar lines in
Fig. 2. For scalar lines the diagram is given, before renormalization, by

Γ(un)(p) =

∫
d4k

(2π)4

1
(k2 −m2)((p− k)2 −m2)

=

∫ 1

0
dx

∫
d4k

(2π)4

1(
k2 − 2xp · k + xp2 −m2

)2

=

∫ 1

0
dx

∫
d4k′

(2π)4

1(
k′2 + x(1− x)p2 −m2

)2
. (2.23)
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In the second equality, we have combined the two denominators into one by a trick known as
Feynman parameterization. In the third, we have completed the square in the denominator by the
change of variablek′ = k− xp. Of course, all this is purely formal, since the integral as it stands is
divergent fork→ ∞, that is, in the ultraviolet. Nevertheless, let us consider a one loop integral of
the generic form,

Γ(un)(p) =

∫
d4k

(2π)4

1(
k2 − M2(p)

)2
, (2.24)

which is undefined because of a logarithmic divergence at infinity. We letM2(p) denote the de-
pendence on external momentum(a) of the diagram (and “Feynman parameters” likex above). In
QCD there is in general also momentum dependence through Dirac traces and vector indices in the
numerator, but they won’t affect the point we are trying to make right now.

Figure 2: An ultraviolet-divergent one-loop scalar diagram.

The purpose of renormalization is to replace divergent integrals like the one above by finite
expressions, in a systematic fashion. For the logarithmically divergent integrals at hand, renormal-
ization consists of the replacement (suppressing thex integral)

Γ(un)(p)→ Γren(p, µ) =
−i

(4π)2
ln

(
M2(p)
µ2

)
, (2.25)

whereµ is a new mass, not included as a parameter in the original Lagrangian of the theory. Note
that we can check Eq. (2.25) by differentiating Eq. (2.24) with respect toM2, doing the (now
convergent)k integral, and then integrating the result with respect toM2 to get Eq. (2.25) up to a
constant. To begin with,µ is completely arbitrary, and may differ from integral to integral. It is
necessary to specify a set of rules to determine the value ofµ for each divergent diagram. Such a
set of rules is called arenormalization scheme.

There are two basic kinds of schemes currently in wide use.

(i) In amomentum subtractionscheme we choose

µ = M(p0)→ Γren(p0) = 0 , (2.26)

with p0 some fixed set of external momenta, andΓ a particular divergent vertex function.
This is what is done in quantum electrodynamics, for instance, when we renormalize so
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that all the one (and higher) loop corrections to the photon-electron vertex vanish at zero
momentum transfer. (In this casep0 is any point where the photon momentum is zero, and
the electrons are on-shell so thatp2

i = m2
e.)

(ii) In the second generic renormalization scheme,µ is chosen the same foreverydivergent
integral, and appears as a free parameter in renormalized Green functions. This defines a
minimal subtractionscheme. Because of its underlying simplicity, minimal subtraction is
favored for many practical pQCD calculations. See AppendixC: for its basis in “dimen-
sional regularization”. Despite this rather technical origin, minimal subtraction for one-loop
diagrams reduces to the simple prescription described here. The precise scheme for minimal
subtraction that is usually used is called the “modified minimal subtraction” orMS scheme.

Clearly, what we have said so far is highly simplified. It can be shown that these renormaliza-
tion schemes are flexible enough to handle not only logarithmically, but also quadratically diver-
gent integrals, and apply to multi-loop as well as one-loop integrals. Suffice it to say that these
issues may be handled, and the substitution (2.25) we have just described captures the heart of the
issue (Collins, 1984).

3. The Renormalization Scale and Experiment

The question now naturally arises, what can we do with a theory that has an arbitrary parameter
µ in it? The procedure for getting unique experimental predictions is this. For simplicity, let us
assume we have a massless theory with only a single coupling constantg. We now compute a cross
section —anycross section — which we shall callσ(p, µ), with p denoting the momenta of the
particles involved. The perturbation theory forσ will always have some UV divergent integrals in
it, so its (renormalized) perturbation series will look like

σ(p, µ) =

A∑
n=1

an(p, µ)g2n , (2.27)

whereA is the highest order that we have had the strength to compute, and thean are coefficients
that are the results of the computation. Now first we go out and measureσ(p, µ) for some particular
set of momenta ¯p. Next we fixµ to be whatever we like. Then we cansolveEq. (2.27) for g, with
a result that we denoteg(µ). (g(µ) is implicitly also a function of ¯p, and ofA.) This may not seem
to accomplish much, until we realize that we can now computeσ for anyvalue ofp. Thus, at the
price of doing one experiment, we have predictions for a whole set of experiments. Not only that,
but if g really is the only parameter in the theory, we have unique predictions for every single cross
section in the theory for which we are willing to compute a perturbative series.

Now, becauseσ(p, µ) is a physical quantity itmustbe independent of our choice ofµ, which
leads us to the equation

µ
d
dµ
σ(p, µ) = 0 , (2.28)
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where we must remember to keep theµ dependence ing(µ). This equation holds exactly if we have
the exact solution of the theory. If we apply it to the finite order approximation Eq. (2.27), then
there will be errors of the order of the first uncomputed term in the perturbation expansion13. This
will be a useful approximation if the coupling is small, which leads us to our next topic,asymptotic
freedom.

D. Asymptotic Freedom

The successes of QCD in describing the strong interactions are summarized by two terms:
asymptotic freedom(Gross and Wilczek, 1973a; Politzer, 1973) andconfinement. To understand
the importance of these two attributes we should recall some facts about the strong interactions.
Hadron spectra are very well described by thequark model, but quarks have never been seen in
isolation. Any effort to produce single quarks in scattering experiments leads only to the production
of the familiar mesons and baryons. Evidently, the forces between quarks are strong. Paradoxically,
however, certain high energy cross sections are quite successfully described by a model in which
the quarks do not interact at all. This is theparton modelthat we shall describe in SectionIII. .
Asymptotic freedomrefers to the weakness of the short-distance interaction, while theconfinement
of quarks follows from its strength at long distances.

An extraordinary feature of QCD is its ability to accommodate both kinds of behavior. It does
this by making the forces between quarks a rather complicated function of distance. Qualitatively,
when two quarks are close together, the force is relatively weak (this is asymptotic freedom), but
when they move farther apart the force becomes much stronger (confinement). At some distance, it
becomes easier to make new quarks and antiquarks, which combine to form hadrons, than to keep
pulling against the ever-increasing force. The realization that a single theory might describe such a
complicated behavior is commonplace nowadays, but it required a major reorientation in our way
of thinking about fundamental forces.

The detailed evidence for the coexistence of asymptotic freedom and confinement in QCD is
a complicated web of analytic and numerical results and inferences. In this handbook, we shall
be concerned mainly with the experimental consequences of asymptotic freedom. Nevertheless, in
the following we shall try and give the reader an idea of the origin of these properties of QCD, as
they are embodied in the Feynman rules that we have just outlined.

1. Forces in QCD and QED

A reasonably direct approach to asymptotic freedom and confinement is through a discussion
of the effective forces that are implicit in the Feynman rules of the theory. To see what’s involved,
we can consider first the more familiar case of quantum electrodynamics (QED), where we know

13How to minimize these errors in practical cases is a subject of on-going discussion and controversy (Stevenson,
1981; Stevenson, 1984; Brodsky, Lepage, and Mackenzie, 1983; Brodsky and Lu, 1994). We shall take the point of
view that weakµ dependence is a good qualitative sign that errors are not large, but that this assumption must be
closely examined on a case-by-case basis.
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quite well the basic force, the Coulomb force, derived from the potential between two particles at
rest,

V(Q1,Q2, r ) =
1
4π

Q1Q2

|r | . (2.29)

Q1 andQ2 represent the magnitudes of two charges, separated byr . The charges are measured in
a system of units in which the permittivity of the vacuum (ε0 in mks units) is unity. (This is the
usual system of units for quantum field theory.) Let us see how this potential comes about in QED,
which is the abelian version of the gauge theory with Lagrange density, Eq. (2.2).

The Coulomb potential may be derived by considering the scattering of two very heavy charged
particles. If the particles are sufficiently heavy, we can ignore energy transfer compared to momen-
tum transfer, and use a nonrelativistic approximation (p2/2M � M). If we wanted to go into detail,
we would compute the nonrelativistic scattered wave functions in terms of momentum transfer,
from which we could infer a spatial potential. We shall short-circuit this reasoning and just give
the rule: the potential is the spatial Fourier transform of the gauge field propagator, considered as
a function of three-momentum (|k|) only, multiplied by the coupling constants at the vertices and
divided by−i. For equal charges,Qi = e, this is

V(r ) = −e2

∫
d3k

(2π)3
e−ik·r 1

−k2

= e2 2
(2π)2

∫ ∞

0
dk

sin(k|r |)
k|r | , (2.30)

where the second equality comes from the angular integrals. That this is the Coulomb potential for
unit charges follows from the integral formula,∫ ∞

0
dx

sin(x)
x

=
π

2
. (2.31)

The purpose of this simple exercise is to show how close the Feynman rules are to our ideas of
potential and force. What we have verified so far is that the potential can be found from the lowest
order diagram shown in Fig.3.

Figure 3: The lowest-order potential in QED.
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Beyond lowest order in perturbation theory the potential will still be the Fourier transform of
the scattering amplitude,

V(r ) =

∫
d3k

(2π)3
e−ik·r A(k2) , (2.32)

with A(k2) given at lowest order by single-photon exchange as above.
Let us pursue our picture of the nonrelativistic scattering of heavy particles in perturbation

theory a bit further, and discuss the effect of some of the perturbative corrections to Fig.3, shown
in Fig. 4.

Figure 4: Field theory corrections to the potential in QED.

These graphs describeO(e4) contributions to the potential, whose momentum dependence may
be different from the lowest order. We may think of the fermion loop in the first diagram as virtual
“light” fermions, of a massm � M. To define the potential at this order, we actually need to
introduce an infrared cutoff, or to sum over soft photon emission, and to carry out renormalization.
All this will not affect the main point we want to make here, however, and we shall assume that
this has been done, without going into details. Rather, we shall concentrate on the physical picture.

Our basic problem is that we cannot separate experimentally the contributions of the various
diagrams of Fig.4, or those from yet higher orders, from the lowest order amplitude. As we shall
see, the higher-order corrections modify the momentum dependence, and therefore the potential.
How then, do we ever manage to determine the electromagnetic coupling? We do it bydefining
the amplitude at some fixed momentum transfer−k2 = t0 to be

A(t0) =
α(t0)

t0
, (2.33)

where thefine structure constantα is

α =
e2

4π
. (2.34)

Notice that this form says nothing yet about the momentumdependenceof A(t), only about what
it is at a specific value of its argument. Since we define this to be the coupling divided byt0, the
value of the coupling that we find depends upon thet0 that we choose.

The qualitative effects of the corrections in Fig.4 to e2(t0) = 4πα(t0) are easily understood
without explicit calculations. The main contribution is from the first diagram, in which the two
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incoming charges are linked by a virtual photon that includes a “self-energy” diagram consisting
of a fermion-antifermion pair. The net charge of such pairs is zero, and they act to “screen”
each of the original charges, as seen by the other. We may think of each heavy charge as being
surrounded by a cloud of light charged pairs. If the incoming charges are far apart, each sees a very
large cloud which serves to decrease the effective charge of the other. Ast0 increases, however, the
charges come closer together (by the uncertainty principle), get inside the clouds, and the screening
becomes less effective. This we can summarize by

d
dt0

e2(t0) > 0 , (2.35)

at least for contributions from the first diagram. Actually, the next two diagrams, in which virtual
photons are emitted and reabsorbed by one of the charges, do not change this result, because at
this order, the emission of an extra virtual photon does not change the charge distribution at all.
Explicit calculations show that Eq. (2.35) holds quite generally. It states that as the momentum
transfer increases, the observed charge also increases. We shall see how to make this observation
quantitative in the next subsection. Clearly, this is a problem at extremely high energies. For QED,
however, the charge, as observed in Coulomb scattering (t0 = 0) is so small, thate2(t0) does not
become large until truly astronomical scales.

Now let us see what happens in QCD, where we define an effective chargeg2(t0) by direct
analogy to Eq. (2.33). We also define an effective “fine structure constant” for QCD by

αs =
g2

4π
. (2.36)

The corrections of Fig.4 are all present in QCD, with photons replaced by gluons. In addition, at
the same order, we also have to include diagrams with three-gluon couplings, as in Fig.5.

Figure 5: Non-Abelian correction to the QCD potential.

As in QED, the effect of virtual corrections is to surround our heavy (nonabelian) charged
particles by clouds of charge. There is a very important difference, however. In the nonabelian
case the emission of a gluon doesnot leave the nonabelian charge of the heavy particle unchanged.
Although the total charge is conserved, it “leaks away” into the cloud of virtual particles. Thus,
for small t0, when the two heavy particles stay far apart, they are actuallymorelikely to see each
other’s true charge. Ast0 increases, they penetrate further and further into each other’s charge
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clouds, and are less and less likely to measure the true charge. For this (only heuristic!) reason, we
may expect “antiscreening” for the nonabelian theory, just the opposite of QED,

d
dt0

αs(t0) < 0 . (2.37)

This means that ast0 increases, the observed coupling decreases. This is what we mean byasymp-
totic freedom. At the same time, ast0 decreases, the coupling increases. Again, explicit calculation
verifies this behavior. Of course, it is easier to go to small energy than large, and we shall see that
at low energies the effective coupling deduced from perturbation theory actually diverges. This
shows that perturbation theory will not be applicable at low energies where, apparently, the inter-
action becomes very strong. In this fashion, a perturbative description at short distances and high
energies is compatible with confinement at long distances and low energies.

Let us now go on to make these observations more quantitative, by introducing an explicit
equation for the effective coupling. This discussion will also serve to introduce a very important
concept for QCD, therenormalization group.

2. The Renormalization Group and the Effective Coupling

Let’s see what the two-particle scattering amplitude looks like for momentum transfers not
equal tot0. As we have seen, it is necessary to introduce a unit of mass,µ, called therenormaliza-
tion scale. In the case at hand, for heavy-particle scattering with momentum transfert0, we may
chooseµ as

µ2 = −t0 . (2.38)

This notation is a generalization of the specific choice, Eq. (2.33), that we have made to define the
amplitude. In fact, the latter is a special case of a “momentum subtraction scheme”, as introduced
in Section2.. To defineA(t0) in perturbation theory, it is necessary to introduce a renormalization
mass, and Eq. (2.33) is one way to do this.

In terms ofαs(µ2), the amplitude is of the form

A(k2) = αs(µ
2)

1
k2

+ a21α
2
s(µ

2)
ln(k2/µ2)

k2
+ a20α

2
s(µ

2)
1
k2

+ · · · . (2.39)

with a21 a number anda20 a possibly complicated function of the masses and the infrared cutoff.
Now here is the fundamental observation, upon which therenormalization groupis based. The
group consists of simply the set of all rescalings ofµ. The amplitudeA(k2) is aphysicalquantity,
that can, in principle, be measured by experiment. As such, itcannot depend on our choice ofµ2.
This is equivalent to Eq. (2.28), or in this case,

µ
d[tA(t)]

dµ
= 0 . (2.40)
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Then, from Eq. (2.39),

µ
dαs(µ2)

dµ
= −a21α

2
s(µ

2) + · · · . (2.41)

Thus, we have derived an equation for the effective coupling, which determines itsµ dependence,
so long as the coupling remains small enough that higher-order terms remain small. The solution to
this equation is known as theeffectiveor runningcoupling. According to our observations above,
in QCD we shall find thata21 > 0, so that the coupling decreases asµ increases. Thus, asymptotic
freedom is a quantifiable concept.

The conventional way of expressing asymptotic freedom is through the dependence of the linear
couplingg(µ) =

√
4παs(µ2),

µ
dg(µ)

dµ
= β(g(µ)) , (2.42)

where thebeta functionis a power series ing beginning atO(g3),

β(g) = −g

(
αs

4π
β1 +

(
αs

4π

)2

β2 + · · ·
)
. (2.43)

β1 can be found directly froma21 calculated as above, or from any other physical quantity that
depends onµ in perturbation theory. It is, as expected, positive for QCD,

β1 = 11− 2nf /3 = (11Nc − 2nf )/3 , (2.44)

wherenf is the number of flavors of quarks andNc the number of colors. The positive contribution,
11, comes mainly from the nonabelian diagrams, Fig.5. The negative contribution,−2nf /3, which
weakens asymptotic freedom, comes from the the fermion loop diagram in Fig.4. In these terms,
the solution to the lowest order approximation to Eq. (2.42) can be written in terms ofαs as

αs(µ
2) =

αs(µ2
0)

1 + (β1/4π)αs(µ2
0)ln(µ2/µ2

0)
(lowest order), (2.45)

where the value ofαs(µ2
0) gives the boundary condition for the solution of the differential equation.

In this form, the running coupling seems to depend on bothαs(µ2
0) andµ2

0, but in fact it has to be
independent of where we start. Therefore, it is often convenient to writeαs(µ2) in terms of a single
variable,

αs(µ
2) =

4π
β1ln(µ2/Λ2)

(lowest order), (2.46)

where
Λ = µ0e

−2π/(β1αs(µ2
0)) (lowest order), (2.47)

sets the scale for the running coupling. This scale is the famousΛQCD which is the subject of much
measurement.
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A more accurate solution forαs(µ2) is obtained by using the first two terms in the beta function.
One conventionally writesαs(µ2) in an expansion in powers of 1/ ln(µ2/Λ2), where the coefficient
of [1/ ln(µ2/Λ2)]n is a polynomial in ln(ln(µ2/Λ2)). Keepingβ1 andβ2 allows us to determine the
coefficients of [1/ ln(µ2/Λ2)]2,

αs(µ2)
4π

=
1

β1ln(µ2/Λ2)
− β2ln(ln(µ2/Λ2))

β3
1ln

2(µ2/Λ2)
+ O

(
1

ln3(µ2/Λ2)

)
, (2.48)

whereβ2 = 102− 38nf /3. Notice that there is no contribution of the formc/ ln2(µ2/Λ2). Such a
contribution can be absorbed into a redefinition ofΛ. One definesΛ by the condition thatc = 0. If
renormalization is carried out according to theMS scheme, thenΛ here is calledΛMS.

E. Quark Masses

Having discussed the QCD coupling, we now turn to the other physical parameters in the La-
grange density, Eq. (2.1), the quark masses. When we compute higher order loop graphs in the
theory, the corrections to the masses are divergent (infinite but temporarily controlled by some
regularization process) and the masses themselves must be renormalized. The simplest renormal-
ization scheme,“MS” involves the continuation of the theory into a dimension different from four
(AppendixC:). Let us illustrate this feature in QED, in the MS scheme. When we compute the
one-loop change in the mass, we find, in 4− 2ε dimensions,

m0 = m{1 +
3e2

8π2

1
ε

+ O(e4)} , (2.49)

wherem0 is the mass parameter in the Lagrangian in the absence of interactions (e = 0), andm is
the parameter that we use in the interacting case. Note that both masses are still mathematical pa-
rameters. As expected, asε → 0(n→ 4) the difference between the two is infinite, corresponding
to an infinite shift in the mass due to the interaction of the electron with its own electromagnetic
field. This is not as bad as it sounds, sincem0, in particular, is not observable. The advantage
of using this particular renormalization scheme is thatm andm0 are related by a simple formula
which involves an expansion in pole terms with residues which are powers in the renormalized
coupling constant.

Note that neitherm nor m0 is the physical mass of the electron. We must define the physical
mass of the electron,me, as the position of the pole in the renormalized electron two-point Green
function. An examination of the corrections to this propagator in perturbation theory yields the
finite relation

me = m{1 +
e2

8π2
(2− 3

2
ln

m2

µ2
) + O(e4)} (2.50)

whereµ is an arbitrary mass scale. We thus know the identification between the mathematical
parameter in the renormalized Lagrangian and the quantity which is measured in the laboratory.
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For QCD this last step does not work. Color confinement is postulated to explain the absence
in Nature of free quarks and therefore the physical mass is unobservable. In perturbation theory
there is a parameterm0 and a renormalized parameterm, which is treated in the renormalization
group equation in the same way as the coupling constant. If we choose the mass independent
renormalization scheme given above then the solution of the renormalization group equation fol-
lows from the introduction of a running coupling constantg(µ) for the quark-gluon interaction and
also a running massm(µ) for every quark flavor (up, down, strange,etc). In the theoretical analysis
of deeply inelastic scattering from “light-mass” quarks the only true scale is the quantityΛQCD.
The running masses decrease as the scale increases so ratios such asmu/ΛQCD, are small for the
up, down and strange quarks (Gasser and Leutwyler, 1982). Therefore we are justified in treating
these quarks as massless. The running mass is evaluated at a scale where it is small, and therefore
plays no role in the analysis of data.

In the case of the heavier quarks, such as charm, bottom and top the masses from spectroscopy
are largeΛQCD < mc < mb < mt, so there are new scales in the theory. First we observe that
when we choose the renormalization scale close to the massmQ of the heavy quark, the pole of the
heavy quark propagator is close top2 = m2

Q (with orderαs(mQ) corrections). At scales of virtuality
well below the quark mass, the only effects of heavy-quark propagators are in loop corrections
and of a form that they can be canceled by adjustment of renormalization counterterms. This is
thedecoupling theoremof Appelquist, Carazzone and Symanzik (Symanzik, 1973; Appelquist and
Carazzone, 1975; Appelquist and Carazzone, 1977). When we work with virtualities well above
the heavy quark mass, it is the mass that can be neglected: we treat the quark on the same footing
as the light quark and the renormalization scaleµ is of order the large scale. Clearly we have
two regimes: whenµ � mQ, the heavy quark participates fully, and whenµ � mQ, we should
omit the heavy quark. Matching conditions are necessary. As Collins, Wilczek and Zee (Collins,
Wilczek, and Zee, 1978; Witten, 1976; Georgi and Politzer, 1976) showed, this can be done by a
suitable choice of renormalization scheme. They useMS for everything whenµ > mQ, but they
use zero-momentum subtraction for loops with heavy quarks whenµ < mQ, andMS for everything
else. This method gives automatic decoupling of heavy quarks when it is applicable, and allows
calculations at scales of ordermQ with all mass effects taken into account. At the break point
µ = mQ the number of active quark flavors in the beta function is changed by exactly one, and
the coupling is made continuous there. It can be shown by explicit calculation that, at the one-
loop approximation, this break point is atµ/mQ = 1 and not at some other ratio, provided that
MS renormalization is used. If desired, higher order corrections to this matching condition can
be calculated. It is not yet known how to make an accurate direct experimental measurement of a
running quark mass, so we simply adjustmQ to fit a physical quantity such as the production cross
section. Therefore one should not be surprised when these masses do not exactly agree with the
naive expectation of one-half the energy of the threshold for “open” heavy quark production.
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F. Infrared Safety

With our solution for the running coupling, we now have an idea of how asymptotic freedom
can help in a practical case. Letσ(pi · pj/µ

2,m2
i /µ

2,g(µ)) represent some physical quantity that we
can compute in perturbation theory,

σ(
pi · pj

µ2
,
m2

i

µ2
,g(µ)) =

∞∑
n=0

an(
pi · pj

µ2
,
m2

i

µ2
)αn

s(µ) , (2.51)

where thepi denote external momenta andmi the internal (quark) massesmf and any external
invariants that are also small. It is quite common that the coefficientsai are large, regardless of the
value ofαs(µ). In fact, almost all cross sections in perturbative QCD are infrared (IR) divergent,
because of the vanishing gluon mass (see SectionIV.). That is, they are not even defined in the
renormalized theory. Nevertheless, we shall find that there is a large class of quantities which are
infrared safe(Sterman and Weinberg, 1977; Dokshitzeret al., 1980). Infrared safe quantities are
those which do not depend on the long-distance behavior of the theory. For such quantities, thean

are infrared finite, and also possess a finite limit for vanishingmi, so that

σ(
Q2

µ2
,
m2

i

µ2
,g(µ)) = σ(

Q2

µ2
,0,g(µ))

{
1 + O

(
m2

i

Q2

)}
, (2.52)

whereQ2 is a scale characteristic of the large invariants among thepi · pj. (When there is more
than one such scale, the situation becomes more complicated, but can remain within the realm of
pQCD.)

For an infrared safe quantity, Eq. (2.28) has the solution

σ(
Q2

µ2
,0,g(µ)) = σ(1,0,g(Q)) , (2.53)

in which all momentum dependence has been put in the couplings. WhenQ is large, the coupling
decreases, and the perturbation series becomes better and better.

A major goal of perturbative QCD is to identify and analyze experimental quantities to which
asymptotic freedom may be applied consistently. We shall often find it necessary to reorganize the
perturbation series to identify and compute infrared safe quantities. Typical of the results are the
factorization theorems to be discussed in SectionIV.. Before reorganization, the coefficients in the
perturbation series are so large that it is of no practical value to use them. After reorganization, we
isolate factors for which low order perturbation theory is useful in practical applications.

33



III. The Parton Model: Fundamental Cross Sections

A. Overview; heuristic justification

The parton model is applicable, with varying degrees of accuracy, to any hadronic cross section
involving a large momentum transfer. Historically, its development (Feynman 1969; Bjorken and
Paschos, 1969; Feynman, 1972) was a response to the observation ofscaling(Bloom et al., 1969;
Breidenbachet al., 1969; Friedman and Kendall, 1972), which we shall define below. The parton
model interprets scaling as a consequence of charged pointlike constituents in the proton. These
pointlike constituents are the quarks of QCD.

The parton model is, in essence, a generalization of the impulse approximation. We assume that
any physically observed hadron, of momentumpµ is made up of constituent particles, its “partons”,
which we shall identify with quarks and gluons. At high energy, we neglect the masses of hadrons
and partons compared to the scaleQ of the hard scattering. Furthermore, we assume that every
relevant parton entering the hard scattering from an initial state hadron has momentumxpµ, with
0 ≤ x ≤ 1; herepµ is the momentum of the parent hadron andwithin the hard scatteringwe make
the approximationp2 = 0.

Parton model cross sections are calculated from thetree graphs(no loops) for partonic scatter-
ing, by combining them withprobability densities, as follows. Consider collisions of hadronsA
andB to make some suitable final state, e.g., one containing a lepton pair of large invariant mass.
(This particular case is the Drell-Yan process.) Then the parton model cross section for this process
has the schematic form,

σAB(p, p′) ∼
∑

partons i, j

∫ 1

0
dxdx′ σ̂i j (xp, x′p′) φi/A(x) φ j/B(x′) , (3.1)

whereσ̂i j is the corresponding Born approximation cross section for the scattering of partonsi and
j to produce the chosen final state, andφi/h(x) is the probability density for finding partoni in the
hadronh, carrying momentumxp, 0 ≤ x ≤ 1. φi/A is called thedistributionof partoni in hadronA.

Similarly, for a final-state hadronC, with momentum̀ , we relate hadronic to partonic cross
sections by

dσC(`) ∼
∑

partons k

∫ 1

0
dz dσ̂k(`/z) DC/k(z) , (3.2)

where nowDC/k(z) is thefragmentation functionthat describes the probability for partonk, with
momentum̀ µ/z to produce a hadronC(`µ) in the final state. A general parton model cross section
will involve both initial- and final-state hadrons of definite momentum.

The physical insights behind the parton model are most easily seen in deeply inelastic lepton-
hadron scattering. Fig.6 gives a schematic picture of this process in the spirit of the parton model.
Fig.6a shows the system before the scattering, as seen in the center-of-mass frame. The hadron, say
a nucleon, consists of a set of partons (denoted by×’s), in some virtual state of definite fractional
momentaξi p. The central observation is that this virtual state is characterized by a lifetimeτ in
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the nucleon rest frame. The precise value ofτ depends on the details of nucleon structure. Let us
suppose, however, that there is an effective lower bound,τ > τ0, so that the nucleon is made up
primarily of virtual states of non-zero lifetime in its own rest frame.

Figure 6: Schematic parton-model picture for deeply inelastic scattering.

In the center-of-mass system, the nucleon suffers both Lorentz contraction and time dilation.
Thus, in this frame, the lifetime of our virtual state isτ(1− v∗2/c2)

−1/2 � τ, with v∗ the velocity.
Combined with Lorentz contraction (indicated in the figure by a disc shape), this means that the
time it takes the electron to cross the nucleon vanishes as the center-of-mass energy goes to infinity.

Therefore, at the time of collision, Fig.6b, the electron sees a collection of partons that are
effectively “frozen” during its transit. To exchange a large momentumqµ with one of the partons,
the electron must come as close to it asO(1/Q) in the transverse direction, by the uncertainty
principle. The details of the exchange depend on the underlying electron-parton interaction, such
as QED.

Most importantly, if we assume that the partons are more-or-less randomly spread out over the
disc, the probability of finding anadditionalparton near enough to take part in the hard scattering
is suppressed by the geometrical factor

1/Q2

πR2
0

, (3.3)

with R0 the radius of the nucleon. Such an estimate makes sense to the extent that the partons are
effectively “frozen” during the short time it takes the electron to pass by. Then the cross section
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may be written as the probability of finding a parton with given momentum fraction, times the
cross section for the interaction.

After the collision, Fig.6c, anything may happen, and as the scattered electron recedes, the
fragments of the nucleon interact, create quark pairs and eventually respect confinement. All this
is assumed to take place on time scales that are also long compared with the electron’s collision
with the nucleon. Then the process of “hadronization”, by which quarks and gluons coalesce into
the observed particles, happens too late to influence the hard scattering itself. This assumption
underlies the idea of treating the parton-electron scattering in the elastic Born approximation. We
do not assume that the scattered quark is really on-shell, only that it is much closer to the mass
shell thanQ2, and lives a much longer time than 1/Q, asQ→ ∞.

In summary, the parton model rests upon two physical concepts: the Lorentz contraction and
time dilation of internal states of the nucleon, and the long-time nature of hadronization. The
“initial-state” interactions between partons happen too early to affect the basic scattering, and
hence the inclusive cross section, while the “final-state” interactions between fragments happen
too late. Up to kinematic factors, then, the scattering is directly proportional to the density of
partons, which is frozen over the short scattering time scale.

To apply the parton model formulas, Eqs. (3.1) and (3.2), we need to calculate elastic scattering
processes for these partons in the Born approximation. Of course, we don’t get something for
nothing, and it will also be necessary to incorporate information on the structure of hadrons via the
functionsφi/h(x). The magic of the parton model is that it isnot necessary to solve the problem of
hadron binding. Instead, the required information will be available from experiment. To see how,
we study cross sections for the scattering of hadrons and leptons. Such cross sections will begin
at orderα2, with α = e2/4π the electromagnetic (or more generally electroweak) fine structure
constant.

B. Lepton-Hadron Cross Sections

There are three standard lepton-hadron parton model cross sections, corresponding to the fol-
lowing underlying partonic reactions: lepton-parton elastic scattering, lepton pair annihilation into
parton pairs, and parton pair annihilation into lepton pairs. They correspond, respectively, todeeply
inelastic scattering, e+e− annihilation and theDrell-Yan process. At the (observable) hadronic
level, these cross sections are all inclusive for hadrons in the final state. In this subsection we treat
deeply inelastic scattering.

1. Deeply inelastic scattering kinematics.

A deeply inelastic scattering (DIS) process is generically of the form

`(k) + h(p)→ `′(k′) + X , (3.4)

where`(k) represents a lepton of momentumkµ, h(p) a hadron of momentumpµ, and X an arbitrary
hadronic state. Normally,h(p) will be a nucleon or nucleus. The process, illustrated in Fig.7, is
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initiated by the exchange of vector bosonV. The classic DIS experiment is totally inclusive in
the hadronic final state, so that it is necessary only to observe the outgoing lepton, of momentum
k′µ. The discussion of DIS, more than any other cross section, is couched in a rather specialized
kinematic notation, which we will now briefly review. It should be kept in mind that the kinematics
are much more general than the parton model, and even than pQCD.

Figure 7: Deeply inelastic scattering.

In DIS, the momentum transfer between lepton and hadron,q, is spacelike,

qµ = kµ − k′µ ,

−q2 = Q2. (3.5)

In addition, as the term implies, in DIS the hadronic final stateX has an invariant mass much larger
than that of the nucleon. This is normally parameterized in terms of theBjorken scaling variable,
x,

x =
−q2

2p · q =
Q2

2mhν
, (3.6)

whereν is the energy transferred from the lepton to the hadron in the hadron (target) rest frame,

ν = p · q/mh = Ek − Ek′ . (3.7)

ν is naturally related to the dimensionless variabley,

y =
p · q
p · k =

Ek − Ek′

Ek
, (3.8)

that measures the ratio of the energy transferred to the hadronic system to the total leptonic energy
available in the target rest frame.

For a nucleus with atomic numberA, it is usually convenient to rescalex by A, so that the
denominator in Eq. (3.6) is still the mass of a nucleon. For fixedx, the mass of the hadronic final
state is given by

W2 = m2
h +

Q2

x
(1− x) . (3.9)

Thus, forx fixed andQ2 large, the mass of the hadronic final state is also large.
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The incoming lepton may be an electron, a muon or an (anti)neutrino, for recent references,
consult (Geesamanet al., 1990), and the exchanged vector boson a photon,W±, or Z. At lowest
order in electroweak interactions, the cross section may be split into leptonic and hadronic parts,

dσ =
d3k′

2s|k′|
c4

V

4π2(q2 −m2
V)2

Lµν`V(k,q)WVh
µν (p,q) , (3.10)

whereV labels the exchanged vector boson, of massmV, and where

cV = e,

cW± =
g

2
√

2
, (3.11)

for reasons which will become clear in a moment. (Note that each weak interaction coupling
involvesg = e/ sinθW). In this equation, we assume the form−gαβ/(q2 −m2

V) for the vector boson
propagator, neglecting gauge- and mass-dependent terms proportional toqαqβ. Corrections to this
approximation vanish forV = γ, and are suppressed by the ratiom`/mV for V = W±,Z.

The leptonic tensors can be evaluated explicitly (with a conventional but arbitrary normaliza-
tion) from

Lµν`V(k,q) =
1
2

Tr
[

/kΓ
µ
V`( /k− /q)ΓνV`

]
, (3.12)

whereΓV` is the perturbative vertex coupling lepton` to vectorV and the (unique) outgoing lepton
`′, but with the factorc2

V removed. The factor 1/2 is for the spin average for unpolarized electrons:
it should be removed for neutrino scattering. To be specific, we may take

Γ
µ
γ`± = γµ , (3.13)

Γ
µ
W+ν = γµ(1− γ5) , (3.14)

Γ
µ
W−ν̄ = γµ(1 + γ5) . (3.15)

The hadronic tensor, on the other hand, is defined to all orders in the strong interaction in terms
of the matrix elements

W(Vh)
µν (p,q) =

1
8π

∑
σ

∑
X

〈h(p, σ)| jV†µ(0)|X〉 〈X| jVν(0)|h(p, σ)〉

× (2π)4δ4(p + q− pX) . (3.16)

Here, jVµ (x) is the appropriate operator electroweak current, labeled by the corresponding vector
boson, and divided by the appropriatecV Eq. (3.11). (This procedure doesnot result in unit cou-
pling for quarks; see Section2.). When appropriate, we average over the nucleon spin,σ, which
simplifies our analysis14. We have performed this average in Eq. (3.16), and the normalization
factor includes a factor 1/2 for this average.

14Spin-dependence has lately emerged as a topic of interest and controversy in experiment (Ashmanet al., 1988;
Ashmanet al., 1989; Alguardet al., 1978; Alguardet al., 1979; Baumet al., 1983) and theory (Efremov and Teryaev,
1988; Altarelli and Ross, 1988; Carlitz, Collins, and Mueller, 1988; Bodwin and Qiu, 1990; Jaffe and Manohar,
1990; Glück and Reya, 1991).

38



Symmetry properties give important restrictions on the formW(Vh)
µν may take. These restrictions

may be summarized by expanding the tensor in terms of scalarstructure functions W(Vh)
i . The

general expansion may be expressed as

W(Vh)
µν = −

(
gµν −

qµqν
q2

)
W(Vh)

1 (x,Q2)

+

(
pµ − qµ

p · q
q2

) (
pν − qν

p · q
q2

)
1

m2
h

W(Vh)
2 (x,Q2)

−iεµνλσpλqσ
1

m2
h

W(Vh)
3 (x,Q2) . (3.17)

Note that there are a variety of conventions in the literature about the definitions ofWi, and of the
variableν. This variation is less pronounced for the scaling structure functionsFi to be defined
below. Our conventions for theFi ’s are consistent with those in the 1992 Review of Particle
Properties (Particle Data Group, 1992) (taking into account its Erratum15 (Particle Data Group,
1992)!), and with the detailed derivation found in Chapter 6 ofde Wit and Smith, 1986although
ourWi differ from those of the latter).

The structure functions are generally parameterized in terms ofx andQ2. At this stage, there
is no relation between theW(Vh)

i for different bosonsV, although parity invariance of the strong
interactions implies that

W(γh)
3 (x,Q2) = 0 (for photon exchange only). (3.18)

The functionsWi of Eq. (3.17) are usually replaced, for the purposes of exhibiting data, by
alternate, but equivalent, structure functionsFi, which will turn out to be particularly simple in the
parton model,

F1(x,Q
2) = W1(x,Q

2) ,

F2(x,Q
2) =

ν

mh
W2(x,Q

2) ,

F3(x,Q
2) =

ν

mh
W3(x,Q

2) . (3.19)

Yet another equivalent basis for the structure functions is inspired by assigning polarizations to the
vector bosonV, in the target rest frame:

εR(q) =
1
√

2
(0; 1,−i,0) ,

εL(q) =
1
√

2
(0; 1, i,0) ,

εlong(q) =
1√
Q2

(
√

Q2 + ν2; 0,0, ν) . (3.20)

15 The erratum refers to the expression forF3 on page III.52 inParticle Data Group, 1992; it does not apply to the
Particle Properties Data Booklet.
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These correspond to helicities of+1, −1 and to longitudinal (sometimes called “scalar”) polar-
ization for the exchanged particle, respectively. Up to corrections of orderm2

h/Q
2, W(Vh)

µν has the
expansion,

W(Vh)
µν =

∑
λ

ε∗λ(q)µελ(q)ν F(Vh)
λ (x,q2) , (3.21)

whereλ = L,R, long labels the helicity. In this approximation, the “helicity” structure functions
are related to the structure functions of Eq. (3.19) by the simple relations

FL,R = F1 ± F3 , Flong =
F2

2x
− F1 . (3.22)

The structure functions can be found directly from experiments in which only the outgoing
lepton’s momentum is measured. For instance, the differential cross section in terms of the dimen-
sionless variablesx andy may be written in terms of incoming and outgoing lepton energies and
scattering angle in the target rest frame as

dσ(`h)

dxdy
= N(`V)

[
2W(Vh)

1 (x,q2) sin2(θ/2) + W(Vh)
2 (x,q2) cos2(θ/2)

±W(Vh)
3 (x,q2)

E + E′

mh
sin2(θ/2)

]
, (3.23)

where the± corresponds toV = W±, and where

N(`±γ) = 8πα2mhE
Q4

,

N(νW+) = N(ν̄W−) = πα2 mhE

2 sin4(θW)(Q2 + M2
W)2

. (3.24)

HereθW is the weak mixing angle, andπα2/(2M4
W sin4 θW) = G2

F/π, with GF the Fermi constant.
Other useful expressions for this cross section are given directly in terms ofy,

dσ(`h)

dxdy
= N`V

[y2

2
2xF(Vh)

1 + (1− y− mhxy
2E

)F(Vh)
2

+ δV(y− y2

2
) xF(Vh)

3

]
, (3.25)

whereδV is +1 for V = W+ (neutrino beam),−1 for V = W− (antineutrino beam) and zero for the
photon.mh is the target mass.

2. Cross Sections and Parton Distributions

Now let us see what the parton model has to say about DIS. As emphasized above, in the parton
model the scattering of the nucleon is due entirely to the scattering of its individual constituents. If
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these constituents are quarks and gluons, then only quarks will couple to electroweak currents in
the Born approximation. The DIS cross section is then given by the probability,φ f /h(ξ), of finding
a quark of flavorf and fractional momentumξ in hadronh, times the cross section for theelastic
scattering of that parton.

A typical parton model DIS cross section is therefore given by

dσ(`h)

dEk′dΩk′
(p,q) =

∑
f

∫ 1

0
dξ

dσ(` f )
Born

dEk′dΩk′
(ξp,q) φ f /h(ξ) . (3.26)

The distributionφ f /h is at this point undetermined. The perturbative equivalent of the parton model
picture of DIS is illustrated, in “cut diagram” notation (Appendix B), in Fig.8a.

Figure 8: Parton-model picture of deeply inelastic scattering: (a)Parton-model scattering,
(b)Interference graph.

We note the absence of diagrams such as Fig.8b, in which the scattering of quarkf with
fractionξ interferes with the scattering of a quark of fractionξ′, the momentum being made up by
an extra gluon. This feature is referred to as the “incoherence” of the parton model.

From Eqs. (3.10), (3.17) and (3.19) we derive relations for the structure functionsFi in the
parton model,

F(Vh)
a (x) =

∑
f

∫ 1

0

dξ
ξ

F(V f)
a (x/ξ) φ f /h(ξ) (a = 1,3) , (3.27)

F(Vh)
2 (x) =

∑
f

∫ 1

0
dξ F(V f)

2 (x/ξ) φ f /h(ξ) . (3.28)

Here theF(V f)
i are the structure functions at the parton level; they can be calculated from the Born

diagram of Fig.9. The factor of 1/ξ in Eq. (3.27) arises from the normalization of the parton states
as compared with the hadron states and from the factors ofp in the definitions of the structure
functions fromWµν — the vectorpµ must be changed toξpµ for scattering off a parton.

For example, with electromagnetic scattering, we have

(W(γ f )
µν )

Born
=

1
8π

∫
d3p′

(2π)32ωp′
Q2

f Tr[γµ( /p + /q)γν /p ] (2π)4δ(4)(p′ − p− q) , (3.29)

41



Figure 9: Born diagram.

whereeQf is the electric charge of the quark of flavorf . A factor e has been absorbed intocγ in
Eq. (3.11). This gives

2F(γ f )
1 (x) = F(γ f )

2 (x) = Q2
fδ(1− x) . (3.30)

Substituting these functions into Eqs. (3.27) and (3.28), we find the electromagnetic structure func-
tions in terms of quark distributions,

2xF(γh)
1 (x) = F(γh)

2 (x) =
∑

f

Q2
f xφ f /h(x) . (3.31)

Two important aspects of these expressions are:

(i) the structure functions depend on the Bjorken scaling variablex only, and not on the mo-
mentum transfer directly;

(ii) the two functions satisfy the relation 2xF1 = F2.

The first result is known asscaling (Bjorken, 1969). Its observation (Bloom et al., 1969; Brei-
denbachet al., 1969; Friedman and Kendall, 1972) was the inspiration for the parton model. The
second, known as theCallan-Gross relation(Callan and Gross, 1969) follows from the specifics
of the Born diagram, Fig.9, and as such is evidence for the spin-1/2 nature of charged partons (the
quarks).

Evidently, measuringF1 or F2 immediately gives an experimental determination of the combi-
nation of distributions,

∑
f Q2

fφ f /h(x) for h a proton or a neutron. Now isospin invariance implies
that

φu/p = φd/n , φd/p = φu/n , (3.32)

with u the up andd the down quark. In the approximation that the proton and neutron contain
u andd quarks only, a measurement ofF2 for p andn, combined with Eq. (3.32), determines the
distributionsφu/h andφd/h. These distributions can then be used to predict other DIS cross sections,
such as neutrino scattering, to the same approximation.

Of course, in real life things are not so simple. Quantum mechanics tells us that virtual states
will include quark-antiquark pairs of every flavor. The sum in Eq. (3.31) will therefore include the
strange, charm, and even the bottom and top quarks, in addition to all the antiquarks. Although we
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may expect that the admixture of very heavy quark pairs in a nucleon is relatively small, we clearly
need more information than is supplied by electromagnetic scattering alone, even to determine
the distributions of light antiquarks, for instance. For this purpose, we shall find neutrino and
antineutrino scattering ideal.

The parton model cross sections for charged weak currents are almost as easy to compute as
for the electromagnetic current, and the answers are just as satisfyingly simple. Quarks of definite
mass — that is, the quarks of the strong interaction Lagrangian — are not eigenstates of the weak
interaction Lagrangian. As a result, the basic vertex foru + W− → d is almostlike the vertex for
νe + W− → e−, i.e., (1/2

√
2)gγµ(1 − γ5), with g = e/ sinθW, but not quite. Instead,g is replaced

by gVud, whereVud is an element in a three-by-three unitary matrix called theCabibbo-Kobayashi-
Maskawamixing matrix. As a result of the mixing, the absorption of aW− can change an up quark,
not only into a down quark, with couplinggVud but also into a strange quark, with couplinggVus,
or a bottom quark, with couplinggVub. The three mixing matrix elementsVud, Vus andVub form a
row of the unitary matrixV, and hence satisfy

|Vud|2 + |Vus|2 + |Vub|2 = 1 . (3.33)

In practice,Vub is relatively small, and

Vud ∼ cosθC, Vus ∼ sinθC , (3.34)

whereθC is the same Cabibbo angle that was first introduced to relate strangeness changing to
strangeness preserving weak decays.

We are now ready to compute the parton model hadronic tensor for charged weak currents
acting on the up quark, through the exchange of aW− from an incoming antiquark (of any flavor).
We find (compare Eq. (3.29))

(W(W−u)
µν )

Born
=

1
8π

∫
d3p′

(2π)32ωp′
Tr

[
γµ(1− γ5)( /p + /q)γν(1− γ5) /p

]
× (2π)4δ4(p′ − p− q) , (3.35)

where we have used Eq. (3.33), and have, as usual, neglected the masses of the outgoing quarks.
The factors of|Vu j|2 have summed to unity in the inclusive cross section, while the overall factors
cW are absorbed into the normalization of the cross section as in Eq. (3.11).

Computing theF’s for individual quarks and antiquarks, and hence for hadrons, is now a
straightforward matter of taking traces. We won’t give the details here, only quote the results.
The relation to parton distributions is simplified for some purposes in terms of the sums and differ-
ences of neutrino and antineutrino structure functions,

F(Wh)
i± =

1
2

(F(W+h)
i ± F(W−h)

i ) . (3.36)

We now introduce the notationUh(x) for the parton distribution for quarkU of charge 2/3 (up,
charm, top) in hadronh, andDh(x) for quarkD of charge−1/3 (down, strange, bottom). Also, it
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is convenient to definevalencedistributions for theU andD quarks by

Uv
h(x) = Uh(x) − Ūh(x) , (3.37)

Dv
h(x) = Dh(x) − D̄h(x) .

The motivation underlying these definitions is that for every extra antiquark produced in a virtual
state there is also an extra quark. The valence distributions are what is left when the influence of
these “extra” quarks (usually calledseaquarks) is removed. (However, note that sea quarks and
antiquarks need not necessarily have the same distribution inx.)

In these terms, the parton model results for charged weak interactions are remarkably informa-
tive. First of all, we find that the relation characteristic of spin-one half partons still holds,

2xF(Wh)
1± = F(Wh)

2± . (3.38)

The explicit results for the sums of structure functions are

F(Wh)
2+

= x
∑

D

[ Dh(x) + D̄h(x) ] + x
∑

U

[ Uh(x) + Ūh(x) ] ,

F(Wh)
3+

=
∑

D

Dv
h(x) +

∑
U

Uv
h(x) , (3.39)

while for the differences we get

F(Wh)
2− = x

∑
D

Dv
h(x) − x

∑
U

Uv
h(x) ,

F(Wh)
3− =

∑
D

[ Dh(x) + D̄h(x) ] −
∑

U

[ Uh(x) + Ūh(x) ] . (3.40)

If we measure all four of these distributions, for bothp andn, and assume isospin invariance and
an isospin-symmetric sea (i.e., ¯u(x) = d̄(x) = s̄(x), with c(x) = b(x) = t(x) = 0), the full set of cross
sections becomes overdetermined, and the self-consistency of the parton model may be tested. The
sole one of these assumptions that is dangerous in QCD is the assumption of isospin-symmetry of
the sea quarks.

For completeness, let us give the same results as above, in terms of neutrino (W+) and antineu-
trino (W−) structure functions directly,

F(W+h)
2 = 2x

( ∑
D

Dh(x) +
∑

U

Ūh(x)
)
, (3.41)

F(W−h)
2 = 2x

( ∑
D

D̄h(x) +
∑

U

Uh(x)
)
, (3.42)

and

F(W+h)
3 = 2

( ∑
D

Dh(x) −
∑

U

Ūh(x)
)
, (3.43)

F(W−h)
3 = 2

(
−

∑
D

D̄h(x) +
∑

U

Uh(x)
)
. (3.44)

44



C. e+e− Annihilation

Another fundamental cross section is the annihilation of lepton pairs into hadrons,e+e− →
hadrons. There are three variations on this theme for which we can derive predictions in the parton
model: the total cross section, single-hadron inclusive cross sections and jet cross sections.

1. Total cross section

The total cross section fore+e− annihilation into hadrons falls immediately into the parton
model framework, because it is completely inclusive in the hadronic final state. At the same time,
there are no hadrons in the initial state, so the parton-model cross section is given immediately
in terms of the lowest-order electromagnetic elastic cross section fore+e− → qq̄. This cross
section is given by the “annihilation” Feynman diagrams, shown in Fig.10, in which the lepton
pair annihilates into a virtual photon orZ vector boson, which subsequently decays into the quark
pair. The fermion-vector vertices are given by (compare Eq. (3.15)) eQiγ

µ for the photon, withQi

the fractional electric charge of fermioni, and for theZ,

eΓµ =
e

sinθW cosθW
γµ (Vi − Aiγ5) . (3.45)

HereAi andVi characterize the vector and axial vector couplings, and are given by

Ai = t3 − 2Qi sin2 θW ,

Vi = t3 , (3.46)

with t3 the weak isospin of (the left-handed component) of fermioni (t3 = +1/2 for neutrinos and
up quarks,−1/2 for negatively charged leptons and down quarks).

Figure 10: Born diagrams fore+e− annihilation.

At energies much less than theZ mass, only the virtual photon is important, and we easily
derive the cross section from the electromagnetic vertex alone,

σ(s)tot =
4Ncπα

2

3s

∑
f

Q2
f

 , (3.47)

45



whereNc is the number of colors,s is the squared center-of-mass energy,α (= e2/4π) is the usual
electromagnetic fine structure constant, and the sum is over all quarks with masses small enough to
be produced ats. Qf is the fractional electric charge of flavorf . In computing Eq. (3.47), we have
neglected quark masses compared to

√
s. Note that, becauseσtot is directly proportional toNc, its

measurement is a direct observation of the number of colors,Nc = 3, jointly with the fractional
charge content of each flavor.

At very high energies, like those available at SLC and LEP, theZ becomes important, and gives
the full parton model annihilation cross section,

σ(s)tot =
4Ncπα

2

3s

∑
f

Q2
f

(
1− 2χV2

f + [V2
f + A2

f ]
2χ2

)
, (3.48)

where the sum is over the final-state quarks and leptons and where

χ =

(
s

s− M2
Z

) (
1

4 cosθW sinθW

)
. (3.49)

2. Single-hadron inclusive annihilation

A stronger use of parton model methods is found insingle-hadron inclusive(1PI) cross sec-
tions, for instancee+e− → h(p)+X, in which all events with a hadron of momentump are included.
The corresponding amplitudes, illustrated in Fig.11, are the “crossed” versions of deeply inelastic
scattering amplitudes for the hadronic antiparticleh̄. The latter process is found from 1PI annihila-
tion by transferringh from final to initial state, where it is identified with̄h, and the positron from
initial to final state, where it is identified as an electron.

includegraphics[height=1in]inclusshp

Figure 11: Inclusive single-hadron production ine+e− annihilation.

The kinematics for 1PI annihilation processes are developed in an analogous manner to deeply
inelastic scattering. The basic scale is set by the total momentum,

q = `1 + `2

q2 = Q2 > 0 , (3.50)

with `1 the incoming electron momentum. Two natural dimensionless variables, defined in terms of
invariants, measure the energy and direction (relative to the electron momentum) of the produced
particle in the center of mass system,q = 0,

x =
2p · q

q2
,

y =
p · `1

p · q =
1
2

(1− cosθp`1) . (3.51)
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These variables are the analogues of, but not identical to, thex andy defined in Eqs. (3.6) and
(3.8).

For simplicity, we shall specialize to 1PI through a photon, as is appropriate for energies well
below theZ mass. In this case we have, analogous to Eq. (3.10) for DIS,

dσh
e+e− =

(
1
q2

)
Lµνeγ(`i)W̄

(γh)
µν (p,q) dxdy , (3.52)

with Lµν a leptonic tensor, given at ordere2, andW̄µν the hadronic tensor (compare Eq. (3.16)),
defined by

W̄(γh)
µν (p,q) =

1
4π

∑
σ,X

〈0| jγ†µ(0)|X,h(p, σ)〉〈X,h(p, σ)| jγν(0)|0〉

×(2π)4δ4(p + q− pX)

= −x(gµν −
qµqν
q2

)F̄(γh)
1 (x,q2)

+(pµ − qµ
p · q
q2

)(pν − qν
p · q
q2

)
1

m2
h

F̄(γh)
2 (x,q2) . (3.53)

The F̄’s are 1PI structure functions, in terms of which the cross section is given by

dσh
e+e−(x, y,q

2)

dxdy
= Nc

4πα2

3q2

(
3
2

F̄(γh)
1 − 3y(1− y)F̄(γh)

2

)
. (3.54)

The factorNc is, as usual, the number of colors, included so that we do not have to sum explicitly
over the colors of partons below. Note, as in Eq. (3.25), the explicit nature of they (angular)
dependence.

The application of the parton model to 1PI cross sections is very straightforward. From
Eq. (3.2) we have

dσh
e+e−(x, y,q

2)

dxdy
=

∑
f

∫
dx′dz

dσ f
e+e−(x

′, y,q2)

dx′dy
D(γh)

f (z)δ(x′ − x/z) , (3.55)

where the sum is over quark flavorsf (not including antiquarks), since in the Born approximation
only quark pairs, and not gluons, are produced in the annihilation process.Dh

f (z) is the fragmen-
tation function for quarkf into hadronh, with the latter carrying fractionz of the momentum of
the former. It now requires a very straightforward calculation, involving a single fermion trace, to
derive the 1PI structure functions in the parton model,

F̄(γh)
i (x) = Q2

i Dh/i(x) , (3.56)

or, in terms of the cross section,

dσh
e+e−(x, y,q

2)

dxdy
= Nc

πα2

q2

∑
f

Q2
f

(
1 + cos2 θ`1p

)
Dh/ f (x) , (3.57)

where, as above, the angle is measured in the overall center-of-mass frame.

47



3. Jet Cross Sections

From Eq. (3.57), we see that in the parton model the angular dependence of hadrons in the final
state directly follows that of the underlying quarks. The 1+ cos2 θ dependence is characteristic of
spin-1/2 particles (scalar quarks would have given sin2 θ, for instance). This feature ranks with the
Callan-Gross relation and the normalization of the total annihilation cross section, as fundamental
evidence for quarks.

There is even more to it than that, however. If we really take Eq. (3.57) seriously, we may
conclude that each and every hadron appears in the final state in the same direction as the virtual
quark whose fragmentation product it is. This would mean that in any given event, every hadron
with a nonzero fraction of the total energy would move either in the direction of the virtual quark
or of the virtual antiquark. In such a final state, all hadrons would appear as part of one or twojets
of parallel-moving particles. Indeed, from this point of view, we can compute ajet cross section,
which in the parton model is identical with the differential Born cross section fore+e− annihilation
into quark pairs,

dσ( jet)
e+e−(cosθ,q2)

dxdy
= 2Nc

πα2

q2

∑
f

Q2
f

 (
1 + cos2 θ

)
, (3.58)

where nowθ is the angle between either of the jets and the incoming electron in the overall center-
of-mass frame. The factor of 2 relative to Eq. (3.57) comes from counting both jets equally. The
integral of this cross section overθ from zero toπ is the total cross section, (3.48).

Notice that this conclusion isnot forced upon us by the parton model arguments of SectionA..
There we only claimed that the cross section for a single hadron is closely related to the underlying
partonic direction. It is clear that the extension to jet cross sections is approximate at best. As we
shall see, however, this approximation becomes better and better as the energy increases. In fact,
we shall be able to reinterpret the underlying Born cross section in any inclusive parton model
cross section as a cross section for jets, emerging in the directions of, and with the energies of, the
outgoing partons. In this, lowest-order approximation, the jets are “ideal”, and consist of a set of
exactly parallel-moving hadrons. In realistic cross sections it will be necessary to define what we
mean by jets more carefully.

D. Drell-Yan Production

The production in hadronic collisions of a lepton pair with large invariant mass (e+ e−, µ+ µ−,
µ+νµ, µ− ν̄µ, etc.) yields complementary information to that revealed in deeply inelastic collisions
and electron-positron collisions.

Since the theoretical framework for the analysis of these processes was originally proposed by
Drell and Yan16 these reactions are commonly referred to as hadronic Drell-Yan (DY) production.

16SeeDrell, Levy, and Yan, 1969a; Drell, Levy, and Yan, 1969b; Drell, Levy, and Yan, 1970; Drell and Yan,
1970; Yan and Drell, 1970; Drell and Yan, 1971.
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The study of massive lepton pair production started with the Columbia-BNL experiment on
proton-nucleus collisions (Christensonet al., 1970; Christensonet al., 1973). Reviews of the early
work can be found inLederman, 1976; Craigie, 1978andStroynowski, 1981. Since the lepton
pairs have no direct interactions with hadrons they are really the manifestation of the production of
virtual gauge particles,γ , W± , Z, which couple to lepton pairs through electromagnetic or weak
interactions. As the virtual gauge bosons are timelike, any on-mass-shell vector meson resonances
which couple to virtual photons, such as theJ/ψ (Aubert et al., 1974) and theΥ (Herb et al.,
1977; Inneset al., 1977), are produced. The intermediate bosonsW± andZ can also be produced
as physical particles when the center of mass energy is large enough. In the case of the intermediate
bosons, the DY cross sections are largest when the particles are actually produced on-mass-shell.
Given their well-known branching ratios into leptonic channels, the detection of single leptons at
largept is the characteristic signal for the production ofW± (Arnisonet al., 1983a; Banneret al.,
1983a; Bagnaia,et al., 1983) andZ (Albajaret al., 1987; Ansariet al., 1987).

Let us consider first the basic electromagnetic reaction written as the production of a virtual
photon followed by its decay into a lepton pair

A(p) + B(p′) → γ∗(q) + X

→ `(k) + `′(k′) + X , (3.59)

whereX labels all the undetected hadrons in the final state so that the process is inclusive. The
notation is the same as in the previous sections. Since the virtual photon is timelike,q = k + k′

satisfiesq2 = Q2 > 0. One of the easiest variables to measure experimentally isq2, the invariant
mass of the pair. It is convenient to introduce the DY scaling variable

τ = q2/s, (3.60)

where the total center of mass energy of the hadronic collision is determined froms = (p + p′)2.
The parton-model interpretation of the DY process is that in the hadronic collision two partons,

say a quark-antiquark pair, annihilate to produce the virtual photon. In this case we write the
hadronic DY cross section as a product of the partonic DY cross section for the reactionq(ξp) +

q̄(ξ′p′)→ `(k) + `′(k′), times two parton distribution functions

dσ(PM)
AB (p, p′,q)

dq2
=

∑
f

∫ 1

0
dξ dξ′ φ f /A(ξ)

dσ(Born)
AB (ξp, ξ′p′,q)

dq2
φ f̄ /B(ξ′) . (3.61)

The distributionsφ(ξ) andφ(ξ′) are assumed to be the same “universal” functions as measured
in deeply inelastic scattering. The hard scattering is the Born approximation for quark-antiquark
annihilation into a virtual photon, averaged over the color degrees of freedom of the initial quark
and antiquark. The resulting differential cross section is

dσ(γ)
f f̄

(ξp, ξ′p′,q)

dq2
= Q2

f

4πα2

3Ncq2
δ(q2 − (ξp + ξ′p′)2) . (3.62)
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Substituting this result and the definition ofτ into Eq. (3.61) we find for the photon

dσ(γ)
AB(p, p′,q)

dq2
=

4πα2

3Ncq2s

∑
f

Q2
f

∫ 1

0
dξ dξ′ φ f /A(ξ) δ(τ − ξξ′) φ f̄ /B(ξ′) . (3.63)

The general inclusive DY cross section is of the form,

dσ(V)
AB

dq2
= σV

0 (q2)WV
AB(τ) , (3.64)

with V = γ,W±,Z. The factorσV
0 contains the overall dimensions, while the dimensionless func-

tion WV
AB is defined as the integral over the appropriate product of distribution functions times

couplings (in units ofe), which we denote byPDV
AB,

WV
AB(τ) =

∫ 1

0
dξ

∫ 1

0
dξ′ δ(τ − ξξ′)PDV

AB(ξ, ξ′) . (3.65)

In the electromagnetic case we have

σ
γ
0 =

4πα2

3Ncq2s
, (3.66)

while Wγ
AB is computed with

PDγ
AB(ξ, ξ′) =

∑
q

Q2
q{φq/A(ξ)φq̄/B(ξ′) + φq̄/A(ξ)φq/B(ξ′)} . (3.67)

For intermediate boson production, we only have to changeσV
0 andPDV

AB. In the case of Z, we
have

σZ
0 = τ

πα2

192Nc sin4 θW cos4 θW

1 + [1 − 4 sinθ2
W]2

(q2 − M2
Z)2 + M2

ZΓ2
Z

(3.68)

for the reactionqq̄→ e+e−, whereΓZ is the total width of the Z boson,

ΓZ =
αMZ

24 sin2 θW cos2 θW

[1 − 4 sin2 θW + 8 sin4 θW] . (3.69)

The relevant product of distributions is

PDZ
AB(ξ, ξ′) =

∑
q

Cq{φq/A(ξ)φq̄/B(ξ′) + φq̄/A(ξ)φq/B(ξ′)} (3.70)

for production in theqq̄ channel, whereCq = 1 + {1− 4|Qq| sin2 θW}2.
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The totalZ production rate is found by integrating overq2, in the “narrow width approximation”
ΓZ � MZ,

σ(Z)
tot =

π2αS

12 sin2 θW cos2 θW

1
s
WZ(τ =

M2
Z

s
,q2 = M2

Z) . (3.71)

The corresponding results forV = W− are

σW = τ
πα2

12Nc sin4 θW

1

(q2 − M2
W)2 + M2

WΓ2
W

, (3.72)

PDW
AB(ξ, ξ′) = cos2 θC{ūA(ξ)dB(ξ′) + c̄A(ξ)sB(ξ′)} ,

+ sin2 θC{ūA(ξ)sB(ξ′) + c̄A(ξ)dB(ξ′)}
+(A↔ B), (3.73)

ΓW =
αMW

12 sin2 θW

, (3.74)

where ūA ≡ φū/A, etc. As usual,θW and θC are the weak mixing and Cabibbo mixing angles
respectively. Then the totalW− production rate is

σ(W)
tot =

π2αS

3 sin2 θW cos2 θW

1
s
WZ(τ =

M2
W

s
,q2 = M2

W) . (3.75)

E. O(ααs) Processes

The next level in complexity for parton model cross sections are those for which the partonic
scattering involves the inelastic emission or absorption of a photon. The Born cross section will
then be of orderααs, instead ofα2, as above. These processes are photoproduction and direct
photon production processes, respectively (Owens, 1987).

Once again, the cross section at the hadron level is given in terms of a convolution of parton
distribution functions, the hard scattering parton-level subprocess cross sections, and the appropri-
ate fragmentation functions. The inclusive invariant cross section of the typeA + B → C + X is
given by

EC
d3σ

dp3
C

(AB→ C + X) =
∑
abcd

∫
dxadxbdzcφa/A(xa)φb/B(xb)

× ŝ
z2

cπ

dσ
dt̂

(ab→ cd)DC/c(zc)δ(ŝ+ t̂ + û),

(3.76)
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where in our casea. . .d label partons and/or the photon. Hatted variables, ( ˆs) etc., refer to in-
variants of the partonic subprocess. As is conventional, we have explicitly exhibited theδ function
associated with the phase space for the two-body scattering of massless particles in Eq. (3.76). The
other kinematic factor, ( ˆs/z2

cπ), is associated with the difference between the hadronic differential
ECd/dp3

C, and the partonic differential (d/dt̂).
Now consider the process of direct photon production in hadron-hadron collisions. The term

“direct photon” refers to those photons which are produced in the hard-scattering subprocess and
are not decay products of some particle. There are two two-body subprocesses which can produce
direct photons: the QCD Compton subprocessgq→ γq and the annihilation subprocessqq→ γg.
The cross sections for these are

dσ
dt̂

(gq→ γq) = −πααs

ŝ2

e2
q

3
(
û
ŝ

+
ŝ
û

) , (3.77)

and
dσ
dt̂

(qq→ γg) =
πααs

ŝ2

8
9

e2
q(

û

t̂
+

t̂
û

) , (3.78)

whereeq is the fractional electric charge of the quarkq. Note that the running coupling,αs, is
a function of the renormalization scaleµ. For transverse momenta of the order of

√
s, these two

subprocesses provide the dominant contribution to direct photon production. In other kinematic
regions, it may be necessary to incorporate bremsstrahlung effects, which are QED corrections to
purely hadronic two-body scattering. We shall discuss this issue in a later section. Here, we only
note that we must also construct fragmentation functions of photons in partons, likeDγ/q(z).

The case of photoproduction is quite similar, since at the parton level one is just the time
reversed version of the other. Accordingly, the subprocess expressions differ only by color factors
associated with the interchange of the initial and final states. The two basic subprocesses are QCD
Compton scattering and photon-gluon fusion, the cross sections for which are given by

dσ
dt̂

(γq→ gq) = −πααs

ŝ2

8e2
q

3
(
û
ŝ

+
ŝ
û

) , (3.79)

and
dσ
dt̂

(γg→ qq) =
πααs

ŝ2
e2

q(
û

t̂
+

t̂
û

) . (3.80)

These subprocess expressions may be used in Eq. (3.76) without fragmentation functions, in which
case one obtains the cross section for jet production. On the other hand, inserting the appropriate
hadronic fragmentation function enables one to calculate the cross section for the photoproduction
of that type of hadron.

F. The Parton Model and Experiment

Historically, the parton model, or more traditionally, the Quark-Parton Model (QPM), was
motivated by high energy experimental results of the late 1960’s, especially the famous deeply
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inelastic scattering experiment at SLAC (Bloom et al., 1969; Breidenbachet al., 1969; Feynman
1969; Feynman, 1972). The subsequent success of this picture in providing a unified description
of a wide variety of high energy processes gave strong impetus to the search for a theoretical
foundation for its validity, resulting in the discovery of asymptotic freedom and the formulation of
perturbative QCD as the basic framework for describing all high energy physics processes. In this
section, we summarize the main features of the QPM which have been successfully compared with
experiments. It is useful to keep in mind that the significance of QPM stems not from any specific
triumph, but from the coherent framework it provides to correlate a wide range of processes. To
review, the basic tenet of the QPM is that a large class of (physically measurable) high energy
cross-sections are related to a class of (theoretically calculable) partonic cross-sections through a
set of universal parton distribution functions, which represent the probabilities of finding partons
inside hadrons.

1. Deeply Inelastic Scattering

There are a number of reviews of DIS experiments and comparisons of the measured structure
functions F`

i (x,Q
2) (where` = µ(e), ν, ν̄ andi = 1,2,3 (or L, for longitudinal)) with the QPM and

QCD, see for instance,Sciulli, 1990andMishra and Sciulli, 1989. We shall only describe briefly
the main features of this rather extensive area of experimental and phenomenological work. The
expressions forF`

i (x,Q
2) in terms of the universal parton distribution functionsφa/A(x,Q2), where

(a,A) label the parton and hadron (mostly nucleon) respectively, are given in many textbooks, such
asRoberts, 1990, review articles (for example, Tunget al., 1989) and in Section2. above.

a. Scaling: The most striking feature of the first SLAC DIS data (Bloom et al., 1969; Brei-
denbachet al., 1969) wasscaling: the approximate independence of the measured structure func-
tions Fi(x,Q2) of Q2 – an indication of scattering from point-like constituents – the “partons” –
analogous to the classic Rutherford experiment on atomic structure. The basic idea of the QPM
originated from this observed fact, which has since been corroborated by similar observations in
all high energyhardprocesses.

b. Quarks as Partons: The identification of the “partons” with the previously known quarks
(from hadron spectroscopy, which concerns physics at an altogether different energy scale) was ce-
mented by a series of seminal experiments and phenomenological analyses: (i) the near vanishing
of the longitudinal structure function ineNscattering suggested that the spin of the parton is 1/2 –
the Callan-Gross relation (Eq. (3.31)); (ii) the measured value of the ratio of total cross-sections for
neutrino to antineutrino scattering on isoscalar nuclei (i.e., nuclei with equal numbers of protons
and neutrons, and hence ofu andd quarks) is about 3. This result can be derived by integrating the
differential cross sections Eq. (3.25), using the QPM expressions Eq. (3.42) and Eq. (3.44) for the
structure functions with all antiquark distributions set to zero. (The corresponding cross section
ratio for scattering of neutrinos and antineutrinos from atomic electrons is also about 3 (Eichten

53



et al., 1973)). This striking fact strongly suggests that the nucleon consists primarily of spin 1/2
partons, rather then anti-partons, which couple to the intermediate vector bosons the same way as
the leptons; (iii) the subsequent detailed measurements of the differential cross-section d2σ/dxdy,
Eq. (3.25), and hence of the full structure functionsF(`h)

i (x,Q2), have consistently confirmed this
interpretation and yielded a wealth of information on the distribution of these partons inside the
nucleon.

c. The charge ratio: The structure functionF`
2(x,Q

2) measured in neutral-current (virtual)γ
exchange processes (` = e, µ) and in charged currentW± exchange processes (` = ν, ν̄) are in
principle different. In the QPM, they are related to the same set of parton distribution functions
– in fact, as a simple sum of the latter, each multiplied by an appropriate coupling constant (the
squared charge forγ∗ and an appropriate weak isospin matrix element forW± exchange). After
summing over parton flavors, one expectsF(eA)

2 (x,Q2)/F(νA+ν̄A)
2 (x,Q2) = 5/18 for scattering off an

iso-scalar target,A. This “charge ratio”, valid for all (x,Q2) where QPM applies, has been verified
to a great degree of accuracy in the very high statistics DIS experiments, for example BCDMS and
CCFR, after appropriate small corrections from strange and charm quarks and higher-order QCD
corrections (Mishra, 1991).

d. Quark number sum rules: The “valence quark” distributions of the proton satisfy the ob-
vious quark number sum rules:

Nu =

∫ 1

0
dx (u(x) − ū(x)) = 2; Nd =

∫ 1

0
dx (d(x) − d̄(x)) = 1

In the QPM, linear combinations of these integrals are related to various integrals of measurable
structure functions, e.g.∫ 1

0

dx
2x

[
Fνn

2 − Fνp
2

]
= Nu − Nd = 1 (Adler Sum Rule)

∫ 1

0

dx
2x

[
xFνn

3 − xFνp
3

]
= Nu + Nd = 3 (Gross− Llewellyn Smith Sum Rule)

These sum rules have been extensively checked by all relevant deeply inelastic scattering experi-
ments. Within the experimental accuracy (and, by now, known QCD corrections to the latter), they
are verified – the measured integral for the Adler sum rule is (Allasia et al., 1984; Allasia et al.,
1985) 1.01±0.20; and for the GLS sum rule it is (Mishra, 1991) 2.50±0.08. (There is an expected
QCD correction to the naive QPM value for the GLS sum rule of approximately−0.34.)

2. Electron-positron Annihilation into Hadrons

a. Total cross-section and scaling The total cross-section for hadron final states ine+e− an-
nihilation normalized to the point-like cross-section fore+e− → µ+µ− behaves roughly as step-
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functions in the center-of-mass energy (for a comprehensive review, see (Wu, 1984), staying con-
stant (see Eq. (3.47)) over certain ranges (now known to correspond to regions between heavy
quark flavor thresholds). This is the analogue of scaling behavior for DIS, and suggests that the
underlying interaction mechanism ise+e− → parton–anti-parton pair. The absolute value of this
ratio is proportional to the sum of the squared charges of the partons. The overall constant is 1 for
spin 1/2 partons and 1/4 for spin 0 partons. The measured values agree well with the assumption
that partons are quarks with the usual assigned charges.

b. Two-jet final states as evidence for underlying partons The most direct evidence for the
existence of partons perhaps come from the clear emergence of jet-like hadronic final states in
experiments done at the PETRA and PEPe+e− colliders (Wu, 1984). The dominance of these
events gave the first visual evidence for the underlying parton–anti-parton pair final state previously
inferred indirectly from the total cross-section measurements and from DIS.

c. Angular distribution and spin of the parton If we assume that the underlying parton pic-
ture, the angular distribution of the two-jet final states gives direct evidence on the angular dis-
tribution of the created parton pair, which is sensitive to the spin of the parton and its coupling
to the virtual photon. The measured distribution agrees very well with the canonical (1+ cos2θ)
distribution for spin 1/2 partons: Eq. (3.58) and (Wu, 1984).

3. Lepton-pair Production (Drell-Yan Process)

The most convincing evidence that the QPM provides the correct framework for high energy
processes in general came (historically) from its success in accounting for features of the measured
lepton-pair production (A + B −→ `+`− + X) cross-sections, using the same simple parton picture
and the same parton distributions determined from deeply inelastic scattering.

In the QPM, lepton-pair production proceeds through the basic quark–anti-quark annihilation
qq̄ → `+`−, the Drell-Yan process. The QPM cross-section at fixed center-of-mass pair rapidity,
y = (1/2)ln(x1/x2), is given by

Q4 d2σ

dydQ2
= [

4πα2

9
x1x2]

∑
q

e2
q(φq/A(x1)φq̄/B(x2) + φq̄/A(x1)φq/B(x2)) ,

wherex1,2 = (Q/
√

s)e±y are scaling variables. The main features of this formula are:

a. Scaling: The fact that the right-hand side is independent of any energy scale (say,Q) –
i.e. the dimensionless cross-section satisfiesscaling– is again evidence for the underlying point-
like interaction (Lederman, 1979; Stroynowski, 1981) For a recent high-statistics experiment, see
Brown et al., 1989; Morenoet al., 1991. This feature allows one to predict the cross-section at
higher energies from low energy measurements. We must re-emphasize that scaling is exactly true
in the QPM, and that it is somewhat violated in QCD.
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b. Color factor: The overall factor in this formula contains a “color factor” 3 in the denomina-
tor which played an important role in determiningQuantum Chromodynamicsto be the underlying
fundamental theory for strong interactions when parton distribution functions measured in deeply
inelastic scattering experiments were used in the above formula to test against lepton-pair cross-
sections. To get quantitative agreement with experiment, the higher order corrections inαs(Q)
predicted by QCD are essential.

c. Cross-section ratios: The above QPM formula for lepton-pair production leads to many
simple predictions on cross-section ratios which agree well with experiment and were instrumental
in establishing the credibility of the QPM during its infancy. For instance:

σ(π+N→ µ+µ−)
σ(π−N→ µ+µ−)

−→
(
ed

eu

)2

=
1
4

as τ→ 1 ,

where N denotes an “isoscalar” target. This is indeed found to be true. This is the region where
the “valence quark” is presumed to dominate. In contrast the ratio rises toward 1 forτ→ 0, where
π± contain equal amounts of ¯u andd̄ quarks (Pilcher, 1979).

d. Angular distribution of the leptons: Since the underlying fundamental process for lepton-
pair production,qq̄ → `+`−, is very similar toe+e− → µ+µ−, the angular distribution of the
outgoing leptons in their center-of-mass frame is expected to be∼ (1 + cos2θ) – just like for the
latter – if the QPM is correct. Experiments amply confirm this fact (Lederman, 1979; Stroynowski,
1981; Pilcher, 1979; Brownet al., 1989).

4. Other Hard Processes

The basic features of QPM are also observed in other high energy “hard processes”, e.g. pro-
duction of high transverse momentum direct photons and production of high transverse momentum
jets. Although the three processes described in previous sections played a more crucial role in es-
tablishing the QPM picture historically, all the hard processes are highly relevant in current studies
of the QCD-improved parton model, which provides the foundation for the quantitative formula-
tion of high energy processes in the Standard Model and beyond.
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IV. Perturbative QCD: Fundamental Theorems

The first goal of perturbative QCD is to find a justification of the parton model in field theory,
and to identify systematic procedures for improving upon parton model predictions. This program
is conveniently summarized in terms of a series of fundamental theorems, which we describe
below. We shall motivate each of these basic results from the parton model cross sections of the
previous section. It should be kept in mind, however, that the methods developed below allow us
to address a wider range of problems than can be systematically treated in the parton model, and,
although perturbative QCD is in some sense a descendent of the parton model, it has a life of its
own. Moreover, many of the results of perturbative QCD have been derived from the fundamental
Lagrangian of QCD. Thus they must be regarded as real predictions of the theory, and not just as a
model.

A. Infrared Safety in e+e− Annihilation

The first set of theorems that we shall discuss apply toe+e− annihilation. Here the results
are simplified by the lack of hadrons in the initial state. We shall treat the perturbative QCD
generalizations of parton model expressions for the total and jet cross sections.

1. Total Cross Section

The simplest of the parton model cross sections is the total cross section fore+e− annihilation
into hadrons, Eq. (3.47). In this case, no phenomenologically determined parton distribution or
fragmentation functions are necessary. Instead we have an absolute prediction which is in quite
good agreement with experiment. Yet, Eq. (3.47) is the Born cross section for the production of a
quark pair, not of physical hadrons, and it is hadrons that we observe in experiment, not free quarks.
The success of this prediction is understandable because the total cross section isinfrared safein
the sense described in SectionF. above. Recall that an infrared safe quantity becomes independent
of the masses of light partons (gluons and light quarks) in the high-energy limit, and is dominated
by highly off-shell virtual states in perturbation theory. In configuration space, an infrared safe
quantity is correspondingly dependent only on the short-distance behavior of QCD, not on the
long-distance dynamics that produce confinement and the details of the hadronic spectrum. Such
a quantity possesses a perturbative expansion in the running coupling that is free of logarithms or
other sensitive functions which depend on large ratios, such asQ/m, with m a parton mass andQ
the overall momentum scale.

Thus, our first theorem of perturbative QCD is that the totale+e− annihilation cross section is
infrared safe,

σtot(Q
2, µ2,m2/µ2, αs(µ)) =

1
Q2

Π(Q2/µ2,0, αs(µ))
{

1 + O(m2/Q2)
}
, (4.1)

wherem labels the fixed mass scales in the theory,µ is the renormalization scale (Section2.), and
where we have factored out an overall factorQ−2, leaving behind dependence on dimensionless
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variables in the functionΠ. An important result is that, because of its IR safety, the total cross
section may be computed inmasslessQCD, up to corrections that vanish as a power of the energy
as far as the light quarks are concerned.

Now σtot is a physical quantity, and is consequently independent of the renormalization scale
µ. In particular, we have

Π(Q2/µ2, αs(µ
2)) = Π(1, αs(Q

2)) , (4.2)

where we have suppressed the mass argument, since we are working in massless perturbation
theory. Technically speaking, the cross section satisfies the renormalization group equation,(

µ
∂

∂µ
+ β(g)

∂

∂g

)
Π(Q2/µ2, αs(µ)) = 0 , (4.3)

but the content of this equation is the same as Eq. (4.2).
When the perturbative total cross section is exhibited, it is usually the right-hand side of

Eq. (4.2) that is given as a power series inαs(Q), in which the coefficients are pure numbers,
since all energy dependence is absorbed into the running coupling,

Π(1, αs(Q
2)) = Nc

4πα2

9

∑
f

Q2
f

 ∞∑
n=0

snα
n
s(Q) . (4.4)

Here we have factored out the parton model result, Eq. (3.47), so that the first term in the series is

s0 = 1 . (4.5)

We shall discuss the calculation of higher terms in SectionV. below.
For largeQ the running coupling, Eq. (2.48),

αs(Q)
4π

=
1

β1 ln(Q2/Λ2)
− β2 ln ln(Q2/Λ2)

β3
1 ln2(Q2/Λ2)

+ O

(
1

ln3 Q2/Λ2

)
, (4.6)

falls off, and remaining terms in the series are small corrections. Here is the reason that the parton
model result works so well.

The formal proof of the infrared safety ofΠ(Q2/µ2) follows from the famous theorem of Ki-
noshita and Lee and Nauenberg (Kinoshita, 1962; Lee and Nauenberg, 1964), that fully inclusive
transition probabilities are finite in the zero-mass limit. Actually, the arguments of Kinoshita and
Lee and Nauenberg require one to sum over all degenerate initial as well as final states, but in this
case, because there are no hadrons in the initial state, a simple sum over final states will do. The
extension of these results to QCD was discussed inPoggio and Quinn, 1976; Sterman, 1976; Ster-
man, 1978.

The relevant physical observation that justifies infrared safety is that the creation of a quark
pair is a short-distance phenomenon, and is not expected to interfere quantum mechanically with
the long-distance processes that produce hadrons from quarks. Consequently, the cross section
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can be thought of as a product of probabilities, one for quark pair creation (Born diagram plus
calculable corrections), the other for the evolution of quarks to hadrons. In the fully inclusive cross
section, we sum over all final states. Then, because of the absence of interference between short-
and long-distance effects, the probabilities for hadrons to be produced from quarks sum to unity,
since, without further electroweak corrections, off-shell quarksalwaysproduce on-shell hadrons.
This will happen in perturbation theory (where the role of hadrons is played by on-shell quarks and
gluons), as well as in the real world (where hadrons are the physically observed particles). Thus,
any infrared sensitivity which may be present in perturbation theory should cancel after the sum
over final states, leaving only the short-distance cross section for producing the pair in the first
place.

2. Other infrared safe quantities in e+e− annihilation

The infrared safety ofσtot can be extended to a large class of cross sections measured ine+e−

annihilation. To understand what quantities are infrared safe and why, one should consider a
perturbative calculation in which the quarks as well as the gluons are massless. Then any sensitivity
to long distance effects will show up as an infrared divergence in the calculation.

How would such a divergence arise? A detailed analysis given inSterman, 1978yields a simple
answer: the potential divergences are all related to soft or collinear momentum configurations.
First, a massless on-shell particle with momentumpµ can emit a massless particle with momentum
qµ = 0 and remain on-shell. Integration over momentaqµ near toqµ = 0 producessoft divergences
in cross sections. Second, a massless on-shell particle with momentumpµ can emit a massless
particle with momentumqµ = zpµ, 0 ≤ z ≤ 1, and remain on-shell. Integration over momentaqµ

near toqµ = zpµ producescollinear divergencesin cross sections.
When the total cross section fore+e− annihilation is calculated perturbatively, individual terms

are infinite, but the infinities cancel for reasons based on unitarity, as discussed in the previous
subsection. There are other quantities for which a similar cancellation occurs. Consider a quantity
I that is defined in the style ofKunszt and Soper, 1992in terms of parton cross sections and
functionsSn by

I =
1
2!

∫
dΩ2

dσ[2]
dΩ2

S2(p
µ
1, p

µ
2)

+
1
3!

∫
dΩ2dE3dΩ3

dσ[3]
dΩ2dE3dΩ3

S3(p
µ
1, p

µ
2, p

µ
3)

+
1
4!

∫
dΩ2dE3dΩ3dE4dΩ4

dσ[4]
dΩ2dE3dΩ3dE4dΩ4

S4(p
µ
1, p

µ
2, p

µ
3, p

µ
4)

+ · · · . (4.7)

The functionsSn specify the measurement to be made. An example ofI is the total cross section,
for which all of theSn equal 1. Another example is the thrust distributiondσ/dT where, for an
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event containingn particles, the thrustT is (Farhi, 1977)

Tn(p
µ
1, . . . , p

µ
n) = max

~u

∑n
i=1 |~pi · ~u|∑n

i=1 |~pi |
. (4.8)

Here the~u is a unit vector defining the “thrust axis,” which is chosen to maximize the thrust. To
calculatedσ/dT, one uses Eq. (4.7) with

Sn(p
µ
1, . . . , p

µ
n) = δ

(
T − Tn(p

µ
1, . . . , p

µ
n)
)
. (4.9)

Perhaps the most important examples ofI are the various jet cross sections, to be discussed in
Sects.V. andVIII. .

Under what conditions will the cancellation of infrared infinities that occurred for the total
cross section also occur for the quantityI? Without loss of generality, we may assume that the
Sn are invariant under interchange of theirn argumentspµn. Then the discussion above of collinear
and soft divergences should make it clear that one needs

Sn+1(p
µ
1, . . . , (1− λ)pµn, λpµn) = Sn(p

µ
1, . . . , p

µ
n) (4.10)

for 0 ≤ λ ≤ 1. That is to say, the measurement should not distinguish between a final state in
which two particles are collinear and the final state in which these two particles are replaced by one
particle carrying the sum of the momenta of these collinear particles. Similarly, the measurement
should not distinguish between a final state in which one particle has zero momentum and the final
state in which this particle is omitted entirely.

The argument that a cross section specified by functionsS with this property does not have
infrared divergences may be understood as an extension of the KLN theorem (Kinoshita, 1962; Lee
and Nauenberg, 1964). The heuristic arguments given above for the total cross section apply in this
case as well. We need only observe that long-distance interactions (and hence infrared sensitivity)
arise from interactions that occur over a long time period. These are just the interactions involving
parallel-moving particles or very low momentum particles. As long as the measured quantity is not
sensitive to whether such a long-time interaction has occurred, one can still cancel the divergences
in perturbation theory using unitarity: the sum of the probabilities that the interaction does or does
not occur is unity.

On the level of QCD calculations, infrared safety means that a quantity can be calculated in
perturbation theory without obtaining infinity. Since the infrared infinities come from long distance
physics, the physical interpretation is that infrared safe quantities are insensitive to long distance
physics.

B. Factorization Theorems in Deeply Inelastic Scattering

In this subsection, we introduce two of the basic ideas of perturbative QCD,f actorization,
which enables us to derive and generalize the parton model, andevolution, which enables us to
compute scale-breaking effects systematically.
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1. Factorization for structure functions

Theorem.The field theory realization of the parton model is the theorem offactorizationof
long-distance from short-distance dependence for deeply inelastic scattering (Collins, Soper, and
Sterman, 1989). This theorem states that the sum of all the diagrammatic contributions to the
structure functions is a direct generalization of the parton model results, Eq. (3.27) and Eq. (3.28),
given by

F(Vh)
a (x,Q2) =

∑
i= f , f̄ ,G

∫ 1

0

dξ
ξ

C(Vi)
a (x/ξ,Q2/µ2, µ2

f /µ
2, αs(µ

2))

×φi/h(ξ, µ f , µ
2) , (a = 1,3) (4.11)

F(Vh)
2 (x,Q2) =

∑
i= f , f̄ ,G

∫ 1

0
dξ C(Vi)

2 (x/ξ,Q2/µ2, µ2
f /µ

2, αs(µ
2))

×φi/h(ξ, µ f , µ
2) . (4.12)

Herei denotes a sum over all partons: quarks, antiquarks and gluons.
We note, compared to the parton model formula, dependence on two mass scales,µ andµ f .

The former is the renormalization scale, which is necessary in any perturbative computation. The
latter, however, is specific to factorization calculations, and is called the factorization scale. It
serves to define the separation of short-distance from long-distance effects. Roughly speaking,
any propagator that is off-shell byµ2

f or more will contribute toC(Vi)
a . Below this scale, it will be

grouped intoφi/h. The precise definition ofµ f is made when we give a formal definition of the
parton distributions. It appears in the definition of the parton distributions in a fashion very similar
to the way the renormalization scaleµ appears in renormalization.

Often, it will be convenient to choose the two scalesµ andµ f to be equal, but this need not be
done in general.

The substance of factorization is contained in the following properties of the functionsC(Vi)
a

andφi/h.

i. Each hard-scattering function

C(Vi)
a (x/ξ,Q2/µ2, µ2

f /µ
2, αs(µ

2)), a = 1,2,3, (4.13)

is infrared safe, calculable in perturbation theory. It depends on the labela, on the elec-
troweak vector bosonV, on the partoni, and on the renormalization and factorization scales,
but it is independentof long-distance effects. In particular it is independent of the identity
of hadronh. For example, it is the same in the DIS of a proton and a neutron and, for that
matter, in the DIS of a pion or kaon. It is a generalization of the Born elastic scattering
structure functions in the parton model formula, Eq. (3.30).

ii. The parton distribution,φi/h(ξ, µ f , µ2, αs(µ2)), on the other hand, containsall the infrared
sensitivity of the original cross section. It is specific to the hadronh, and depends onµ f . On
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the other hand it isuniversal, that is, it is independent of the particular hard scattering process
that we treat: it is the same for the different structure functionsF1 andF2, for example, and it
depends on neithera norV, nor evenQ2, unless we pickµ2 = Q2. It is a direct generalization
of the parton model quark distribution.

Use and interpretation.The use of factorization is also a generalization of the parton model.
TheC’s are to be computed in perturbation theory, and theφ’s are to be measured by comparing
Eq. (4.11) and Eq. (4.12) to experiment, given explicit expressions for theC’s. Once enough infor-
mation is amassed to determine the parton distributions from some standard set of cross sections,
we can use factorization to provide predictions for other factorizable cross sections, and for the
same process at otherQ2.

The essential question is therefore to give a method of computation for the hard scattering
functionsC(Vh)

a . To do so, we use the fact that theC’s are independent of the external hadron. We
can therefore calculate them in perturbation theory, with the external hadron replaced by a parton.
This will require us to consider the distribution of a parton in a parton:φi/ j, where we have a parton
label instead of a hadron label. Then we shall need a prescription for computing the cross sections
or structure functions with a parton target and separating out the hard scattering from the parton
distributionsφi/ j.

Such a prescription obviously involves a degree of choice. A set of rules that makes the choices
is often called a “factorization scheme”, by analogy to renormalization scheme. Such a scheme
defines at the same time the hard scattering functions and the parton distributions. Once this has
been done, we can discard the perturbative parton distributions, which have no particular meaning
since they are dominated by infrared effects and thus by infrared parameters that we cannot mea-
sure. Nevertheless, the factorization theorem insures that the hard scattering functions determined
in this calculation are insensitive to infrared scales and parameters, and are applicable to cross
sections computed with phenomenologically determined hadronic parton distributions.

Explicit results for hard-scattering functions may be found in SectionVI., along with a dis-
cussion of the mechanics of their calculation for the archetypical factorized cross section: the
electromagnetic DIS structure functions of a quark,F(γ f )

a .
Generalizations.So far, we have discussed factorization for the fully inclusive structure func-

tions. Essentially the same factorization theorem applies, however, to any DIS cross section de-
fined by a sum over hadronic final states that satisfies the same condition Eq. (4.10) that implies
infrared safety ine+e− annihilation (Libby and Sterman, 1978a). Other generalizations apply to
non-scaling, “higher-twist” contributions17 and to spin-dependent distributions (Artru and Mekhfi,
1990; Collins, Heppelmann, and Robinett, 1991; Collins, 1993a).

17Analysis of this kind has been phrased in terms of generalized parton distributions (Ellis, Furmanski, and
Petronzio, 1982; Ellis, Furmanski, and Petronzio, 1983; Jaffe, 1983; Qiu, 1990; Qiu and Sterman, 1991a), and in
terms of the operator product expansion (Okawa, 1981; Shuryak and Vainshtein, 1981; Jaffe and Soldate, 1982; Lut-
trell and Wada, 1982) which fall off as powers ofQ2.
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2. Factorization Schemes

Even before we discuss how to define the distributionφ f / f perturbatively, it is clear that in
the absence of interactions, it should enable the factorization formula to reproduce the Born cross
section. We must therefore have

φ(0)
f / f (ξ) = δ(1− ξ) . (4.14)

(Here and below, we use a notationf (i) to denote theith order in the perturbation expansion of a
quantity f , which in the above equation isφ.) Then we find by direct substitution in Eq. (4.11) and
Eq. (4.12) that, fora = 1,2,

F(γ f )(0)
a (x) = Q2

fδ(1− x) = C(γ f )(0)
a (x) , (4.15)

just as in Eq. (3.30).
Beyond lowest order in perturbation theory there is considerable ambiguity in separating the

hard scattering functions from their corresponding parton distributions. In general, any choice for
the parton distributions that satisfies Eq. (4.14) at lowest order, and that absorbs all long-distance
effects at higher order, is acceptable. Short-distance “finite parts” at higher orders may be appor-
tioned arbitrarily between theC’s andφ’s. A prescription that eliminates this ambiguity is what
we mean by a factorization scheme. The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to know in which scheme any given
calculation, or comparison to data, is carried out. The two most commonly used schemes, called
DIS andMS reflect two different uses to which the freedom in factorization may be put.

The DIS scheme is appealing for its close correspondence to experiment (Altarelli, Ellis, and
Martinelli, 1979). In this scheme, we demand that, order-by-order in perturbation theory, all cor-
rections to the structure functionsF(Vh)

2 be absorbed into the distributions of the quarks and anti-
quarks. This means that atµ = µ f = Q, the hard scattering functions are exactly equal to their
parton-model values:

C(Vq)
2 (x) = Q2

qδ(1− x) ,

C(Vq̄)
2 (x) = Q2

q̄δ(1− x) ,

C(Vg)
2 (x) = 0 , (4.16)

to all orders of perturbation theory. Of course, it is possible to do this for only one of the structure
functions. The other structure functions will receive corrections at orderαs and beyond. Note that
this definition does not fix the gluon distribution.

TheMS scheme(Bardeen, Buras, Duke, and Muta, 1978), on the other hand, is appealing for its
theoretical elegance and calculational simplicity. In this scheme the parton distributions are defined
directly in terms of hadronic matrix elements (Curci, Furmanski, and Petronzio, 1980; Collins and
Soper, 1982). In their simplest form, these matrix elements may be given in terms of operators
bi(xp, kT) andb†i (xp, kT), which annihilate and create partoni, with longitudinal momentumxp
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and transverse momentumkT , in hadronh of momentump,

φi/h(x, µ
2) =

∫
d2kT

(2π)2
〈h(p)| b†i (xp, kT) bi(xp, kT) |h(p)〉 . (4.17)

The first (rightmost) operator absorbs the parton from the hadronic state, and the second emits
it again. This parton distribution is, in essence, the expectation value of a number operator in the
hadronic state. A little sophisticated footwork reexpresses the matrix element in Eq. (4.17) in terms
of the quantum field corresponding to partoni. Thus, for instance, theMS distribution for a quark
of flavor f is given by

φ f /h(x, µ
2) =

∫ ∞

−∞

dy−

4π
e−ixp+y−〈h(p)| ψ̄(y−,0+,0T)γ+

× ψ(0−,0+,0T) |h(p)〉 , (4.18)

where an average over the spin ofh(p) is understood. Similar explicit expressions can be given
for the antiquark (in which the roles ofψ andψ̄ are exchanged) and for the gluon, for which the
relevant field isF+T ≡ (1/

√
2)(F0T + F3T) whereT labels the transverse components relative to

the momentump. (There are some complications due to gauge invariance that we have ignored in
definition (4.18). See SectionD.)

More insight into these two “canonical” ways of defining parton distributions can be gained
from the explicit one-loop calculations described in SectionD. below .

3. Evolution

Everything in the process just described was carried out for fixedQ2. But even a single DIS
experiment supplies data over a range of momentum transfers. A remarkable consequence of fac-
torization is that measuring parton distributions for one scaleµ allows their prediction foranyother
scaleµ′, as long as bothµ andµ′ are large enough that bothαs(µ) andαs(µ′) are small. This result,
called theevolutionof structure functions, increases the power of pQCD enormously. Thus, for
instance, measuringF(γh)

2 (x,Q2) is enough to predict, not onlyF(γh)
1 (x,Q2), but alsoF(γh)

1 (x,Q′2)
andF(γh)

2 (x,Q′2) for all largeQ′2. We should note that precise predictions require analogous infor-
mation from neutrino scattering to perform the flavor separation of the parton densities.

The evolution of the parton distributions is most often, and most conveniently, described in
terms of integro-differential equations,

µ2 d
dµ2

φi/h(x, µ, µ
2) =

∑
j= f , f̄ ,G

∫ 1

x

dξ
ξ

Pi j

(
x
ξ
, αs(µ

2)

)
φ j/h(ξ, µ, µ

2) . (4.19)

We have chosenµ = µ f . This equation is known as the Gribov-Lipatov-Altarelli-Parisi evolution
equation (Gribov and Lipatov, 1972a; Altarelli and Parisi, 1977). Theevolution kernels Pi j (x) are
given by perturbative expansions, beginning withO(αs). Their explicit forms will be discussed in
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SectionVI. below. The one-loop terms in the kernels are independent of the scheme used to define
the parton distributions.

Note that the integral on the right-hand side of Eq. (4.19) begins atx. Thus, it is only necessary
to knowφ j/h(ξ,Q2

0) for ξ > x at some starting value of the scaleµ = Q0, in order to deriveφ j/h(x, µ2)
at a higher valueµ = Q. This is a great simplification, since data at smallx are hard to come by at
moderate energies.

Without going into the details of the evolution kernels, we can get some insight into their use
by applying Eq. (4.19) to a parton stateh = j and expanding to first order inαs, using Eq. (4.14),

µ2 d
dµ2

φi/ j(x, αs(µ
2)) = Pi j (x) + O(α2

s) . (4.20)

From this relation, we already see that the evolution kernels show up as the coefficients of the
logarithmic factorization-scale dependence in one-loop calculations.

The evolution equations control the dependence of parton distributions on the factorization
scale. If we chooseµ = µ f = Q, the momentum transfer in DIS, then there are no large ratios
in the arguments of the hard-scattering functionsCa in the factorization theorem. Under these
circumstances, weexpectthe perturbative series for theC’s to be well under control, with no large
coefficients ofαs at first order and beyond, at the same time thatαs itself is relatively small. Of
course, this means that most of the information onQ2-dependence has simply been shuffled into
the parton distributions. The beauty of the evolution equations is that they tell us how to compute
this dependence, given only that we have measured the parton distributions at one scaleQ0. In the
language of the parton model, the evolution equation enables us to compute theQ2-dependence of
the parton distributions, and hence the “scale-breaking” of the structure functions themselves.

It is relatively easy to derive the evolution equations (4.19) directly from the factorization
theorem, Eq. (4.11) and Eq. (4.12). This instructive derivation also enables us to introduce the
famous analysis of scale breaking in DIS in terms ofmomentsof structure functions.

Evolution is directly related to our freedom in choosing the renormalization and factorization
scales. We notice first that the value ofµ f in the factorization theorem Eq. (4.11) and Eq. (4.12)
is free. Again, a natural choice for DIS isµ f = µ = Q, so that theC(Vi)

a , as well as theφi/h, are
functions ofαs(Q2). With this choice, the evolution of parton distributions is sufficient to evolve
the complete structure functions.

The derivation of evolution is simplified in so-callednonsingletstructure functions, the simplest
of which are

F(VNS)
a ≡ F(V p)

a − F(Vn)
a , (4.21)

wherep is the proton andn the neutron. For the following discussion, we suppress the labelV, and
chooseµ f = µ. F(NS)

1 , for instance, satisfies the factorization theorem,

F(NS)
1 (x,Q2) =

∫ 1

0

dξ
ξ

C(NS)
1

(
x
ξ
,
Q2

µ2
, αs(µ

2)

)
× φNS(ξ, µ2) , (4.22)
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whereφNS is a “valence” quark distribution. More properly it is the difference betweenp andn
quark distributions,

φNS(x, µ2) =
∑

f

Q2
f

[
φ f /p(x, µ

2) − φ f /n(x, µ
2)
]
, (4.23)

where we have absorbed the quark charges into its definition, which makes the short-distance
function independent off .

The term “valence” refers to our expectation that the distributions of gluons, and of “sea”
quarks, produced in pairs by gluons, should be the same in the proton as in the neutron. These con-
tributions, which are singlets under the isospin group SU(2), cancel in the difference in Eq. (4.21).
Note that this result holds exactly only for electromagnetic structure functions, since the electro-
magnetic interactions respect charge conjugation, which exchanges the roles of quarks and anti-
quarks. What remains is almost entirely due to the difference in the “valence”u andd quark content
of the proton and neutron. The simplification in Eq. (4.21) relative to Eq. (4.11) and Eq. (4.12) is
that the result is a single convolution, rather than a sum of convolutions.

Now both the functions on the right of Eq. (4.22) are functions ofµ, but the physical quantity
F(NS)

1 on the left is not,
d
dµ

F(NS)
1 = 0 . (4.24)

Thus, theµ-dependence inC(NS)
1 must compensate that ofφNS. The information contained in this

observation may be brought out clearly by introducingmomentsof the structure functions,

F̄(NS)
1 (n,Q2) ≡

∫ 1

0
dx xn−1F(NS)

1 (x,Q2)

= C̄(NS)
1

(
n,

Q2

µ2
, αs(µ

2)

)
φ̄NS(n, µ2) , (4.25)

whereC̄(NS) andφ̄NS are

C̄(NS)
1 (n,

Q2

µ2
, αs(µ

2)) ≡
∫ 1

0
dη ηn−1C(NS)

1 (η,
Q2

µ2
, αs(µ

2)) ,

φ̄NS(n, µ2) ≡
∫ 1

0
dξ ξn−1φNS(ξ, µ2) . (4.26)

Now, applying moments to Eq. (4.22), we find that

µ
d
dµ

ln φ̄NS(n, µ2) = −γ(NS)
n (αs(µ

2))

= −µ d
dµ

ln C̄(NS)
1

(
n,

Q2

µ2
, µ2

)
, (4.27)

whereγ(NS)
n (αs(µ2)) is a function ofαs only, since this is the only variable thatφNS andC̄(NS) have

in common. (Note that the ratioQ/µ f in C, for instance, is independent of theµ f -dependence in
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φ, because the latter would occur in ratios likeµ/λ, with λ an infrared cutoff.) γ(NS)
n is known as an

anomalous dimension, since it acts like a factorµ−γn in the (dimensionless!) function ln̄φNS(n, µ2).
The anomalous dimensionsγn can be constructed directly from the one-loop value of the parton

distribution. (At one loopφ f / f andφNS are the same for an external quark.) Althoughφ f / f is
certainly not IR safe,γ(NS)

n is, because it is also a derivative ofC(NS)(n). The derivative ofφ(1)
f / f is

particularly simple, however,

γ(NS)
n = −µ d

dµ
ln φ̄NS(n, αs(µ

2))

= −αs

π

∫ 1

0
dx xn−1P(1)

qq(x) + O(α2
s) , (4.28)

with P(1)
qq(x) found from Eq. (4.20). To give substance to these rather abstract considerations, let

us exhibit the explicit integral from which we findγ(NS), which may be found directly from the
explicit form for Pqq(x), given in SectionVI.,

γ(NS)
n = −αs

π
C2(F)

∫ 1

0
dx

{
(1 + x2)xn−1 − 2

1− x

+xn−13
2
δ(1− x)

}
,

=
αs

2π
C2(F)

4
n∑

m=2

1
m
− 2

n(n + 1)
+ 1

 . (4.29)

We note an important subsidiary result

γ(NS)
1 = 0 , (4.30)

which states that the integral of the NS distribution,

M1 ≡
∫ 1

0
dξ φNS(ξ, µ2) , (4.31)

is independent of the factorization scale. This is gratifying, sinceM1 measures the number of
valence quarks. Forn > 1, theγn’s are all positive and increase withn. This means that higher
moments, which test the size ofφNS(x) nearx = 1, vanish more rapidly than lower moments as
Q2 → ∞. Along with γ(NS)

1 = 0, this implies a “softening” ofφNS with Q2, in which the averagex
decreases asQ2 increases. This behavior is characteristic of all parton distributions.

The formal solution to the evolution equation Eq. (4.27) gives the behavior of̄φNS(n,Q2) as a
function ofQ2 and hence of̄F(NS)

a (n,Q2),

φ̄NS(n,Q2) = φ̄NS(n,Q2
0)
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×exp

−1
2

∫ ln Q2

Q2
0

0
dt γn(αs(Q

2
0e

t))

 ,

F̄(NS)
1 (n,Q2) = C̄(NS)

1 (n, αs(Q
2)) φ̄NS(n,Q2

0)

×exp

−1
2

∫ ln Q2

Q2
0

0
dt γn(αs(Q

2
0e

t))

 . (4.32)

The Q2 behavior thus determined depends on whether or not our theory is asymptotically free.
Writing

γ(NS)
n =

αs

π
γ(1)

n , (4.33)

and using Eq. (2.46) for the one-loop running coupling in QCD, we find

F̄(NS)
a (n,Q2) ∼

[
ln Q2/Λ2

ln Q2
0/Λ

2

]−2γ(1)
n /4|β1|

. (4.34)

This is a relatively mild logarithmicQ2-dependence, which is consistent with an approximate
scaling over the limited range ofQ2 in early experiments (Friedman and Kendall, 1972). It is to be
contrasted with the behavior in a hypothetical “fixed-point” theory, in which

αs(µ
2)−−−−→

µ→∞
α0 , (4.35)

with α0 , 0. In the latter case we would have apowerscale-breaking

F(NS)
a (n,Q2) ∼

(
Q2

Q2
0

)− α0
2π γ

(1)
n

. (4.36)

The evolution result, Eq. (4.32) was known for some time (Christ, Hasslacher, and Mueller, 1972)
before asymptotic freedom was discovered (Gross and Wilczek, 1973a; Politzer, 1973). The in-
consistency of experimentally-observed scaling behavior with strong scale breaking like Eq. (4.36)
seemed to make the application of field theory to the strong interactions problematic. The deriva-
tion of approximate scaling from asymptotic freedom was therefore a very important result (Gross
and Wilczek, 1973b; Georgi and Politzer, 1974; Gross and Wilczek, 1974).

Physical Content of Evolution.In the parton model,φi/h(x) has the direct interpretation of the
density of partons of typei and fractional momentumx in hadronh. In pQCD,φi/h(x, µ̄2) has
essentially the same interpretation, but with the added restriction that the parton be off-shell by
approximately no more than the scale ¯µ2. Beyond this limit, a parton would be incorporated into
the hard-scattering functionsC(i)

a in Eq. (4.11) and Eq. (4.12).
Now if QCD had a naturalmaximumoff-shellnessQ2

0 for its virtual partons, then we would
have

φi/h(x,Q
2) = φi/h(x,Q

2
0) (4.37)
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for all Q2 > Q2
0, and the theory would exhibit true scaling behavior. Note the close correspondence

of this assumption to the assumptionτ > τ0 for the lifetimes of virtual states in our heuristic
justification of the parton model in SectionA.. In a renormalizable theory, however, thisnever
happens: there are always states of arbitrarily short lifetimes, and lines that are arbitrarily far
off-shell. That is the reason the theory must be renormalized to begin with. The evolution of
φi/h(x,Q2), therefore, measures the distribution of off-shell partons. The rather weak evolution of
an asymptotically free theory, Eq. (4.34), shows that production of these partons is not strong.

C. Other Factorization Theorems

1. Drell-Yan

The factorization theorem for the Drell-Yan process is typical of factorization theorems for a
large class of hard scattering processes18 and it is formulated as follows.

The process is the inclusive production of a lepton pair of high invariant mass via an elec-
troweak particle in hadron-hadron collisions. The classical case is a high-mass virtual photon:
A + B→ γ∗ + anything, withγ∗ → e+e− or γ∗ → µ+µ−. HereA andB are two incoming hadrons.
Essentially identical theorems apply to the production of W or Z bosons.

We let s be the square of the total center-of-mass energy andqµ be the momentum of theγ∗.
The kinematic region to which the theorem applies is where

√
s andQ large, withQ2/s fixed. (Q

is
√

q2.) The transverse momentumq⊥ of theγ∗ is either of orderQ or is integrated over.
In the case thatq⊥ is integrated over, the factorization theorem for the unpolarized Drell-Yan

cross section reads:

dσ
dQ2dydΩ

=
∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξB φa/A(ξA, µ
2)

× Hab

(
xA

ξA
,

xB

ξB
, θ, φ,Q;

µ

Q
, αs(µ)

)
φb/B(ξB, µ

2)

+ remainder, (4.38)

wherey is the rapidity of the virtual photon in the overall center-of-mass frame and dΩ is the
element of solid angle for the lepton pair: the polar and azimuthal angles for this decay areθ and
φ respectively relative to some chosen axes. The remainder is suppressed byQ−2 compared to the

18Early papers on this subject includeMueller, 1974; Politzer, 1977andSachrajda, 1978. All-order discussions,
concentrating for the most part on the role of collinear divergences were given inAmati, Petronzio, and Veneziano,
1978a; Amati, Petronzio, and Veneziano, 1978b; Libby and Sterman, 1978a; Libby and Sterman, 1978b; Ellis, et al.,
1979; Efremov and Radyushkin, 1981aandEfremov and Radyushkin, 1981b. The delicate role of infrared divergences
was brought out in the two-loop calcualtions ofDoria, Frenkel, and Taylor, 1980andDi’Lieto, Gendron, Halliday, and
Sachrajda, 1981, and were dealt with at all orders byBodwin, 1985; Collins, Soper, and Sterman, 1985andCollins,
Soper, and Sterman, 1988. For a review of the status of the theorem, seeCollins, Soper, and Sterman, 1989.
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term shown. The sums overa andb are over parton species, and we write

xA = ey

√
Q2

s
, xB = e−y

√
Q2

s
. (4.39)

The functionHab is the ultraviolet-dominated hard scattering cross section, computable in pertur-
bation theory. It plays the role of a parton level cross section and is often written as

Hab =
dσ̂

dQ2dydΩ
. (4.40)

The parton distribution functions,φ, are the same as in deeply inelastic scattering. Fig.12 illus-
trates the factorization theorem.

Figure 12: Factorization theorem for Drell-Yan cross section.

As in DIS, extensions to more specific final states are possible. For instance, jet cross sec-
tions, defined by analogy toe+e− annihilation, obey factorization formulas of the same form as
Eq. (4.38) (Libby and Sterman, 1978a). Other extensions, to first nonleading power inQ2 (Berger
and Brodsky, 1979; Berger, 1980; Qiu and Sterman, 1991a), and to polarized scattering19 are also
possible.

19For example, seeRalston and Soper, 1979; Efremov and Teryaev, 1985; Artru and Mekhfi, 1990; Qiu and Sterman,
1991b; Jaffe and Ji, 1991; Collins, 1993a; Collins, 1993b.
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2. Single-Particle Inclusive Cross Sections

We consider highp⊥ inclusive single-particle production in hadron-hadron collisionsA + B→
C + X. This is the most complicated of the single-particle inclusive cross sections. Applications
to e+e− annihilation and to DIS are straightforward variations on this theme. Let the initial-state
hadrons have momentapA and pB, and let the observed hadron have momentumpC. The factor-
ization theorem reads

EC
dσ

d3pC
=

∑
abc

∫
dξA dξB

dz
z
φa/A(ξA, µ) φb/B(ξB, µ)

× |~kc|
dσ̂
d3kc

(pc/z
√

s, µ) DC/c(z, µ
2), (4.41)

which is illustrated in Fig.13. (The sum is over the various flavors of partons (quarks, antiquarks
and gluons) that can participate in the hard scattering process, whileφa/A andφb/B are the parton
densities for the initial hadrons, andDC/c(z) is the fragmentation function. The hard scattering
function |~k|dσ̂/d3kc is for the scatteringa + b→ c + X at the parton level; it is a purely ultraviolet
function, free of all mass singularities, so that it can be calculated perturbatively. The variablez
represents the fractional momentum of the measured hadron relative to its parent quark, so that
we set~kc = z~pC, when we use the center-of-mass frame of the hard scattering. For DIS the
corresponding theorem has only a single parton distribution, while fore+e− there are none.

It can be checked that with the normalizations indicated, the fragmentation function can be
interpreted by saying thatzDC/c(z) dz is the number of hadrons of typeC in a parton of typec
that have fractional momentumz to z + dz. Because of the factorz, it is common to define the
fragmentation function to bedC/c(z) ≡ zDC/c(z), rather thanD. However, the behavior ofD under
Lorentz transformations is simpler, and this is important, since we can define a function for the
fragmentation into two observed hadrons, for example.

It might appear that we have neglected the possibility that the hadronC has transverse mo-
mentum relative to the partonc. However, this is not so. In accordance with the derivation of
Eq. (4.41), we have actually integrated over all small values of this transverse momentum, while
realizing that the dependence of the hard scattering on small changes in the transverse momentum
vanishes asQ→ ∞. Large values of this transverse momentum are correctly taken care of by the
higher order corrections to the hard scattering function.

Like parton distributionsφ(x, µ2), the fragmentation functionsD(z, µ2) evolve inµ, according
to equations very similar to Eq. (4.19) (Gribov and Lipatov, 1972b; Mueller, 1978; Collins and
Soper, 1982). The evolution kernels are closely related to, but not identical with, those for the
parton distributions.
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Figure 13: Factorization theorem for single-particle production in hadron-hadron collisions.

D. Operator Definitions of Parton Distribution and Fragmentation Func-
tions

In this section, we collect the operator definitions20 of the parton distribution and fragmentation
functions for reference, including spin-dependent cases. All the definitions have ultraviolet diver-
gences, and these must be renormalized (Mueller, 1978; Collins and Soper, 1982) away to define
finite parton distributions and fragmentation functions to be used in the factorization formulas. Al-
though these definitions are not necessary for all phenomenological uses, they are needed to make
precise the rules for Feynman graph calculations, for example.

1. Quark Distribution Functions

The distribution function for a quark of flavori in a hadronh with momentumpµ in the plus
direction is (Collins and Soper, 1982)

φi/h(ξ) ≡
∫

dy−

2π
e−iξp+y−

〈
p

∣∣∣∣∣ ψ̄i(0, y
−,0⊥)

γ+

2
Pe−ig

∫ y−
0 dy′− A+

a (0,y′−,0)taψi(0)
∣∣∣∣∣ p

〉
. (4.42)

20SeeMueller, 1978; Curci, Furmanski, and Petronzio, 1980; Collins and Soper, 1982; Ralston and Soper, 1979;
Artru and Mekhfi, 1990; Collins, Heppelmann, and Robinett, 1991; Collins, 1993a; Jaffe and Ji, 1991.

72



The path ordered exponential of the gluon field is needed to make the definition gauge invariant.
Here and below,ta denotes the generatorT(F)

a . We see that the simplified distributions of Eq. (4.18)
are exact only in theA+ = 0 gauge.

In the case that the hadron can have polarization, the helicity asymmetry of a quark in a hadron
is defined by

λ∆Lφi/h(ξ) ≡
∫

dy−

2π
e−iξp+y−

〈
p

∣∣∣∣∣ ψ̄i(0, y
−,0⊥)

γ+γ5

2

×Pe−ig
∫ y−
0 dy′− A+

a (0,y′−,0)taψi(0)
∣∣∣∣∣ p

〉
, (4.43)

whereλ is the helicity of the hadron, normalized so thatλ = ±1 corresponds to a fully polarized
nucleon.

A hadron may also have a component of spin transverse to the collision axis. We define a
transversity asymmetry, ∆Tφi/h, of the quark by

sµ⊥∆Tφi/h(ξ) ≡
∫

dy−

2π
e−iξp+y−

×
〈
p

∣∣∣∣∣ ψ̄i(0, y
−,0⊥)

γ+γ
µ
⊥γ5

2

×Pe−ig
∫ y−
0 dy′− A+

a (0,y′−,0)taψi(0)
∣∣∣∣∣ p

〉
, (4.44)

wheresµ⊥ is the transverse part of the hadron’s Pauli-Lubanski spin vector, normalized so that 100%
transverse polarization corresponds tosµ⊥s⊥µ = −1.

2. Gluon Distribution Functions

Operator definitions for the distribution of gluons in a hadron are made in an analogous fashion
to those for quarks:

φg/h(ξ) ≡
2∑

j=1

∫
dy−

2πξp+
e−iξp+y−

〈
p

∣∣∣∣∣ G+ j(0, y−,0⊥)PG+ j(0)
∣∣∣∣∣ p

〉
, (4.45)

∆L fg/h(ξ) ≡
2∑

j, j′=1

Phel
j j ′

∫
dy−

2πξp+
e−iξp+y−

〈
p

∣∣∣∣∣ G+ j(0, y−,0⊥)PG+ j′(0)
∣∣∣∣∣ p

〉
hel=1

, (4.46)

∆T fg/h(ξ) ≡
2∑

j, j′=1

Plin
⊥, j j ′

∫
dy−

2πξp+
e−iξp+y−

〈
p

∣∣∣∣∣ G+ j(0, y−,0⊥)PG+ j′(0)
∣∣∣∣∣ p

〉
lin pol

,

(4.47)
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whereGµν is the gluon field strength tensor andP denotes the path-ordered exponential of the gluon
field along the light-cone that makes the operators gauge-invariant, in exact analogy to Eq. (4.42)

P ≡ Pexp

∫ y−

0
dy′− A+

a(0, y′−,0⊥)Ta

 , (4.48)

whereTa = T(A)
a are the generating matrices for the adjoint representation of colorS U(Nc). The j

index runs over the two transverse dimensions, and the spin projection operators are defined by

Phel
11 ≡ Phel

22 = 0, (4.49)

Phel
12 ≡ −Phel

21 = −i,

Plin
n, j j ′ ≡ 2njnj′ − δ j j ′ . (4.50)

The correction is to the sign ofPhel. This can be checked by observing that the transverse parts of
the polarization vectors for gluons with helicityλ are(

ε1(λ), ε2(λ)
)

= − 1
√

2
(λ, i)

(up to an overall phase), and that the matrixPhel
j j ′ should be

Pj j ′ =
∑
λ=±1

λ ε j(λ)ε j′(λ)∗

We need to be careful that this is the matrix and not its transpose. Theε∗ multiplies the gluon
destruction operator. By angular momentum conservation, the linear polarization of a gluon is zero
in a spin-12 hadron (Artru and Mekhfi, 1990). The reason is that the linear polarization is measured
by an operator that flips helicity by two units. Since no helicity is absorbed by the space-time part
of the definition of the parton densities (the integrals are azimuthally symmetric), the helicity flip
in the operator must correspond to a helicity flip term in the density matrix for the hadron. In the
definition of the linear polarization of the gluon, Eq. (4.47), the hadron must therefore be of spin
higher than 1/2, e.g., a deuteron, of spin 1; we assume it is in a pure state of linear polarization in
the directionnµ to define∆T fg/h.

3. Fragmentation Functions

The unpolarized fragmentation function to find a hadronh in the decay products of a quark of
flavorc is (Mueller, 1978; Collins and Soper, 1982)

Dh/c(z) ≡
∑

X

∫
dy−

12π
eik+y− Tr γ+

〈
0

∣∣∣∣ ψ(0, y−, y⊥)
∣∣∣∣ hX

〉〈
hX

∣∣∣∣ ψ̄(0)
∣∣∣∣ 0

〉
. (4.51)

We have ignored here the path-ordered exponential of the gluon field that is needed to make this a
gauge invariant definition. The sum is over all final states containing the chosen hadron.

Definitions for polarized fragmentation functions can be found inCollins, 1993b; Collins, Hep-
pelman, and Ladinsky, 1994.
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V. e+e− Annihilation

Among the most basic of the concepts of perturbative QCD is infrared safety. As discussed in
SectionIV., total and jet cross sections ine+e− annihilation are themselves infrared safe, without
factorization into long- and short-distance components. In this section, we review explicit low-
order results for these quantities.

A. Total Cross Section

The basic squared amplitudes for the total cross section ine+e− annihilation are illustrated in
Fig. 14at one loop, in the cut diagram notation of AppendixB:.

Figure 14: One-loop corrections to thee+e− annihilation cross section.

At this level, the ultraviolet (UV) divergences in the self-energies cancel those in the vertex
corrections. This cancellation is related to the manner in which quantumelectrodynamicsis renor-
malized: at zero photon momentum, all radiative corrections to the charge must vanish. That QCD
respects the renormalization conditions of QED was a necessary condition for it to be a viable
theory of the strong interactions. At a technical level, the result follows from [HQCD, Q̂] = 0, with
HQCD the Hamiltonian and̂Q the operator for electromagnetic charge.

Because of this cancellation, the one-loop cross section is independent of the scheme that we
specify to renormalize QCD, and the result is identical in all schemes. Beyond one loop, however,
it is necessary to specify a renormalization scheme, and results will, in general, differ from scheme
to scheme.

The total cross section fore+e− annihilation at center-of-mass energyQ (in the one-photon
approximation) has now been computed up to three loops with massless quarks in anMS renor-
malization scheme (Surguladze and Samuel, 1991; Gorishny, Kataev, and Larin, 1991). Here is
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what it looks like:

σ(Q2) = σ0

{
1 +

αs(Q2)
4π

(3CF)

+

(
αs(Q2)

4π

)2 [
−C2

F

(
3
2

)
+ CFCA

(
123
2
− 44ζ(3)

)
+CFTnf (−22+ 16ζ(3))

]
+

(
αs(Q2)

4π

)3 [
C3

F

(
−69

2

)
+C2

FCA (−127− 572ζ(3) + 880ζ(5))

+CFC2
A

(
90445

54
− 10948

9
ζ(3) +

440
3
ζ(5)

)
+C2

FTnf (−29+ 304ζ(3)− 320ζ(5))

+CFCATnf

(
−31040

27
+

7168
9

ζ(3) +
160
3
ζ(5)

)
+CFT2n2

f

(
4832
27
− 1216

9
ζ(3)

)
−CFπ

2

(
11
3

CA −
4
3

Tnf

)2

+
(
∑

f Qf )2

(N
∑

f Q2
f )

D
16

(
176
3
− 128ζ(3)

) } .
(5.1)

In this expression,σ0 is the parton model total cross section, Eq. (3.47),

σ0 =
4Nπα2

3Q2

∑
f

Q2
f

 , (5.2)

nf is the number of quark flavors andN is the number of colors. The group invariants,C3
F, C2

FCA,
etc., give structure to the otherwise unremitting sequence of integers, fractions and “zeta functions”
in the three-loop result. For simplicity, we have written,CF ≡ C2(F), etc., and from AppendixA:,
we haveCF =4/3, CA=3, T = 1

2, D =40/3 in QCD.ζ(m) is the Riemann zeta function, beloved of
mathematicians,

ζ(x) =

∞∑
n=0

1
nx
, (5.3)

whose specific values encountered above are

ζ(3) = 1.2020569

ζ(5) = 1.0369278. (5.4)
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Using these values, the numerical coefficients for SU(3) with five quark flavors are

σ(Q2) = σ0(Q
2)
(
1 +

αs

π
+ 1.409

(
αs

π

)2

− 12.805
(
αs

π

)3 )
. (5.5)

We note that the coefficient−12.805 represents a second try; previously published results gave an
uncomfortably large incorrect value of about 60. These results are for electron-positron annihi-
lation via a virtual photon. In the LEP experiments, a virtualZ is involved and modifications in
the formula are required (Larin, van Ritbergen, and Vermaseren, 1994). Most of the pieces of the
modified formula are known, but some orderα3

s terms involving heavy quark loops are not yet
published.

B. e+e− Total Cross Section at One Loop

The explicit calculations that lead to theO(α3
s) results are, like the results themselves, extremely

complicated, and can be carried out only with the aid of computers. TheO(αs) corrections, how-
ever, already exhibit some of the basic problems of pQCD, and their resolution through infrared
safety.

At lowest order, the total cross section is given by the Born diagram, zeroth order inαs. The
diagrams that contribute to the total cross section atO(αs) are of two kinds, those in which a
gluon appears in the final state (Fig.14a), and those which represent the interference between
an amplitude with anO(αs) virtual loop correction and the zeroth order (Fig.14b). The leptonic
and hadronic parts of these diagrams are connected by only a single photon (which we may take in
Feynman gauge, with propagator−gαβ/Q2), and it is consequently natural to write the cross section
as a product of leptonic,Lµν(k1, k2), and hadronic,Hµν(q), tensors,

σtot = Lµν(k1, k2)Hµν(q) . (5.6)

Herek1 andk2 are the leptons’ momenta andq = k1 + k2 , qµqµ = Q2. We defineL to absorb the
photon propagator, and the overall kinematic normalization of the cross section, 1/8Q2, where we
neglect the lepton mass and average over spins. Similarly we absorb the integral over final-state
phase space intoH. The leptonic part is then given by the Dirac trace

Lµν(k1, k2) =
1

8Q2

e2

(Q2)2
Tr[ /k1γ

µ /k2γ
ν]

=
e2

2(Q2)3
(kµ1kν2 + kµ2kν1 − (Q2/2)gµν) . (5.7)

The calculation ofσtot is simplified by employing conservation of the electromagnetic current,
which, as we mentioned above, is respected by QCD,

qµHµν(q) = Hµνq
ν = 0 . (5.8)
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Now, becauseH is a symmetric tensor that can only depend on the total momentumq, we find that
it has the form

Hµν = (qµqν − Q2gµν)H(Q2) , (5.9)

with H(Q2) a scalar function that can be found by

H(Q2) =
1

3Q2
(−gµνHµν) . (5.10)

Combining these results, it is easy to show that

σtot =
e2

6(Q2)2
(−gµν)Hµν(Q) . (5.11)

Thus, it is only necessary to compute the contraction of the hadronic tensor withgµν to derive the
total cross section.

To compute the hadronic tensor, we write it as the integral over three-particle phase space of
the squared matrix element for gluon emission,

−gµνHµν(Q)

=
1

4(2π)5

∫
d3p1

|p1|
d3k
|k| δ([q− p1 − k]2)| M(k, p1) |2r . (5.12)

Herep1 is the quark’s,k the gluon’s, andq− p1− k the antiquark’s momentum, while| M(k, p1) |2r
represents the contribution of Fig.14a to the squared matrix element. The subscriptr denotes that
this contribution is real, as opposed to those from Fig.14b,d, which involve virtual loops and are
therefore complex. In this (spin-averaged) case,|M|2r is independent of the direction ofp1 and of
the azimuthal anglek aboutp1. We may then evaluate these angular integrals to give

−gµνHµν(Q)

=
2

(2π)3

∫ ∞

0
dp1p1

∫ ∞

0
dkk

∫ 1

−1
du

× δ(Q2 − 2Q · (p1 + k) + 2|p1||k|(1− u))| M(k, p1)|2r , (5.13)

whereu is the cosine of the angle betweenp1 andk andQ =
√

Q2.
Next let’s have a look at|M(k, p1) |2r , Fig.14a. Because the fermions are now quarks, it includes

the product of a Dirac trace times a color trace, given by

|M(p1, k)|2r = 2Tr [ T(F)
a T(F)

a ] g2e2
∑

f

Q2
f

×
[ 1
(2p1 · k)(2p2 · k)

Tr [ γµ /p1γ
α( /p1 + /k)γµ /p2γα(− /p2 − /k) ]

+
1

(2p1 · k)2
Tr[γµ( /p1 + /k)γα( /p1)γα( /p1 + /k)γµ( /p2)]

]
. (5.14)

78



It is at this point that we see the kind of problems one encounters in a perturbative QCD calculation.
They are exactly of the sort anticipated in Section1..

There are two denominator factors in Eq. (5.14), corresponding to the propagators for the two
virtual fermions in each diagram. Consider, for instance,

p1 · k = |p1||k|(1− u) . (5.15)

This factor vanishes at two generic points in phase space

k = 0↔ kµ soft ,

u = 1↔ k collinear top1 . (5.16)

It is easy to check that the integral over phase space is divergent in both of these limits: thesoft
limit, where the gluon momentum vanishes, and thecollinear limit, where it becomes parallel to
the quark’s momentum. In these two limits, thek andu integrals become, respectively,∫

0

dk
k
↔ kµ soft ,∫ 1 du

1− u
↔ k collinear top1 . (5.17)

Not surprisingly, there is yet another region where the integral diverges, fork collinear top2,

p2 · k = |p2||k|(1 + u) + O((1 + u)2) . (5.18)

Thus, soft and collinear divergences are already present at one loop in massless QCD.
In Section1. we argued that infrared sensitivity cancels between different final states. At this

order, there are only two final states to choose from, the quark-antiquark state, and the quark-
antiquark-gluon state. It is possible to show that if the integrands for these contributions toσtot

are combined, all sources of divergence cancel, before any integrals are done (Sterman, 1978). For
many purposes, however, it is useful to do the integrals in aninfrared regularizedtheory, in which
the soft and collinear divergences have been rendered finite by some modification of the theory, in
much the same spirit as for UV divergences. It is important to realize that an infrared regulated
theory isnot the same as the original theory, because infrared regulation changes the long-distance
behavior. But, in the limit that the regulator is taken away, the infrared-regulated theory should
give the same predictions as the real theory for infrared safe quantities, which don’t depend on the
long-distance behavior anyway.

Actually, it is not so easy to find a completely satisfactory infrared regulator for QCD, one that
doesn’t affect the short distance behavior at some high order. Interestingly enough, dimensional
regularization (AppendixC:) provides such a regulator. In this case, we (formally) carry out all
integrals in 4− 2ε dimensions. Divergences appear as poles at vanishing regulator scaleε (i.e.,
at four dimensions). There are some subtle points here, especially since the same method is also
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used to regulate UV divergences. Nevertheless, one may apply it consistently. Another method,
that works well at least to one loop, is to assign a small mass,mg, to the gluon (in Feynman gauge,
for simplicity). Here infrared and collinear divergences appear as logarithms ofmg. This method
may be dangerous beyond one loop, because a gluon mass breaks gauge invariance, but it works
well enough at this level.

Let us quote the results for the two-particle and three-particle cross sections represented by
Fig. 14. For the two-particle final state, the cross sections are, at one loop

σ
(mg)
2 = σ0CF

(
αs

π

) [
−2ln2(Q/mg) + 3ln(Q/mg) −

7
4

+
π2

6

]
σ(ε)

2 = −σ0CF

(
αs

π

) ( 3(1− ε)2

(3− 2ε)Γ(2− 2ε)

)
×

(
4πµ2

Q2

)2ε ( 1
ε2

+
3
2ε
− π

2

2
+ 4

)
, (5.19)

for gluon-mass and dimensional regularization, respectively. Notice that, although the two expres-
sions share some features, they are vastly different, and each depends upon one of the unphysical
parameters,mg or ε. This is a sign that the long-distance behaviors of the regulated theories are
different.

The three-particle final state gives these results at one loop:

σ
(mg)
3 = σ0CF

(
αs

π

) [
2ln2(Q/mg) − 3ln(Q/mg) +

5
2
− π

2

6

]
,

σ(ε)
3 = σ0CF

(
αs

π

) ( 3(1− ε)2

(3− 2ε)Γ(2− 2ε)

)
×

(
4πµ2

Q2

)2ε ( 1
ε2

+
3
2ε
− π

2

2
+

19
4

)
. (5.20)

Comparing the two- and three-particle results for each choice of regularization, we find that most of
their respective terms cancel, leaving behind exactly the simpleO(αs) correction of Eq. (5.1). This
demonstrates explicitly that the total cross section is independent of long distance behavior, at least
to this approximation. The explicit calculations ofGorishny, Kataev, and Larin, 1991; Surguladze
and Samuel, 1991show that it is possible to verify this result much more dramatically, based in
part on special algorithms for multiloop diagrams (Tkachov, 1981; Chertykrin and Tkachov, 1981).

C. Energy-Energy Correlation

The total cross section fore+e− annihilation, being an infrared safe quantity, see SectionA.,
can be used to study the short distance behavior of the Standard Model without complications from
long-distance physics. However, it is by no means the only such quantity. By looking at infrared
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safe quantities that probe the hadronic final states produced ine+e− annihilation, we can learn about
the structure of the interaction Lagrangian that controls the short distance physics.

We have discussed in SectionA. how certain measurements can involve the final state in such
a way that the measured quantity is not sensitive to collinear parton branching or the emission of
soft partons (see Eqs. (4.7), (4.10)). There we used as an example the thrust distributiondσ/dT
defined in Eqs. (4.8), (4.9). Another frequently used quantity is the energy-energy correlation
function (Basham, Brown, Ellis, and Love, 1979; Brown and Ellis, 1981),

1
σT

dΣ

dcosχ
. (5.21)

A convenient way to express the definition ofΣ is to use the general equation (4.7). If we letI in
(4.7) bedΣ/dcosχ then the functionsSn that define the contribution from ann particle final state
are

Sn(p
µ
1, . . . , p

µ
n) =

n∑
i=1

n∑
j=1

Ei E j

s
δ(cosχ − cosχi j ) , (5.22)

whereχi j is the angle between particlesi and j. Recall that the normalization of theSn is such that
Sn = 1 for all n gives the total cross section. Then since

∑
i Ei =

√
s, the normalization forΣ is

1
σT

∫ 1

−1
dcosχ

dΣ

dcosχ
= 1 . (5.23)

The energy-energy correlation function is infrared safe. To verify that the required condition
(4.10) is satisfied, considerSn+1(p

µ
1, . . . , (1− λ)pµn, λpµn). We have

Sn+1(p
µ
1, . . . , (1− λ)pµn, λpµn)

=

n−1∑
i=1

n−1∑
j=1

Ei E j

s
δ(cosχ − cosχi j )

+2
n−1∑
i=1

Ei [λEn + (1− λ)En]
s

δ(cosχ − cosχin)

+
[λEn + (1− λ)En]2

s
δ(cosχ − cosχnn)

= Sn(p
µ
1, . . . , p

µ
n) . (5.24)

There are other distributions besides the thrust distribution and the energy-energy correlation
that probe the shape of the hadronic energy distribution. Jet cross sections, to which we now
turn, fall into this class. Concise descriptions of other, related quantities, with calculations and
references, may be found inKunszt, Nason, Marchesini, and Webber, 1989.
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D. Jets

In a typical electron-positron annihilation event at LEP or SLC, two, or sometimes three or
more, sprays of particles are produced. The more energetic of the particles within each spray
are typically confined to an angular range of a few tenths of a radian. These sprays of particles
are called jets, and various measurable cross sections to produce jets are studied (Sterman and
Weinberg, 1977; Sterman, 1978). For instance, one can measure the inclusive cross section to
make two jets with given energies and angles, plus anything else. Most commonly, one measures
the cross section for the final state to contain exactly 2,3,4 . . . jets.

One thinks of a jet as consisting of the decay products of a single off-shell parton, a quark
or gluon, that was produced in the annihilation by a short-distance process. It is not, however,
completely straightforward to define precisely how many jets are present in a given final state
and what their momenta and energies are. The physical problem is that the decay products from
an energetic parton are not infinitely well collimated, and, in particular, will generally include
the remnants of some rather soft gluons that are emitted at large angles. Worse, because partons
can join as well as divide, and because of quantum interference, a given hadron can be a “decay
product” of more than one hard parton at once. Thus a jet cross section is to some extent an artifact.

If a jet cross section is an artifact, so be it. One must simply give a careful definition how the
jet content of the final state is to be measured. Then, one must calculate (perturbatively) the cross
section to make jets in a given configuration according to this definition. In order that the cross
section reflect short distance physics, one must arrange the jet definition so that the corresponding
jet cross sections are infrared safe in the sense of Eq. (4.10).

The possibility of calculating and measuring infrared safe jet cross sections was first explored
in Sterman and Weinberg, 1977. The definition given there involved cones, something like the
cones often used to define jets in hadron-hadron collisions, as described in SectionVIII. . The
definitions used nowadays for electron-positron collisions involve an algorithm for successively
combining hadrons into jets, using some function of momenta as a measure of “jettiness”. (In the
corresponding calculation, one uses the same algorithm to successively combine partons into jets.)
Here, we shall describe the original example of this class, the so-called JADE algorithm (Bethke
et al., 1988). There are several variations that are used, of which we may mention particularly the
Durham algorithm (Catani, Dokshitzer, Olsson, Turnok, and Webber, 1991)21. A summary may be
found inBethke, Kunszt, Soper, and Stirling, 1992.

The successive combination algorithms are iterative. At each stage, two jets from a list of jets
are combined into one. One begins with a list of jets that are just the observed particles. At each
stage of the iteration, one considers two jetsi and j as candidates for combination into a single jet
according to the value of a dimensionless “jettiness” variableyi j . Pairs with smallyi j are considered
to be the most jetlike. For the JADE algorithm,

yi j =
2EiE j(1− cosθi j )

s
. (5.25)

21Named for the Durham Workshop on Jet Studies at LEP and HERA, December, 1990, out of which it developed.
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The pairi, j with the smallest value ofyi j is combined first. When two jets are combined the four-
momentumpµ of the new jet is determined by a combination formula. For the JADE algorithm,
the combination formula is simply

pµ = pµi + pµj . (5.26)

After this joining, there is a new list of jets. The process continues until every remainingyi j is
larger than a preset cutoff, ycut. In this way, each event is classified as containing two, three, four,
etc. jets, where the number of jets depends on the cutoff ycut chosen.

Notice that this algorithm is infrared safe, because it satisfies Eq. (4.10). A particle that has
only an infinitesimal energy will not affect the final number of jets, or their four-momenta, since
it will contribute only an infinitesimal amount to the final four-momentum of the jet in which it is
included. Similarly, if two particles are nearly collinear, withpµi ≈ λpµ andpµj ≈ (1 − λ)pµ, then
the first step of the algorithm is to combine them into one jet with momentum close topµ.

E. Calculations

One can categorize the possible infrared safe quantities in electron-positron annihilation as “N-
jet like” by considering the functionsSn, Eq. (4.7), that define the measurement. IfS2 , 0, we say
that the quantity is “two-jet like.” IfS2 = 0 butS3 , 0, we say that the quantity is “three-jet like.”
With this nomenclature, the total annihilation cross section is two-jet like. Quantities such as the
cross section to make exactly three jets (for a givenycut) or the energy-energy correlation function
away fromχ = 0, π are “three jet-like”.

As we have seen in SectionA., the total cross section has been calculated to orderα3
s. Since

this is three orders beyond the Born approximation, the comparison of the prediction to data can
provide an extraordinarily stringent test of the Standard Model. However, there is an experimen-
tal limitation of the usefulness of a two-jet like quantity like the total cross section as a way to
measureαs or to provide a test of the QCD part of the Standard Model. The limitation is that the
Born approximation to such a quantity is independent ofαs; QCD enters only in the higher order
corrections. Thus extraordinary experimental accuracy is required in order to measure the QCD
contribution precisely.

With three-jet like quantities, one is measuring something that, in the Born approximation, is
proportional toαs. Thus the experimental demands are less stringent. However, the theoretical
difficulties are greater. Non-perturbative effects are estimated to play a larger role than in the
completely inclusive total cross section. (See, for example,Bethke, Kunszt, Soper, and Stirling,
1992.) More importantly, the perturbative calculations are more complicated. The calculation
depends on realizing cancellations of collinear and soft divergences between contributions from
four parton final states and from three parton final states with virtual loop corrections. (The results
for the virtual loop graphs are generally taken fromEllis, Ross, and Terrano, 1981.) There are
calculations of individual three-jet like quantities at orderα2

s in the literature. References may be
found inKunszt, Nason, Marchesini, and Webber, 1989. There is now also a computer program by
Kunszt and Nason (Kunszt, Nason, Marchesini, and Webber, 1989) that can calculate any infrared
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finite three-jet quantity at orderα2
s. Basically, one has only to supply suitable computer code for

the functionsS2 andS3 that specify the measurement.
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VI. Deeply Inelastic Scattering

A. Use of Perturbative Corrections in DIS

The use of parton distributions in pQCD is similar to their use in the parton model. The basic
facts are still: (i) that the IR safe short-distance functionsC(Vi)

a are independent of the external
hadronh and (ii) that the distributionsφi/h are “universal”, for instance, the same for the structure
functionsF1 andF2 defined in Eq. (3.19). For convenience, we reproduce here the DIS factoriza-
tion theorems, Eq. (4.11) and Eq. (4.12),

F(Vh)
a (x,Q2) =

∑
i= f , f̄ ,G

∫ 1

0

dξ
ξ

C(Vi)
a

(
x/ξ,Q2/µ2, αs(µ

2)
)
φi/h(ξ, µ

2) , (a = 1,3)

F(Vh)
2 (x,Q2) =

∑
i= f , f̄ ,G

∫ 1

0
dξ C(Vi)

2

(
x/ξ,Q2/µ2, αs(µ

2)
)
φi/h(ξ, µ

2) (6.1)

(where we have set the factorization scale equal to the renormalization scaleµ), and the evolution
equation Eq. (4.19),

µ2 d
dµ2

φi/h(x, µ, αs(µ
2)) =

∑
j= f , f̄ ,G

∫ 1

x

dξ
ξ

Pi j

(
x
ξ
, αs(µ

2)

)
φ j/h(ξ, µ, αs(µ

2)) . (6.2)

With these results in hand, we can make predictions by combining perturbative calculations with
experimental input. In this section, we discuss how this works in low order corrections.

Unlike an infrared safe total cross section, the hard-scattering coefficient functions of DIS
factorization arenot simple finite functions ofαs. Instead, they must be defined as infrared safe
“distributions”, generalized functions which give finite answers when convoluted with smooth
functions. The most familiar example of a distribution is a delta function. Here, we introduce the
“plus” distribution, denoted [

g(x)
1− x

]
+

, (6.3)

whose integral with a smooth functionf (x) is defined by∫ 1

z
dx f(x)

[
g(x)
1− x

]
+

=

∫ 1

z
dx

( f (x) − f (1))g(x)
1− x

− f (1)
∫ z

0
dx

g(x)
1− x

. (6.4)

A plus distribution corresponds to a divergent integral that is regularized by a divergent subtraction,
in this casef (1) times the integral from 0 to 1. (Note that the second term on the right vanishes
whenz = 0.) Plus distributions are ubiquitous in both hard-scattering functions and parton dis-
tributions, for all nontrivial factorization theorems in QCD. The manner in which they arise in
one-loop corrections is discussed in SectionD. below.
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The three basic quantities in the factorization and evolution theorems above are: the coefficient
functionsC(γi)

a , the evolution kernelsPi j , and the parton distributionsφi/h. Of these, the first two
are computable as power series inαs as realistic, infrared-safe quantities. The distributions, on the
other hand, are directly computable only forφi/ j, with both i and j partons, and then only in an
infrared-regulated version of the theory. Such unphysical parton distributions, however, enable us
to isolate the physical coefficient functions and evolution kernels. Let us review how this works.

Combining Theory and Experiment.As an example, consider the relation between the structure
functionsF(Vh)

a , V = γ,W±, and the physical parton distributionsφi/h(x, µ2). The procedure can be
summarized as:

(a) Compute the regulated distributionsφi/q andφi/g to some order in perturbation theory.

(b) ComputeF(V j)
a , with j = q,g to the same order.

(c) Combine the results of (a) and (b) to deriveC(V j)
a to this order.

(d) CombineC(V j)
a with experimentally determinedF(Vh)

a to derive the non-perturbativeφ j/h to
the same order in perturbation theory by applying the factorization theorem.

These distributions, in turn, can be combined with hard scattering functions from other processes
to derive predictions from the theory. Note that the parton distributions and coefficient functions
are factorization-scheme dependent, in the sense described in SectionB.. The evolution kernels,
Pi j , however, are scheme-independent in the one-loop approximation.

At O(αs) the procedure we have just described is particularly straightforward. For instance, in
the electromagnetic case Eq. (4.11) and Eq. (4.12) yield,

F(V f)(1)
a (x,Q2) = φ(1)

f / f (x, µ
2) + C(V f)(1)

a

(
x,

Q2

µ2
, αs(µ)

)
. (6.5)

Here and below, we suppress an overall factorQ2
f (the fractional charge of the quark) inFa for

electromagnetic scattering.

B. One-Loop Corrections in DIS

1. MS scheme

In theMS scheme, the distributions are defined by matrix elements as in SectionD., and are
simple at one loop in perturbation theory, although the resulting coefficient functions tend to be a
bit complicated. They are also convention dependent. To compare the following results with the
literature it is necessary to check not only the definitions of theFa, Eq. (3.19), but also the explicit
factorization formulas Eq. (6.1). For instance the results below forC2 differ from those quoted in
Furmanski and Petronzio, 1982by a factorx.
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From the procedure just described, the explicit nonzero one-loop coefficient functions for DIS
are given in theMS factorization scheme by22

C(Vq)(1)
2 = C2(F)

x
2

[
1 + x2

1− x

(
ln

(1− x)
x
− 3

4

)
+

1
4

(9 + 5x)

]
+

,

C(Vq)(1)
1 =

1
2x

C(Vq)(1)
2 −C2(F)

1
2

x ,

C(Vq)(1)
3 =

1
x
C(Vq)(1)

2 −C2(F)(1 + x) ,

C(Vg)(1)
2 = T(F) nf x

[
(x2 + (1− x)2) ln

(
1− x

x

)
− 1 + 8x(1− x)

]
,

C(Vg)(1)
1 =

1
2x

C(VG)(1)
2 − T(F) nf [4x(1− x)] , (6.6)

wherenf is the number of quark flavors,C2(F) = 4/3 for Nc = 3 andT(F) = 1/2 (see Appendix
A:). Similarly, the one-loop kernels are given by (αs/2π)P(1)

i j , with (Altarelli and Parisi, 1977;
Altarelli, 1982)

P(1)
qq(x) = C2(F)

[
(1 + x2)

(
1

1− x

)
+

+
3
2
δ(1− x)

]
,

P(1)
qg(x) = T(F)

[
(1− x)2 + x2

]
,

P(1)
qg(x) = T(F)

[
(1− x)2 + x2

]
,

P(1)
gq(x) = C2(F)

(1− x)2 + 1
x

,

P(1)
gg(x) = 2C2(A)

[
x

(1− x)+

+
1− x

x
+ x(1− x)

]
+

(
11
6

C2(A) − 2
3

T(F) nf

)
δ(1− x) , (6.7)

whereC2(A) = 3 andT(F) = 1/2 in QCD (AppendixA:). Finally, theMS distributions for partons
in partons are (withε ≡ 2− n/2)

φi/ j(x, ε) = −1
ε

αs

2π

(
µ2

M2

)ε
P(1)

i j (x) , (6.8)

where we conventionally choose
M2 = µ2eγE−ln4π , (6.9)

with γE Euler’s constant. This choice corresponds to a natural definition for the renormalized
matrix elements that define the distributions (see SectionD.).

22SeeFurmanski and Petronzio, 1982, Zijlstra and van Neerven, 1992, van Neerven and Zijlstra, 1991, Zijlstra
and van Neerven, 1991, van Neerven and Zijlstra, 1992, Matsuura, Hamberg, and van Neerven, 1990, Hamberg, van
Neerven, and Matsuura, 1991, andHamberg, 1991.
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2. DIS scheme

The DIS scheme is defined toall orders in perturbation theory by Eq. (4.16),

C(Vq)
2 (x) = δ(1− x) ,

C(Vq̄)
2 (x) = δ(1− x) ,

C(Vg)
2 (x) = 0 . (6.10)

That is we renormalize the parton densities so that the parton model is exact atµ = Q. This gives
somewhat more complicated results for one-loop distributions of partons in partons (Owens and
Tung, 1992), which however, are determined in terms of theMS distribution to one loop by

φq/h(x, µ
2)(DIS) = [1 + αs(µ)C(Vq)(MS)

2 ] ⊗ φ(MS)
q/h + αs(µ)C(Vg)(MS)

2 ⊗ φ(MS)
g/h /2nf , (6.11)

where⊗ represents the convolution in Eq. (6.1). Here the effect of the gluon distribution inF2

is shared evenly by thenf quark flavors (the same number as is used in the beta function at this
momentum scale, see SectionE.). Similarly, a frequently-used (but nonunique) definition for the
DIS gluon distribution in terms of theMS distributions at orderαs is

φg/h(x, µ
2)(DIS) = [1 − αs(µ)C(Vg)(MS)

2 ] ⊗ φ(MS)
g/h − αs(µ)

∑
q

C(Vq)(MS)
2 ⊗ φ(MS)

q/h . (6.12)

These relations holds to orderαs for h a parton or a physical hadron.
Because of the relation Eq. (6.5), the remaining coefficient functions in the DIS scheme are

trivially found from those in theMS scheme. The reward for the somewhat complicated partonic
distributions in the DIS scheme (remember, they are unphysical anyway), is much simpler one-loop
coefficient functions; in addition to the defining equations, Eq. (6.10) we find (see, for instance,
Altarelli, 1982),

C(Vq)(1)
1 (x) = −1

2
C2(F) x , (6.13)

C(Vg)(1)
1 (x) = −T(F)nf 4x(1− x) , (6.14)

C(Vq)(1)
3 (x) = −C2(F) (1 + x) . (6.15)

C. Two-Loop Corrections

Recently, DIS coefficient functions have been calculated in DIS andMS schemes by van Neer-
ven and coworkers23. This, of course, requires the determination of perturbative parton distribu-
tions and evolution functions at two loops as well. The full expressions are bulky, and we shall

23SeeZijlstra and van Neerven, 1992, van Neerven and Zijlstra, 1991, Zijlstra and van Neerven, 1991, van Neerven
and Zijlstra, 1992, Matsuura, Hamberg, and van Neerven, 1990, Hamberg, van Neerven, and Matsuura, 1991, and
Hamberg, 1991.
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not reproduce them here. To give the flavor of the results, however, it may be useful to give the
two-loop evolution kernel for the nonsinglet distributions (Section3.), PNS

i j (x), (Altarelli, 1982):

PNS
qq (x, αs) =

αs

2π
CF

(
1 + x2

1− x

)
+

+

(
αs

2π

)2
{
C2

F

[
− 2

(
1 + x2

1− x

)
ln x ln(1− x)

−5(1− x) −
(

3
1− x

+ 2x

)
ln x− 1

2
(1 + x) ln2 x

]
+

1
2

CFCA

[ (1 + x2

1− x

) (
ln2 x− 11

3
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1− x
x2

+
367
16
− π

2

3

)
+2(1+ x) ln x +

61
12
− 215

12
x
]

+
2
3

CFT

[(
1 + x2

1− x

) (
ln

1− x
x2
− 29

12

)
+

1
4

+
13
4

x

] }
+

+δ(1− x)
∫ 1

0
dxQqq̄(x, αs) + O(α3

s) , (6.16)

where

Qqq̄(x, αs) =

(
αs

2π

)2
(
CF −

1
2

CA

)
CF

[
2(1+ x) ln x + 4(1− x)

+
1 + x2

1 + x

(
ln2 x− 4 ln x ln(1 + x) − 4Li2(−x) − π

2

3

) ]
.

(6.17)

D. Computation of One-Loop DIS Correction

Typical (cut) Feynman diagrams that contribute toW(γ f )
µν are shown in Fig.15. At lowest order,

they involve either gluon emission, or one-loop radiative corrections. Here we shall give just
enough detail on the gluon emission process to illustrate the physical content of factorization. For
more details, seeAltarelli, Ellis, and Martinelli, 1978, Altarelli, Ellis, and Martinelli, 1979, Kubar-
André and Paige, 1979, Harada, Kaneko, and Sakai, 1979, Abad and Humpert, 1979, andHumpert
and van Neerven 1981.

Since we are interested in structure functions, it is convenient to use the contractions

− gµνW(γ f )(1)
µν =

1
x

F2
(γ f )(1) − 3

2

(
F(γ f )(1)

2 − 2xF(γ f )(1)
1

)
,

pµpνW(γ f )(1)
µν =

Q2

8x3

(
F(γ f )(1)

2 − 2xF(γ f )(1)
1

)
. (6.18)
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Figure 15: Low-order diagrams for deeply inelastic scattering.

Of these, the first is by far the more demanding to calculate, because the Dirac equation may be
used to eliminate all but one of the diagrams shown in Fig.15 for pµpνWµν. (We should note
that when these calculations are carried out using the method of dimensional regularization these
identities become somewhat more complicated. See AppendixC:.)

Let’s have a look at the real-gluon contribution to−gµνWµν. It can be computed as if the
diagrams described the Born approximation for the two-to-two processγ∗ + f → f + g, with g a
gluon,

− gµνW(γ f )(1)
µν =

∫
PS

(
| M(γ f )(s, t,q2) |2

)(1)
, (6.19)

whereM is the squared matrix element for this process, normalized according to Eq. (3.16), and
averaged over the spin of the initial-state quark.

∫
PS

denotes the integral over two-particle phase
space. The matrix element is described in terms of the usual kinematic variables,

s = (p + q)2 , t = (p− k)2 , u = (q− k)2 , s+ t + u = −Q2 , (6.20)

in terms of which it is given explicitly by (recall, we are suppressingQf )(
| M(γ f )(s, t,q2) |2

)(1)

real
= 4αs

4
3

(
s
−t

+
−t
s
− 2uq2

st

)
. (6.21)

The phase space integral is particularly simple in the center of mass frame, where it reduces to an
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integral overξ = cosθ, with θ the angle betweenp andk. In this frame,t, u ands are given by

t =
−Q2(1− ξ)

2x
u =
−Q2(1 + ξ)

2x
s =

Q2(1− x)
x

. (6.22)

As usual,x = Q2/2p · q. Collecting these expressions in Eq. (6.19), we have(
−gµνWµν

)(1)

real
=
αs

4π
4
3

∫ 1

−1
dξ

(
2(1− x)

1− ξ +
1− ξ

2(1− x)
+

2x(1 + ξ)
(1− x)(1− ξ)

)
. (6.23)

As it stands this expression has problems of two kinds, closely related to those found at one loop
in e+e− annihilation.

First, the unmodified integral diverges atξ = 1, that is, when the gluon is parallel to the
initial-state quark. This is the familiar collinear divergence, associated with the degeneracy of on-
shell single-quark and parallel-moving quark-gluon states. It is just the sort of contribution that
corresponds to the evolution of an isolated quark long before the interaction takes place, and should
be absorbed into the distributionφ f / f . In a careful calculation, we would regularize the collinear
divergence dimensionally, or by giving the quark a mass. We can even cut off the angular integral
at some minimum angle: each of these choices will only show up in the precise definition of the
infrared sensitive part ofφ f / f , which we are going to discard anyway. We shall therefore assume
that regularization has been carried out, and not modify the explicit expressions below. Thus we
may assume that the expression forW(1) is well-defined for allx , 1.

The divergences asx → 1 are our second problem. Given thats = Q2(1 − x)/x, they are
evidently associated with a vanishing mass for the final state, which happens if the emitted gluon
has either zero momentum (soft divergence), or is collinear to the outgoing quark. Divergences
of this sort are not candidates for absorption into the parton distribution, because they depend on
details of the momentum transfer and the final state. On the other hand, an unmitigated divergence
of this kind cannot be pushed into the hard-scattering functionsC(z) either, because a pole atz = 1
in C(z) would lead to a singularity in the basic factorization integral, Eq. (6.1), wheneverx = ξ. If
factorization is going to work, thex = 1 poles must be canceled.

As in e+e− annihilation, we look to virtual processes to cancel divergences associated with
real-gluon emission. There is an important difference, however, in the kinematics of DIS and the
annihilation processes. The virtual diagrams of Fig.15 can only contribute atx = 1 precisely;
in fact, they are proportional to a factorδ(1− x), which comes from the mass-shell delta function
δ([p+q]2). Thus, as anticipated above, the complete answer will be infrared finite as a distribution,
rather than as a function.

Let’s now skip to the answer. It will consist of plus distributions inx, in addition to finite
terms. Collinear-divergent integrals will remain, which will have to be absorbed in the parton
distributions. To compare real and virtual-gluon corrections, we shall change variables from the
cosine ofξ to the transverse momentum of the gluon,kT , relative to the direction of the incoming
quark. In the center of mass frame, the relation between the two variables is

k2
T = Q21− x

x
(1− ξ2) . (6.24)
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Leaving the divergentk2
T integral explicit, the one-loop electromagnetic structure functions are

F(γ f )(1)
2 (x) =

α

2π

{∫ Q2

0

dk2
T

k2
T

([
1 + x2

1− x

]
+

+
3
2
δ(1− x)

)
+C2(F)

[
1 + x2

1− x

(
ln

(1− x)
x
− 3

2

)
+

1
4

(9 + 5x)

]
+

}
,

2xF(γ f )(1)
1 = F(γ f )(1)

2 −C2(F)
α

2π
2x . (6.25)

In the expression forF2, [9 + 5x]+ is defined by direct analogy to Eq. (6.4). We see explicitly the
collinear divergentkT integral, which will be absorbed intoφ(1)

f / f according to Eq. (6.5), and the
evolution kernel [

1 + x2

1− x

]
+

≡ P(1)
qq(x) = (1 + x2)/[1 − x]+ +

3
2
δ(1− x) , (6.26)

which is of central importance in determining theQ2 dependence of the DIS cross section (Section
3.).

As promised, allx → 1 divergences have canceled in Eq. (6.25), a necessary condition for
factorization. Also, we note thatF2 andF1 differ by an infrared safe function. This means that the
same parton distributionφ f / f will absorb the infrared sensitivity of both structure functions. This
is another prerequisite for factorization. Thus the calculation of DIS structure functions at one loop
gives us two highly nontrivial checks of the factorization formulas, Eq. (6.1).

The explicit forms of one-loop corrections suggest the two standard choices of parton distribu-
tions, discussed in SectionB. above,

φ(1)
f / f (x,Q

2)MS =
αs(Q2)

2π

∫ µ2
f

0

dk2
T

k2
T

Pqq(x) , (6.27)

φ(1)
f / f (x,Q

2)DIS = F(γ f )(1)(x, αs(Q
2)) . (6.28)

The first, “MS”, distribution, Eq. (6.27), absorbs as little as possible intoφ, that is, only the
collinear divergent term, leaving the remainder to theCa’s. It is particularly simple in dimen-
sional regularization, where the divergent term may be identified as the coefficient of a pole like
1/(n − 4), with n the “number” of dimensions. Alternatively, in the second, “DIS” distribution,
Eq. (6.28), we absorb as much as we can in the parton distribution, the standard choice beingall
of F(γ f )

2 (x,Q2
0), at the momentum scaleQ2

0 = µ2
f .

E. Review of DIS Experiments

1. Historical perspective

Early work on electron-nuclei scattering led to the discovery of thescaling propertyof the
structure functions24. This scaling property demonstrated the existence of point-like constituents—

24For a broader historical perspective, seeCahn and Goldhaber, 1989.
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partons—within the proton; these partons are now identified as the quarks and gluons. In a sense,
DIS experiments of the 1960’s established the sub-structure of the proton in the same manner that
the Rutherford scattering experiments established the sub-structure of the atom in 1911.

DIS experiments provided the experimental foundation for the parton model, SectionIII. ,
which, for the case of lepton-hadron scattering, can be summarized by the following formula:
σ(`h → `′X) = φa/h ⊗ σ̂(`a → `′X), whereφa/h is the parton distribution function (PDF),
σ̂(`a → `′X) is the hard scattering cross section, and⊗ represents convolution in momentum
fraction. The implicit assumption in the parton model is that the lepton scattersincoherentlyfrom
the parton constituents. The principal achievement of the parton model is that we have taken a
physical cross section which is difficult to calculate directly, and divided it into a term that we can
calculate in perturbation theory, ˆσ(`a→ `′X), and a term that we extract from experiment,φa/h.

Obviously, the utility of the parton model relies on our ability to determineφa/h, or equiv-
alently,25 the structure functions,Fi. The basic procedure used is to compute ˆσ(`a → `′X) in
perturbation theory, measureσ(`h→ `′X) experimentally, and thereby extractφa/h. Unfortunately,
this is easier said than done, as we must unfold the convolution to findφa/h.

Presently, the data from DIS experiments provide the most precise determination of the func-
tionsφa/h. The advantage of the DIS process is apparent when contrasted with a hadron-hadron
scattering process where the parton model formula would readσ = φ ⊗ σ̂ ⊗ φ, and we would have
to unfoldtwoconvolutions to extractφ.

Although an important goal of DIS experiments is the extraction of PDF’s, these experiments
cover a wide range of topics, including the precision measurements of sinθW, Cabibbo-Kobayashi-
Maskawa matrix elements, quark masses, and branching ratios. We shall limit the scope of our
discussion, however, primarily to the extraction of PDF’s.

The generic DIS scattering experiment consists of a lepton beam (e, µ, or ν) incident on a
nucleon target. In the simplest version of this experiment (totally inclusive DIS), only the final
state lepton is observed, and the hadron remnants are ignored. For example, the SLAC-MIT group
(Breidenbachet al., 1969; Bloom et al., 1969) scattered an electron beam of energy 7 GeV to
17 GeV from a hydrogen target. The energy of the outgoing electron was measured using a large
magnetic spectrometer for scattering anglesθ = 6◦ and 10◦.

In the QCD parton model, we assume that the DIS process occurs via the exchange of a virtual
boson (W± for charged current reactions,γ or Z0 in neutral current events) with momentumqµ =

kµ − k′µ. The momentum of the exchanged boson defines the energy scale, and the momentum
fraction is given by Bjorken scaling variablex:

Q2 = −q2 = 4EkEk′ sin2(θ/2)

x =
Q2

2q · P =
2EkEk′ sin2(θ/2)

mh(Ek − Ek′)

. (6.29)

25 Note, to leading order, the structure functions are simply related to the parton distributions. However, beyond
leading-order, the relations are more complex.
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Therefore, by measuring only the final state lepton energy (Ek′) and angle (θ) in the target rest
frame, we can determineQ2 andx, and thereby extract the structure functions.

The surprising discovery by the SLAC-MIT group was that the structure functions were insen-
sitive to Q2, and only depended on the scaling variablex. In the context of QCD, we now know
that there is a logarithmicQ2 dependence which spoils the exact scaling. Therefore, the goal of
modern experiments is to measure the structure functions in terms of bothQ2 andx.

2. The Experiments

We shall present a selective survey of the DIS experiments26. The DIS experiments can be
divided into two categories: charged (e, µ) and neutral (νe, νµ) lepton beams.

We shall consider four neutrino-induced DIS experiments. At CERN, both CDHS (CERN,
Dortmund, Heidelberg, and Saclay) [CERN-WA-001] and CHARM (CERN, Hamburg, Amster-
dam, Rome, Moscow) [CERN-WA-018] used aνµ/ν̄µ beam with an energy≤ 260 GeV. These ex-
periments were completed in 1984. At Fermilab, CCFR (Chicago, Columbia, Fermilab, Rochester)
[FNAL-770] used aνµ/ν̄µ beam with an energy≤ 600 GeV, and was completed in 1988. FMMF
(Fermilab, Michigan State, MIT, and University of Florida) [FNAL-733] had aνµ/ν̄µ beam with
an energy≤ 500 GeV, and was completed in 1988. CDHS and CCFR used massive (about 7g/cc)
Fe calorimeters which yielded a larger statistical sample. CHARM and FMMF used lighter (about
2g/cc) “fine-grained” calorimeters which yielded good pattern recognition, but lower statistics.

The major charged-lepton-induced DIS experiments include the following. EMC (European
Muon Collaboration) [CERN-NA-028] used aµ beam with an energy≤ 325 GeV, and was com-
pleted in 1983. NMC (New Muon Collaboration) [CERN-NA-037] used the EMC detector to ex-
tend the kinematic range tox = [0.005,0.75] andQ2 = [1,200] GeV2, and was completed in 1989.
SMC (Spin Muon Collaboration) [CERN-NA-047] is a third reincarnation of the EMC detector
designed to measure the spin-dependent asymmetries of longitudinally polarized muons scattering
from polarized targets. SMC began operation in 1991. BCDMS (Bologna, CERN, Dubna, Mu-
nich, Saclay) [CERN-NA-004] used aµ beam with an energy 100 GeV≤ Eµ ≤ 280 GeV, and was
completed in 1985.

Finally, there is a new class of experiments which has only become reality very recently:
lepton-hadron colliders. The HERA collider at DESY began taking data in 1992, colliding 26.7 GeV
electrons on 820 GeV protons for a

√
s = 296 GeV. With two experiments called H1 and ZEUS

this facility will be capable of measuring structure functions in the rangex ≥ 10−5 and Q2 ≤
30,000 GeV2. Results from their early runs have been published inZEUS Collaboration, 1993b;
H1 Collaboration, 1993andH1 Collaboration, 1994. These results already cover values ofx below
10−4. They are especially notable for the rise in F2(x) at low x, which is consistent with a variety
of theoretical considerations (Gribov, Levin, and Ryskin, 1983; Levin and Ryskin, 1990; Bassetto,
Ciafaloni, and Marchesini, 1983; Kuraev, Lipatov, and Fadin, 1976; Balitskii and Lipatov, 1978).

26 For lack of space we can neither cite all experiments, nor all references. For those experiments discussed, the
experiment number is given so that the interested reader can find a complete list of publications in the following
reference. Note that this information is also available on the SPIRES database (Galicet al., 1992).

94



3. Outstanding Issues in DIS

The DIS process is by far the most accurate experiment for measuring the quark distributions;
however, since there is no direct lepton-gluon coupling, the DIS process is only sensitive to the
gluon distributions at next-to-leading-order. Given the significant role that the gluons play in the
QCD parton model, it is important to obtain their PDF in a separate process, such as direct-photon
production.

DIS experiments are performed with a variety of nuclear targets; however, to compare struc-
ture functions among experiments, we prefer to convert the nuclear structure functions to isoscalar
structure functions. This necessary conversion is non-trivial, and can introduce significant uncer-
tainties.

We have sketched the process for extracting the structure functions summed over parton flavors;
however, realistic extraction of the PDF’s is more complicated. In principle we can use proton
and neutron scattering data to separately extract the up and down distributions, but this is not
straightforward.

A further complication arises when we try to determine the sea-quark distributions. For ex-
ample, thes-quark distribution is determined using the sub-processs + W → c with the final
statec-quark observed. Unfortunately, this process is sensitive to threshold effects arising from the
charm quark mass, as well as large non-leading order contributions arising from the mixing of the
gluon and strange quark distributions.

New high precision DIS data, as well as improved higher-order theoretical calculations, force
us to go beyond leading-order perturbation theory. When we carry our calculations and data analy-
sis beyond the leading-order of perturbation theory, all the subtleties of the renormalization scheme
and scale dependence arise.

F. Experimental Status of Parton Distributions

In this section we review some properties of parton distribution functions (PDE’s) as currently
determined from experiment. We begin with overall features, and go on to discuss the experimental
status of scaling violation, evolution and the determination ofΛQCD.

1. General Features

In neutrino scattering the built-in flavor selection, as described for the parton model in Section
2, provides a powerful means of extracting PDF’s. Nevertheless, neutrino experiments on light
targets (H or D) suffer in statistical precision. In the following, we briefly review the results of
neutrino experiments on hydrogen, and dwell primarily upon the precision measurements from
neutrino scattering off isoscalar targets.

a. Quark Densities from ν-H Scattering Neutrino measurements of quark densities from a
hydrogen target are in agreement between the two experiments, CDHS (Abramowiczet al., 1984)
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and WA21 (BEBC) (Joneset al., 1989), at about the 15% level. Figure16shows the ratio of quark
and antiquark components as measured by the two groups. (It should be noted that the CDHS data
have been adjusted in overall normalization to reflect this group’s recent cross section measurement
(Bergeet al., 1987).)

Figure 16: RatiosMishra and Sciulli, 1989of the data from experiments WA21 (BEBC, Big
European Bubble Chamber)Joneset al., 1989and CDHS (CERN, Dortmund, Heidelberg, Saclay)
Abramowiczet al., 1984: (crosses, quarks; solid circles, antiquarks).

b. Valence Quark Densities in the Proton The present status of separate valence quark com-
ponents,xuV(x) and xdV(x), is summarized in Fig.17.a and Fig.17.b. As noted inMishra and
Sciulli, 1989, while there is general agreement onxuV(x) between the muon experiment (EMC)
and neutrino experiments (WA21, WA25, and CDHS), there is a distinct discrepancy in the shape
of xdV(x). The precise reason for the discrepancy is not known. It is hoped that the recent muon ex-
periment data by the BCDMS and NMC collaborations on hydrogen and deuterium might resolve
this experimental conflict.

c. Valence Quark Densities in an Isoscalar Target The valence quark density for an isoscalar
target (i.e., the average of neutron and proton), which is the non-singlet structure functionx F3(x,Q2),
is much more accurately determined in high statistics neutrino experiments. The CCFR collabo-
ration (Mishraet al., 1992) has presented new measurements onx F3(x,Q2). These are compared
with the CDHSW data (Bergeet al., 1991) in Fig. 18. TheQ2-averaged ratio of the CDHSW to the
CCFR values ofx F3 are plotted as a function ofx. The figure illustrates that within the systematic
error of the overall normalization (≈ 2.5% – 3%) the two measurements ofx F3 are in agreement.
There are, however, differences in theQ2-dependence at a givenx between the two data sets. This
has important ramifications for the test of scaling violation inx F3(x,Q2) as discussed below.
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Figure 17: Valence quark densitiesMishra and Sciulli, 1989in a proton: (a)xuν, (b) xdν as a
function of x. The data are from EMC (European Muon Collaboration; (Aubert et al., 1987)),
WA21 Joneset al., 1989, WA25 ((Allasia et al., 1984), 1985), and CDHS (CERN, Dortmund,
Heidelberg, Saclay; (Abramowiczet al., 1984)). The solid curve is the parametrization of Morfı́n
and Tung (1991).

Figure 18: The ratio ofxF3 from CDHSW (CERN, Dortmund, Heidelberg, Saclay, Warsaw; (Berge
et al., 1991)) to xF3 from CCFR (Chicago, Columbia, Fermilab, Rochester; (Mishraet al., 1992)),
with Q2 > 1 GeV2, as a function ofx with statistical errors only.
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d. Antiquark Densities in an Isoscalar Target The antiquark densities as measured in light
targets by three different groups, WA21, WA25, and CDHS, are in agreement as shown in Fig.19
(for details seeMishra and Sciulli, 1989). The new high statistics measurement ofxq(x,Q2) mea-
sured in the Fe target by the CCFR collaboration (Mishra et al., 1992) is shown in Fig.20. The
data show thatxq(x) , 0 up tox ≤ 0.40.

Figure 19: The antiquark componentMishra and Sciulli, 1989of the proton as measured by three
neutrino experiments. The three sets of CERN data are from WA21Joneset al., 1989, WA25 ((Al-
lasiaet al., 1984), 1985), and and CDHS (CERN, Dortmund, Heidelberg, Saclay; (Abramowiczet
al., 1984)). The solid curve is the parametrization of Morfı́n and Tung (1991).

e. Strange Quark Content of an Isoscalar Nucleon SeaNeutrino-induced opposite sign dimuons,
µ−µ+, offer the most promising measurement of the strange quark contents(x) [s(x)] of the nu-
cleon sea. In addition, these events permit determination of the electroweak parametersVcd (the
Kobayashi-Maskawa matrix element: this is the only direct determination of this parameter), and
mc (the mass parameter of the charm quark: this is precisely the parameter which at present limits
the precision of sin2 θW determination inν-N scattering). The CDHS (Abramowiczet al., 1982)
and CCFR (Langet al., 1987; Foudaset al., 1990) leading order analyses agree in their determi-
nation of the fractional strangeness content of the nucleon sea (κ = 2s/(u + d)); the average of the
two measurements is:

κ = 0.52± 0.07 (6.30)

A noteworthy feature of the CCFR data (seeFoudaset al., 1990) is that the measureds(x) [s(x)]
is somewhat softer than the non-strange sea (obtained from the single muon CC events). This is
illustrated in Fig.21. Two new developments are underway: (a) CCFR has quadrupled its sample
of µ+µ− events by including data from two separate runs (FNAL E744 and E770), and by imposing
a softer muon momentum cut on the second muon (Eµ > 4 GeV); (b) It has been shown that,
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Figure 20: The antiquark component of a nucleon measured in an isoscalar target (ν-Fe) by the
CCFR (Chicago, Columbia, Fermilab, Rochester) collaborationMishra et al., 1992. q̄(x) as a
function ofx is shown for two values ofQ2: 3 GeV2 and 5 GeV2.

within the perturbative QCD framework, it is necessary to perform the analysis at least to orderαs

to achieve consistency (Aivazis, Olness, and Tung, 1990). It is hoped that these developments may
help answer the question: is the strange seadifferentfrom the non-strange sea?

2. Evolution

Within the framework of DIS scattering described in Section 4 there are elegant and unambigu-
ous QCD predictions that can be verified experimentally. In DIS there is no fragmentation uncer-
tainty since one deals with inclusive final state hadrons; the scale, which is the four-momentum
transferQ2, is well defined; the higher order corrections are small and the scaling violations are
well described by the evolution equations (Altarelli and Parisi, 1977). Also the measurements yield
structure functions at different values ofx andQ2, and thus afford a system of tests of evolution
(Section3.).

Among the elegant predictions of perturbative QCD are slopes of structure functions with re-
spect toQ2 as a function ofx and the absolute magnitude and dependence ofR(x,Q2) = σL/σT on
x andQ2. Below we examine the status of these tests.

a. Measurements ofR(x,Q2) versus QCD The R parameter of deeply inelastic scattering is
defined as the ratio of the absorption cross section of the longitudinally to transversely polarized
virtual boson,R(x,Q2) = σL/σT , and is related to the structure functionsF2, andF1 as:

R =
σL

σR
=

F2 − 2xF1

2xF1
≡ FL

2xF1
. (6.31)
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Figure 21: The strange-sea component of the nucleon measuredFoudaset al., 1990by analyzing
the CCFR (Chicago, Columbia, Fermilab, Rochester)νµ− andν̄µ-induced opposite-sign dimuons.
Thes(x) ands̄(x) are compared to the nonstrange ¯q(x) obtained from ordinary single-muon events.
To illustrate the “shape difference,” the total ¯q(x) are normalized to the respective strange-sea
distribution.

whereFL is the longitudinal structure function, and the other symbols have their usual meaning
(Mishra and Sciulli, 1989). Perturbative QCD predicts the magnitude ofR and its dependence
on x and Q2 (due to gluon radiation and quark pair production) to be (Altarelli and Martinelli,
1978; Glück and Reya, 1978):

R(x,Q2) =
αS(Q2)

2π
x2

2xF1(x,Q2)

∫ 1

x

dz
z3

[
8
3

F2(z,Q
2) + 4 f (1− x

z
)zG(z,Q2)

]
, (6.32)

where f is the number of flavors if the incident lepton is a neutrino, and the sum of the squares of
quark charges if the incident lepton is a muon or an electron;G(z,Q2) is the gluon structure func-
tion. Numerous experiments have measuredR(x,Q2) and claimed consistency with the theoretical
prediction. Nevertheless, from recent measurements at SLAC (Dasuet al., 1988; Whitlow et al.,
1990) and a simple model for higher twist effects, it is argued inMishra and Sciulli, 1990that
the present cumulative deeply inelastic scattering data areconsistentwith but do not demonstrate
R = RQCD. Precise measurements ofR(x,Q2) at sufficiently highQ2 (e.g.Q2 > 10− 15 (GeV/c)2)
in next generation deeply inelastic experiments (Mishra, 1990a; Guyotet al., 1988) will provide a
compelling test of perturbative QCD.

b. Evolution of Non-singlet Structure Function In the DIS scheme, we can combine
Eqs. (6.1), (6.2) and Eq. (6.10) to find evolution equations for the singlet and nonsinglet func-
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tionsF(S)
2 andF(NS)

2 ,

dF(NS)
2 (x,Q2)

d lnQ2
=

∫ 1

x
Pqq(z, αs)F

(NS)
2 (

x
z
,Q2) dz (6.33)

dF(S)
2 (x,Q2)

d lnQ2
=

∫ 1

x

[
Pqq(z, αs)F

(S)
2 (

x
z
,Q2) + PqG(z, αs)φg/N(

x
z
,Q2)

]
dz

(6.34)

where thePi j are the usual evolution kernels, given at one loop Eq. (6.7). Thus in the DIS scheme,
the non-singlet (NS) evolution ofF2 involves only the structure function itself, the known splitting
function, andαs. The singlet (S) equation is coupled with that of the gluons and is hence less
directly related to experiment. An analysis of the kernels shows, however, that the slope ofF(S)

2 is
expected (at leading order) to pass through zero at aboutx = 0.1, as shown in Fig.22.

Figure 22: The logarithmic slopes ofxF3 for the CDHSW data (CERN, Dortmund, Heidelberg,
Saclay, Warsaw; (Bergeet al., 1991)) and CCFR data (Chicago, Columbia, Fermilab, Rochester;
(Quintaset al., 1993)): (a) Q2 > 1 GeV2; (b) Q2 > 5 GeV2. Only statistical errors are shown. The
curves forQ2 > 5 GeV2 are QCD predictions for various values ofΛQCD.

In a manner similar toF(S)
2 , the evolution equation forx F3 can be written in the form

d ln xF3(x,Q2)
d ln Q2

= αs(Q
2)ψ(x,Q2) . (6.35)

The termψ(x,Q2) involves an integral ofx F3(z,Q2) for z > x; the integral is evaluated using
the known splitting function Pqq (which has been calculated to next-to-leading order). Thus, the
only unknown on the right hand side of the above equation is the strong coupling constant: the
logarithmic slope ofx F3 is proportional toαs at eachx.
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Neutrino experiments on heavy targets can perform this test with the non-singlet structure
function, x F3. The high statistics CDHSW data (Bergeet al., 1991) do not agree well with the
predicted dependence of the scaling violations onx, although the authors state that the discrepan-
cies are within their systematic errors. Previous CCFR data lacked the statistical power to offer a
conclusive test (Oltmanet al., 1992). The recent CCFR non-singlet data show an evolution con-
sistent with the pQCD prediction, and provides an accurate determination ofαs (Quintaset al.,
1993; Quintas, 1992).

Measurements of the scaling violations are sensitive to miscalibrations of either the hadron or
muon energies. For example, a 1% miscalibration can cause a 50 MeV mismeasurement ofΛQCD,
but hadron and muon errors enter with opposite signs. Thus if both hadron and muon energies were
in error by the same amount, the error inΛQCD would be small. Therefore, while it is important
that the hadron and muon energy calibrations and resolution functions be well known, it is crucial
that the energy scales be cross-calibrated to minimize energy uncertainty as a source of error.

Figure23shows that the CCFR data have an evolution ofx F3 consistent with the pQCD predic-
tion. The pQCD prediction is a next-to-leading order (NLO) calculation in the modified minimal
subtraction (MS) scheme. AQ2 > 15 (GeV/c)2 cut was applied to eliminate the non-perturbative
region, and anotherx < 0.7 cut to remove the highestx bin (where resolution corrections are
sensitive to Fermi motion). The best QCD fits to the data were obtained as illustrated in the figure.

Figure 23: ThexF3 data from the CCFR (Chicago, Columbia, Fermilab, Rochester) collaboration
Quintaset al., 1993, and the best next-to-leading-order QCD fit. Cuts ofQ2 > 5 GeV2 andx < 0.7
were applied for a next-to-leading-order fit including target mass corrections.

c. Determination of ΛQCD A good visual representation of structure function evolution com-
pares the magnitude of theQ2-dependence of the data in eachx-bin with the dependence predicted
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by the fit. This is shown by plotting the “slopes” (= d ln x F3/d ln Q2) as a function ofx. Fig-
ure24shows the CCFR data along with the curve through the points predicted by the theory. More
specifically the values shown in Fig.24 result from power law fits to both data and theory over
the Q2 range of the data. The logarithmic slopes of the data agree well with the QCD prediction
throughout the entirex-range. This observation is independent of calibration adjustments within
reasonable limits. At low-x values the data agree well with predictions independent of the value of
ΛQCD.

Figure 24: The slopes ofxF3 (= d ln xF3/d ln Q2) for the CCFR data (Chicago, Columbia, Fermi-
lab, Rochester collaboration; (Quintaset al., 1993)) are shown in circles. The curve is a prediction
from perturbative QCD with target mass corrections. The slopes forF2 (squares) in the region
x > 0.4 are also shown (withx values shifted by+2% for clarity).

The value ofΛQCD resulting from the fit tox F3 data is 179± 36 MeV, with aχ2 of 53.5
for 53 degrees of freedom (χ2 = 53.5/53). Varying theQ2 cuts does not significantly change
ΛQCD; for Q2 > 10 (GeV/c)2, the best fit givesΛQCD = 171± 32 MeV (χ2 = 66.4/63); and for
Q2 > 5 (GeV/c)2, ΛQCD = 170± 31 MeV (χ2 = 83.8/80).

More precise determinations ofΛQCD from the non-singlet evolution is obtained by substituting
F2 for x F3 at large values ofx. The evolution ofF2 should conform to that of a non-singlet structure
function in a region,x > xcut, so long asxcut is large enough that the effects of antiquarks, gluons,
and the longitudinal structure function are negligible on itsQ2 evolution. The “best” value ofΛQCD

from non-singlet evolution is obtained by substitutingF2 for x F3 for x > 0.5. (The slopes forF2

in this region are also shown in Fig.27.) This non-singlet fit yields:

ΛQCD = 210± 28 MeV for Q2 > 15(GeV/c)2. (6.36)

Varying thexcut from 0.5 to 0.4 does not significantly changeΛQCD; the above substitution yields,
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ΛQCD = 216± 25 MeV with good fit. Using 2x F1 instead ofF2 in this fit changesΛQCD by +1
MeV.

d. Evolution of Singlet Structure Function We note (for details seeMishra and Sciulli, 1989)
that there were some experimental conflicts inF2-evolution: whereas the BCDMS data showed
lovely agreement with the theory (see Fig.25 and Fig.26), the EMC and the CDHSW data on
F2-slopes were steeper than the prediction (Fig.27 and Fig.28). The CCFR data onF2 show an
evolution consistent with the pQCD. Figures29 and30 illustrate this consistency. It should be
noted, however, that for theF2 evolution the functional form of thex-dependence of the gluons
must be assumed, and its coefficient must be determined from the data.

We point out that, assuming the QCD evolution is unequivocally verified in the non-singlet
evolution, the singlet evolution permits the extraction of the gluon structure function. In neutrino
experiments,the simultaneous evolution of F2 and x F3 permits a very powerful constraint on the
gluon degrees of freedom (Oltmanet al., 1992).

G. Status of DIS Sum Rules

1. Introduction

The invariant structure functions which parameterize the deeply inelastic scattering cross sec-
tion are related to the densities of quarks constituting the nucleon by the Quark Parton Model
(QPM)(SectionIII. ). Quark Parton Model sum rules are thus consistency conditions that relate
appropriate integrals of measured quark densities to the total number and charges of the con-
stituent quarks. In the following, we review from a phenomenological perspective the sum rules
and the experimental challenges and tests of certain important sum rules in DIS experiments (Sci-
ulli, 1986; Mishra and Sciulli, 1989)27. Sum rules establish relationships among the total integrated
quark and antiquark densities. For simplicity, we consider the contributions of the first generation
quark densities. (Higher generation quark densities generally cancel in the sum rules.) If we denote
the total u-quark and d-quark densities by:

Up =

∫ 1

0
u(x)dx,

Dp =

∫ 1

0
d(x)dx, (6.37)

it follows from isospin invariance that the total density of the u-quark in the proton must be equal
to the total density of the d-quark in the neutron:

U = Up = Dn

D = Dp = Un

27 For a historical perspective of the DIS experiments, seeSciulli, 1991.
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Figure 25: The BCDMS (Bologna, CERN, Dubna, Munich, Saclay) collaboration ((BCDMS Col-
laboration, 1987a), 1987b) measurement of the logarithmic derivative ofF2 with respect toQ2

(d logF2/d logQ2) as a function ofx with hydrogen (solid symbols) and carbon (open symbols).
The best next-to-leading-order QCD nonsinglet fits to these data are also shown. It is assumed that
for x > 0.25 theF2 data essentially evolve as nonsinglets. The figure is from (Mishra and Sciulli,
1989).
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Figure 26: The singlet evolution of the singlet BCDMS measurement (Bologna, CERN, Dubna,
Munich, Saclay; (BCDMS Collaboration, 1987a), 1987b) ofF2 in a hydrogen target. The effect
of gluons, prominent at lowx, is shown by the hatched region between the singlet (solid) and
nonsinglet (dotted) QCD fits. The figure is from (Mishra and Sciulli, 1989).
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Figure 27: The EMC measurement of the logarithmic derivative ofF2 with respect toQ2

(d logF2/d logQ2) as a function ofx with iron target. Also shown is the the next-to-leading-
order QCD curve with typical value ofΛQCD as analyzed by the BCDMS collaboration (Bologna,
CERN, Dubna, Munich, Saclay; (BCDMS Collaboration, 1987b)). The figure is from (Mishra and
Sciulli, 1989).
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Figure 28: The CDHSW measurement (CERN, Dortmund, Heidelberg, Saclay, Warsaw; (Bergeet
al., 1991)) of the logarithmic derivative ofF2 with respect toQ2 (d logF2/d logQ2) as a function
of x with iron target. Also shown is the the next-to-leading-order QCD curve with typical value
of ΛQCD as analyzed by the BCDMS collaboration (Bologna, CERN, Dubna, Munich, Saclay;
(BCDMS Collaboration, 1987b)). The figure is from (Mishra and Sciulli, 1989).
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Figure 29: TheF2 data of the CCFR collaboration (Chicago, Columbia, Fermilab, Rochester;
(Quintaset al., 1993)) and the best next-to-leading-order QCD fit. Cuts ofQ2 > 5 (GeV/c)2 and
x < 0.7 were applied for a next-to-leading-order fit including target mass corrections.

Figure 30: The slopes ofF2 (= d log xF2/d logQ2) for the CCFR data (Chicago, Columbia, Fer-
milab, Rochester; (Quintaset al., 1993)), shown as squares. The curve is a prediction from pertur-
bative QCD.
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U = U p = Dn

D = Dp = Un . (6.38)

The above simple relationships follow directly from the assigned baryon and isospin quantum
numbers of the nucleon, and no violation of these relations have been reported to date.

The experimental challenges in precision tests of QPM sum rule predictions spring from two
sources:

(1) Low-x Region: The experiments measure momentum densities of the partons,i.e., xq(x);
the sum rules involve integration over the number of quarks. The sums are thus obtained by
integrating over the measured momentum densitiesdividedby x, which weights the low-x
region heavily. A good experimental resolution and a good understanding of the resolution
functions of the measured quantities in the low-x region are necessary for accurate tests.

(2) Relative Normalization: Sum rules involve differences of structure functions or cross-sections.
The relative normalization between relevant cross-sections, therefore, must be accurately
measured. Furthermore, as can be seen below, differences often must vanish atx = 0, or the
sum rule will become divergent. This imposes an additional emphasis upon measuring the
relative normalization well.

2. Gross-Llewellyn Smith Sum Rule

The Gross-Llewellyn Smith (GLS) sum rule is the most accurately tested of sum rules. The
GLS sum rule predicts that the number of valence quarks in a nucleon, up to finiteQ2 corrections,
is three (Gross and Llewellyn-Smith, 1969; Bég, 1975). It involves an integration over the non-
singlet neutrino structure function,x F3(x,Q2)/x, which is obtained by subtracting the antineutrino
differential cross section on an isoscalar target from the corresponding neutrino cross section. In
the QPM, the GLS sum rule is:

SGLS =

∫ 1

0

x FνN3

2x
dx = (U − U) + (D − D) = 3 . (6.39)

To verify this result, see Eq. (3.44), recall thatF(νh) = F(W+h) for h = p,n and use isospin invariance,
Eq. (6.38). The integrand of the sum rule is the coefficient of 1− (1− y)2 in the difference of the
two differential cross sections.

The effects of scaling violations modify this sum rule. Perturbative QCD predicts a calculable
deviation of the GLS sum rule from 3. In next-to-leading order,SGLS is given by:

SGLS =

∫ 1

0

x FνN3

2x
dx = 3

{
1− αs(Q2)

π
+
G
Q2

+ O(Q−4)

}
. (6.40)

The QPM relates the parity violating structure function,x F3, to the valence quark density of the
nucleon, and the sum rule follows. The second term in the equation corresponds to the known
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perturbative QCD correction, while the third term corresponds to an estimate of power suppressed
(twist-4) contribution to the sum rule (Iijima, 1983). Using perturbative QCD withΛQCD = 200
MeV the sum rule therefore predictsSGLS = 2.66 atQ2 = 3 (GeV/c)2. The orderαs result may
be derived fromC(Vq)

3 in Eq. (6.6). This computation is greatly simplified by using the fact that the
integral from 0 to 1 of a plus distribution vanishes.

Due to the 1/x weighting in the integrand, the smallx region (x < 0.1) is particularly important;
90% of the integral comes from the regionx ≤ 0.1. It follows that the most important issues
to assure small systematic errors are (a) accurate determination of the muon direction; and (b)
accurate determination of the relativeν/ν flux. Sincex F3 is obtained from the difference ofν and
ν cross-sections, small relative normalization errors can become magnified by the weighting in the
integral. The absolute normalization uses an average ofν-N cross-section measurements.

As an example, in the CCFR measurement ofSGLS, the values ofx F3 are interpolated or
extrapolated toQ2

0 = 3 (GeV/c)2, which is approximately the meanQ2 of the data in thex-bin
which contributes most heavily to the integral. The resultingx F3 is then fit to a function of the
form f (x) = Axb(1 − x)c (b > 0). The integral of the fit weighted by 1/x gives SGLS. The
estimated systematic error due to fitting onSGLS is ±0.040. The dominant systematic error of the
measurement comes from the uncertainty in determining the absolute level of the flux, 2.2%. The
other two systematic errors are 1.5% from uncertainties in relativeν to ν flux measurement and 1%
from uncertainties in muon energy calibration. The reported CCFR value forSGLS is (Leunget al.,
1993; Leung, 1991):

SGLS =

∫ 1

x

xFνN
3

2x
dx = 2.50± 0.018( stat.)± 0.078( syst.) (6.41)

The theoretical prediction ofSGLS, for the measuredΛ = 213± 50 MeV from the evolution of the
non-singlet structure function, is 2.66± 0.04 (see Eq. (6.40)). The prediction, assuming negligible
contributions from higher twist effects, target mass corrections (Mishra, 1990b, summarized in
Brock, Brown, Corcoran, and Montgomery, 1990) and higher order QCD corrections, is within
1.8 standard deviations of the measurement. The current status ofSGLS measurements is shown in
Fig. 31.

The 3% accuracy of the GLS sum rule atQ2 = 3 GeV2 raises theoretical concerns on nonlead-
ing contributions, which are discussed inIijima, 1983andShuryak and Vainshtein, 1981.

3. Adler Sum Rule

The Adler sum rule predicts the integrated difference between neutrino-neutron and neutrino-
proton structure functions. Unlike the GLS sum rule, this sum rule is expected to be exact for the
leading twist term; that is, there are expected to be no perturbative corrections with higher powers
of αs. This is because its derivation relies on commutators of currents. It states (Adler, 1966)

SA =

∫ 1

0

(Fνn
2 − Fνp

2 )

2x
dx = 1 . (6.42)

111



Figure 31: The world status of the Gross-Llewellyn Smith sum-rule measurement, as summa-
rized by the CCFR collaboration (Chicago, Columbia, Fermilab, Rochester; (Leunget al., 1993)).
The other data are from CDHS (CERN, Dortmund, Heidelberg, Saclay; de Grootet al., 1979),
CHARM (CERN, Hamburg, Amsterdam, Rome, Moscow; Bergsmaet al., 1983), CCFRR (Cal-
tech, Columbia, Fermilab, Rochester, Rockefeller; MacFarlaneet al., 1984), WA25 ((Allasiaet al.,
1984), 1985), and CCFR-NBB (NBB= narrow-band beam; (Oltmanet al., 1992)).

The vanishing of the one-loop correction toSA follows immediately from the fact thatC(Vq)
2 (x)/x

in Eq. (6.6) is a plus distribution. In terms of the total number of u- and d-quarks, the sum rule
implies (see Eq. (3.42)):

SA =

∫ 1

0
[dn(x) + un(x) − dp(x) − up(x)] dx

= Dn + Un − Dp − U p

= (U − U) − (D − D) (6.43)

The prediction follows from the last equation.
The WA25 (BEBC) collaboration (Allasia et al., 1984; Allasia et al., 1985) has used neu-

trino data on a light target to obtain this sum rule. Their measurement, averaged over 1< Q2 <
40 (GeV/c)2 and assuming the Callan-Gross relation, yields:

SA = 1.01± 0.08 (stat.)± 0.18 (syst.), (6.44)

which is consistent with the prediction at the 20% level. Figure32presents the WA25 measurement
of SA at variousQ2 cuts. It should be pointed out however that the WA25 collaboration used a
value for the totalνN cross section which is lower than the current consistent value (seeBlair et
al., 1983; Bergeet al., 1987). The central value of the sum rule, therefore, should be adjusted:
SA = 1.08± 0.08± 0.18.
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Figure 32: The WA25 measurement ((Allasia et al., 1984), 1985) of the Adler sum rule with
variousQ2 cuts.

The Adler sum rule is particularly difficult to test accurately. Obtaining statistically accurate
neutrino data on a light target would require a very intense neutrino beam; good low-x resolution,
and accurate relative normalization between proton and neutron (deuterium) targets impose ad-
ditional constraints. No new effort is in view to improve upon the present 20% measurement of
SA.

4. Gottfried Sum Rule

The Gottfried sum rule is the “Adler sum rule analogue” for charged lepton probes. The sum
rule involves the difference ofF2 measured in proton and neutron targets using a muon beam
(Gottfried, 1967):

SG =

∫ 1

0

(Fµp
2 − Fµn

2 )

x
dx =

1
3

+ correction. (6.45)

As in the case of the Adler sum rule, it is instructive to express this sum rule in terms of contribu-
tions (integrals) from individual quark densities (see Eq. (3.31)):

SG =
1
9

[
4(Up + U p) + (Dp + Dp) − 4(Un + Un) − (Dn + Dn)

]
=

1
3

[
(U + U) − (D + D)

]
. (6.46)

There are no one-loop corrections from the Wilson coefficients of Eq. (6.6). If oneassumes(Mishra
and Sciulli, 1989) that the total number of anti-up and anti-down quarks inside a proton is the same,
i.e., U = D, then the sum rule predicts a value of 1/3.

113



The corrections to the Gottfried sum rule come both from higher order perturbative corrections
and from violations of the assumption thatU = D.

It is the assumptionU = D inside the proton that is seriously impugned by the recent NMC
measurement ofSG (NMC, 1991). Before discussing the experiment, let us analyze the of contri-
bution of various quark species toSG.

When written in terms of u- and d-quark contributions, this is the first sum rule where the
contributions of quark and anti-quark of the same typeadd — for all other sum rules, Gross-
Llewellyn Smith, Adler, Bjorken, the contribution of say u-quark and antiquarksubtract.

There is noa priori reason to believe that the total number ofu be the same asd inside a proton.
That the proton has 2 valence u-quarks, and 1 valence d-quark implies that the number of u-ū pairs
will be less than the corresponding number of d-d̄ pairs in the nucleon sea — the suppression of
u-quarks in the sea will be due to the exclusion principle (Field and Feynman, 1977). Isospin
symmetry does not predict equality. Use of the Adler sum rule Eq. (6.43), however, enablesSG to
be cast in the form:

SG =
1
3

[
(U − U) − (D − D)

]
+

2
3

[
(U − D)

]
=

1
3

+
2
3

[
(U − D)

]
. (6.47)

In addition, there is a small violation ofSG = 1/3 caused by perturbation theory. IfU = D
at some initialQ0, then the one-loop Altarelli-Parisi evolution does not alter this. The one-loop
Wilson coefficient does not give a correction to the sum rule: the calculation is the same as for the
Adler sum rule. But graphs of orderα2

s generate both a Wilson coefficient that corrects the sum
rule and an evolution that generates a nonzero value forU = D. Ross and Sachrajda, 1979showed
that this effect is numerically small.

If U < D, then it follows thatSG < (1/3). This was found by the NMC (NMC, 1991). Prior to
these data, earlier measurement lacked precision in the critical low-x region to provide a conclusive
test of the sum rule. TheSG measurements by the SLAC (Bodeket al., 1973), EMC (Aubert et
al., 1987), and BCDMS (BCDMS Collaboration, 1990a; BCDMS Collaboration, 1990b) groups
were all consistent with the naive prediction of (1/3) within their large errors (typically 20%). The
earlier measurements, however, did show consistently a central value ofSG that was lower than
the prediction. The NMC experiment had the commensurate statistics and resolution in the low-x
region enabling them to measure wellFn

2/F
p
2 ratio down to small values ofx (Allasia et al., 1990).

Using this measured ratio, and the world-average ofF2(Deuterium), they obtainedFp
2 − Fn

2:

Fp
2 − Fn

2 = 2F2(Deuterium)×
1− Fn

2/F
p
2

1 + Fn
2/F

p
2

. (6.48)

The NMC measurement of (Fp
2 − Fn

2) dark-symbols (right-scale), and that of the corresponding
integral,

∫
(Fp

2 − Fn
2)dx, as open-symbols (left-scale) are shown in Fig.33. as a function ofx. The
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“circles” and “triangles” are two distinct methods of obtaining these data; their agreement reveals
consistency. The lowest measuredx-bin was 0.004; and over the measuredx-region, they reported:

SG =

∫ 1

0

(Fµp
2 − Fµn

2 )

x
dx = 0.227± 0.007± 0.014 for 0.004≤ x ≤ 0.8. (6.49)

The measuredx-dependence, just like that ofx F3 in the GLS measurement, is consistent with a
power-law fit inx. This fit could be extrapolated to the unmeasured region inx below 0.004. The
corrected sum rule is:

SG = 0.240± 0.016 for 0≤ x ≤ 1. (6.50)

This precise measurement ofSG is more than five-standard deviations higher than the naive pre-
diction of 1/3.

Figure 33: The measurement of the New Muon CollaborationNMC, 1991: dark symbols and the
right scale,Fp

2 − Fn
2 as a function ofx; open symbols and left scale, the integral

∫
(Fp

2 − Fn
2)dx

leading to the Gottfried sum rule. The circles and triangles represent two different methods of
extraction.

The discrepancy has engendered a lot of interest. Some authors have postulated large asymme-
try in the nucleon sea (Preparata, Ratcliffe, and Soffer, 1991); others have attributed the cause of
disagreement to extrapolation to the unmeasured region inx (Martin, Stirling, and Roberts, 1990).
Eichtenet al., (Eichten, Hinchliffe, and Quigg, 1992; Eichten, Hinchliffe, and Quigg, 1993) have
interpreted this discrepancy as due to higher-twist effects involving the coherent coupling of quarks
to pions. That there is an asymmetry in u- versus d-sea in the proton is not surprising; perhaps the
startling feature is the possible magnitude of the asymmetry.
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5. Bjorken Sum Rule

Polarized hard scattering is a rich subject, with many recent developments28. Here we discuss
the extra structure functions that exist in polarized deeply inelastic scattering. For a spin half
target, there are two polarized structure functions,g1 andg2. QCD predicts thatg2 is higher twist
and therefore gives a small contribution to the cross section. The only measurements to date are of
g1: for polarized protons at SLAC (Alguardet al., 1979; Baumet al., 1983) and by EMC (Ashman
et al., 1988; Ashmanet al., 1989), and recently for polarized deuterium by SMC (Spin Muon
Collaboration, 1993). Data on polarized3He has been obtained by the E142 experiment at SLAC
(Anthonyet al., 1993). New data on polarized protons has been reported by theSMC, 1994. In the
near future more data will come from experiments at SLAC and from the SMC.

Consider the scattering of polarized muons (or electrons) off a polarized nucleon, with the axis
of the polarization being the collision axis. We letσ(↑↑) (σ(↑↓)) be the cross section when the
target polarization is parallel (antiparallel) to the beam polarization. Then

d2[σ(↑↑) − σ(↑↓)]
dxdy

=
e4

2πQ2
(1− y/2)g1(x,Q), (6.51)

where we have dropped terms that are suppressed by a power ofQ2 in the Bjorken limit. The
perturbative QCD prediction forg1 is

g1(x,Q) =
1
2

∑
f

e2
f (φ
↑
f − φ

↓
f ) + O(αs), (6.52)

where theO(αs) andO(α2
s) corrections are known (Kodairaet al., 1979; Kodaira, 1980; Zijlstra

and van Neerven, 1994). Here,φ↑f (φ↓f ) represents the number density of partons of flavorf that
are polarized parallel (antiparallel) to the initial hadron.

The Bjorken sum rule (Bjorken, 1966; Bjorken, 1970) relates the difference betweeng1 for the
proton and neutron to the nucleon vector and axial vector couplingsgV andgA

SBj ≡ Γ
p
1 − Γn

1 =

∫ 1

0

[
gp

1(x) − gn
1(x)

]
dx

=
1
6

gA

gV

(
1− αs

π
+ O(α2

s)
)

= 0.191± 0.002, (6.53)

whereΓ1 denotes the first moment ofg1. The Wilson coefficient has been calculated to orderα3
s

by Larin and Vermaseren, 1991. The sum rule arises because the first moment of a polarized quark
density plus the antiquark density is the expectation value of an axial current operator:

∆ f ≡
∫ 1

0
[φ↑f − φ

↓
f + φ↑

f̄
− φ↓

f̄
]dx = 〈N|ψ̄ fγ

+γ5ψ f |N〉/(2p+). (6.54)

28 References to recent work can be found inCollins, Heppelmann, and Robinett, 1991and inBunceet al., 1992.
See alsoHughes and Kuti, 1983.
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The Bjorken sum rule is a firm prediction of QCD, since it rests on established perturbative
methods and on isospin invariance. It has been tested at low accuracy bySpin Muon Collaboration,
1993. With the aid of the EMC result (Ashmanet al., 1988; Ashmanet al., 1989)

Γ
p
1(EMC) = 0.114± 0.012(stat.)± 0.026(syst.), (6.55)

the SMC deuterium data give

Γn
1(SMC) = −0.08± 0.04(stat.)± 0.04(syst.), (6.56)

so that
SBj(SMC) = 0.20± 0.05(stat.)± 0.05(syst.), (6.57)

in agreement with the theoretical prediction Eq. (6.53)
Ellis and Jaffe (Ellis and Jaffe, 1974) derived sum rules forgp

1 andgn
1 separately. Their critical

assumption was that the strange quarks in the nucleon are unpolarized, so that in the notation of
Eq. (6.54) ∆s = 0. This hypothesis is plausible but it is by no means a prediction of QCD. In
addition, the derivation used flavor SU(3) symmetry to relate the nonsinglet matrix elements in the
operator product expansion to semi-leptonic decay rates of strange baryons; this is less accurate
than isospin invariance. Modern values then predict (Ashmanet al., 1988; Ashmanet al., 1989)

Γ
p
1(EJ)= 0.189± 0.005, Γn

1(EJ)= −0.002± 0.005. (6.58)

The EMC and SMC results, as shown in Fig.34, violate the Ellis-Jaffe sum rules. For the
proton moment, the latest SMC value (SMC, 1994) is Γ

p
1 = 0.136±0.011±0.011. For the neutron,

Spin Muon Collaboration, 1993reportsΓn
1 = −0.08± 0.04± 0.04, while Anthony et al., 1993

reportsΓn
1 = −0.022± 0.011.

An analysis of the data available in mid-1993 was made byEllis and Karliner, 1993. Since
some of the data are at rather lowQ2, they included an estimate of higher-twist correction by
Balitsky, Braun, and Koleshichenko, 1990, with the result that

∆u = +0.80± 0.04, ∆d = −0.46± 0.04, ∆s = −0.13± 0.04. (6.59)

Taken at face value, these numbers imply that the strange sea quarks have substantial polarization
and that the quarks carry a small fraction of the spin of the proton (since∆u+∆d+∆s = 0.22±0.10).

It is possible to evade this conclusion: for example, one may question the direct identification
of the ∆ f ’s in Eq. (6.59) with spin fractions carried by quarks in a quark model wave function
(Efremov and Teryaev, 1988; Carlitz, Collins, and Mueller, 1988; Altarelli and Ross, 1988). Then
there could be a large spin asymmetry in the gluons. In any event, if the violation of the Ellis-
Jaffe sum rule continues to be confirmed, then it implies some surprising features of the nucleon
wave function and of the associated nonperturbative physics. There is interesting work still to
be done (Collins, Heppelmann, and Robinett, 1991; Bunceet al., 1992; Hughes and Kuti, 1983),
particularly in a flavor separation of the spin dependent parton densities.
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Figure 34: The EMC measurementAshmanet al., 1988of the spin structure function: squares and
the right scale, the protonxgp

1(x); diamonds and left scale, the integral
∫

gp
1(x)dx as a function of

x.
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VII. Electroweak-Induced Hard Hadron-Hadron Cross Sections

The factorization program is fully realized in hadron-hadron cross sections. The underlying
hard scattering may be initiated by electroweak interactions, as in Drell-Yan or direct photon pro-
duction, or may be pure QCD processes, as in jet and heavy-quark production. In this section, we
discuss hard scattering corrections in the simplest electroweak processes.

A. Hard-Scattering Corrections in the Drell-Yan Cross Section;O(αs) cor-
rections

The Drell-Yan process was introduced in SectionD.. We shall present the one-loop correction,
noting that the inclusive Drell-Yan cross section is probably the only realistic hadronic cross sec-
tion that is simple enough to present in detail. For definiteness, we limit ourselves to the purely
electromagnetic process.

The basic factorization theorem for the unpolarized cross section was introduced in Section
1. and illustrated in Fig.12. Since the electromagnetic production of lepton pairs by a virtual
photon only involves lowest order QED, the angular dependence inθ andφ can be calculated
later. Although Eq. (4.38) holds for the double differential cross section, the generalization is
straightforward, and here we only consider the corrections to the single differential cross section
dσ/dQ2 written in the form

dσ(τ,Q2)
dQ2

=
∑
a,b

∫ 1

0
dηA

∫ 1

0
dηB

∫ 1

0
dzδ(τ/ηAηB − z)

×φa/A(ηA, µ)Hab

(
z, αs(µ)

)
φb/B(ηB, µ) , (7.1)

where the parton-parton cross sectionHab is evaluated at the scaled variablez = Q2/ηAηBs, with√
s is the center of mass energy of the hadron-hadron system . The theoretical justification for this

result is analyzed inCollins, Soper, and Sterman, 1989.
The hard scattering cross sectionHab has a perturbative expansion inαs of the form

Hab = (H(0)
ab +

αs

π
H(1)

ab + · · ·) . (7.2)

In lowest order of perturbation theory, the only channel allowed isq + q̄ → γ∗, whereq labels a
quark with chargeQq and the photon is virtual.H(0) is therefore given by the parton-model (Born)
cross section. At higher order we proceed as in SectionA. for DIS. The hard-scattering cross
section is independent of the nature of the external hadrons, so we can compute it from Eq. (7.1)
by considering a particular case: namely we apply Eq. (7.1) to the parton-parton reaction. Then
the functionsφ(η) measure the parton content of the external partons. In this case, the quantity on
the left-hand-side is ann-dimensional scattering cross section which contains poles asε → 0. As
in DIS, perturbative expansions for the distributionsφi/ j enable us to solve for the hard scattering
functionsH.
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In O(αs) we have to consider both the virtual corrections to this basic vertex diagram and the
gluon bremsstrahlung reactionq + q̄→ γ∗ + g. In addition there are new channelsq + g→ q + γ∗

andq̄ + g→ q̄ + γ∗. The latter reactions are very interesting from the experimental point of view,
because they make the cross section sensitive to the gluon density in the hadron.

The calculation of one-loop corrections proceeds much as for DIS. The cut graphs are shown
in Fig. 35. We recognize that they are the crossed versions of the diagrams for deeply inelastic
scattering.

Figure 35: Cut diagrams forO(αS) corrections to the Drell-Yan cross section.

If we regularize the ultraviolet and infrared divergences by working inn dimensions, then all
pole terms cancel, apart from the collinear poles due to gluon radiation parallel to the directions of
the incoming quark and antiquark. As in the DIS cross section, SectionD., this is the cancellation
of final state interactions, which is necessary for the factorization theorem Eq. (7.1) to hold. The
remaining collinear divergences can be absorbed into the perturbative parton distributions, leaving
behind the hard-scattering function. To make this explicit, we expand (7.1) with external partonsa
andb, to orderαs, usingφ(0)

i/ j(x) = δi jδ(1− x) (Eq. (4.14)). We find
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dσ
dQ2

(0)

ab
(τ,Q2, ε) +

αs

π

dσ
dQ2

(1)

ab
(τ,Q2, ε) =

H(0)
ab (τ,Q2, ε) +

αs

π
H(1)

ab (τ,Q2, ε)

−αs

π

∑
c

∫ 1

xA

dηAφ
(1)
c/a(ηA, ε)H

(0)
ab (τ,Q2, ε)

−αs

π

∑
d

∫ 1

xB

dηBφ
(1)
d/b(ηB, ε)H

(0)
ad (τ,Q2, ε) . (7.3)

Thus, to extract the one-loop hard scattering, we need the (regulated) one-loop cross section and
the (regulated) one-loop parton distributions, given in SectionB. for the MS and DIS schemes.
Actually, becauseH(0)

ab is nonzero only for quark-antiquark scattering, with (see Eq. (3.62))

H(0)
qq̄ (z) = Q2

f

4πα2

3Nq2s
δ(1− z) , (7.4)

we only needφ(1)
q/q = φ(1)

q̄/q̄ andφ(1)
q/g = φ(1)

q̄/g at this level. As usual, we denote the number of colors by
N.

The explicit quark-antiquark cross section at one loop is given by(αs

π

) dσ
dQ2

(1)

qq̄
(τ,Q2, ε) = Q2

f

4πα2

3Nq2s

(αs

π

)(4πµ2

Q2

)ε
×
{
−

(1
ε
− γE

)
P(1)

qq + w(1)
qq̄ (x)

}
, (7.5)

where (withζ(2) = π2/6, see Eq. (5.3))

w(1)
qq̄ (x) = δ(1− x)CF

[
2ζ(2)− 4

]
+ CF

[
4D1(x) − 2(1+ x) ln(1− x) − (1 + x2)

1− x
ln x

]
. (7.6)

P(1)
qq is the one-loop evolution kernel (splitting function) given in Eq. (6.7), and we define

Dm(z) =

[
lnm(1− z)

1− z

]
+

. (7.7)

Note that we takeε ≡ 2− n/2. Other conventions, of course, change the formulas somewhat.
The other partonic reactionq + g→ γ + q, which starts atO(αs), gives(αs

π

) dσ
dQ2

(1)

qg
(τ,Q2, ε) = Q2

f

4πα2

3Nq2s

(αs

π

)(4πµ2

Q2

)ε
×
{
− 1

2

(1
ε
− γE

)
P(1)

qg + w(1)
qg(x)

}
, (7.8)
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with

w(1)
qg(x) = CF

[
(1− 2x + 2x2) ln

(1− x)2

x
+

1
2

(3 + 2x− 3x2)
]
, (7.9)

where againP(1)
qg is the one-loop splitting function.

The determination of the one-loop hard scattering functions is now a simple matter. For “MS”
distributions (Eqs. (6.8) and (6.9), for instance), we use

φa/b(x, ε) = δabδ(1− x) − 1
ε

αs

2π
P(1)

a/b(x) + O(α2
s) , (7.10)

in which the residues of the pole terms are the splitting functions. Substituting Eq. (7.10) into the
general expanded formula Eq. (7.3), and comparing the results with Eqs. (7.5) and (7.8), we find
simply,

HMS(1)
qq̄ = w(1)

qq̄ , (7.11)

HMS(1)
qg = w(1)

qg . (7.12)

For the DIS scheme, the parton distributions, Eqs. (6.11) and (6.12), are a bit more complicated,
because they have picked up various infrared safe corrections from the one-loop deeply inelastic
scattering cross section. The principles are the same, however, and we find in this scheme (Altarelli,
Ellis, and Martinelli, 1978; Altarelli, Ellis, and Martinelli, 1979; Kubar-Andŕe and Paige, 1979;
Harada, Kaneko, and Sakai, 1979; Abad and Humpert, 1979; Humpert and van Neerven 1981),

HDIS(1)
qq̄ = CF

{
(1 + z2)D1(z) + 3D0 +

(4π2

3
+ 1

)
δ(1− z) − 6− 4z

}
,

HDIS(1)
qg =

1
4

{(
z2 + (1− z)2

)
ln(z− z) +

9
2

z2 − 5z+
3
2

}
. (7.13)

Both Eqs. (7.12) and (7.13) provide absolute predictions for the Drell-Yan cross section, when
combined with parton distributions in Eq. (7.1). It is important, of course, to use distributions
that have been determined in the corresponding scheme, usually from deeply inelastic scattering
(see SectionIII. ). As a practical matter, the hard scattering corrections at one loop turn out to
be substantial; sometimes as large as the zeroth order (parton model) cross section. This is the
theoretical side of the “K-factor” problem for Drell-Yan (see below). In SectionC. we shall see
that the experimental situation is consistent with large perturbative corrections relative to the parton
model. Considerable progress has been made in understanding the origin of large corrections for
values ofτ = Q2/s not too small (Sterman, 1987; Appell, Mackenzie, and Sterman, 1988; Catani
and Trentadue, 1991; Contopanagos and Sterman, 1993), (Parisi, 1980; Curci and Greco, 1980;
Magnea and Sterman, 1990), but it is fair to say that the problem is not yet solved .
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B. Drell-Yan at Two Loops

Along with DIS, the inclusive Drell-Yan cross section has been fully analyzed at two loops
in a series of papers by van Neerven and his collaborators, in both the DIS scheme and theMS
scheme (Zijlstra and van Neerven, 1991; Zijlstra and van Neerven, 1992; van Neerven and Zijlstra,
1991; van Neerven and Zijlstra, 1992; Matsuura, van der Marck, and van Neerven, 1989; Matsuura,
Hamberg, and van Neerven, 1990; Hamberg, van Neerven, and Matsuura, 1991; Matsuura, 1989;
Hamberg, 1991). The full results for the hard-scattering functions at two loops are quite lengthy;
but it is perhaps useful to exhibit here the full plus and delta-function distributions, as they occur
in the quark-antiquark two-loop hard scattering function:

H(2),S+V
qq̄ (z) =

(
αs

4π

)2

δ(1− z)

×
{

CACF

[ [ 193
3 − 24ζ(3)

]
ln

(
Q2

M2

)
− 11 ln2

(
Q2

M2

)
−12

5 ζ(2)2 +
592
9 ζ(2) + 28ζ(3)− 1535

12

]
+ CF

2
[ [

18− 32ζ(2)
]
ln2

(
Q2

M2

)
+

[
24ζ(2) + 176ζ(3)− 93

]
ln

(
Q2

M2

)
+

8
5ζ(2)2 − 70ζ(2)− 60ζ(3) +

511
4

]
+nfCF

[
2 ln2

(
Q2

M2

)
− 34

3 ln

(
Q2

M2

)
+ 8ζ(3)− 112

9 ζ(2) +
127
6

]}
+CACF

[
− 44

3 D0(z) ln2

(
Q2

M2

)
+

[
(536

9 − 16ζ(2))D0(z)

−176
3 D1(z)

]
ln

(
Q2

M2

)
− 176

3 D2(z) +
[ 1072

9 − 32ζ(2)
]
D1(z) +

[
56ζ(3)

+
176
3 ζ(2)− 1616

27

]
D0(z)

]
+ CF

2
[ [

64D1(z) + 48D0(z)
]
ln2

(
Q2

M2

)
+

[
192D2(z) + 96D1(z) − (128+ 64ζ(2))D0(z)

]
ln

(
Q2

M2

)
+128D3(z) − (128ζ(2) + 256)D1(z) + 256ζ(3)D0(z)

]
+nfCF

[
8
3D0(z) ln2

(
Q2

M2

)
+

[ 32
3 D1(z) − 80

9 D0(z)
]
ln

(
Q2

M2

)
+

32
3 D2(z) − 160

9 D1(z) + (224
27 −

32
3 ζ(2))D0(z)

]
. (7.14)

To these results are added various smooth functions of the variablez. We may note that it is only
in quark-antiquark scattering that distributions occur that are singular atz = 1. Note that there are
plus distributions up toD3(z).
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C. Drell-Yan Cross Sections: Experimental Review

The production of dileptons in high energy collisions has been a staple of all hadron machines
in the world for more than two decades. Lepton pairs in hadronic collisions were first observed
at Brookhaven by Lederman and his group (seeChristensonet al., 1973andLederman and Pope,
1971). See Fig.36 for the invariant mass spectrum of this original experiment. This early ex-
periment was conceived as a scheme for searching for the carrier of the charged weak process, the
intermediate vector boson (IVB). This technique has contributed greatly to the high energy physics
landscape, including: the discovery of two new quarks (more below), as a source of information on
parton distributions of the nucleon, as the essentially sole arbiter of parton distributions of mesons,
and as a benchmark for a host of naive parton model predictions as well as sophisticated QCD
calculations.

Figure 36: Dimuon spectra from early BNL experiment (Lederman and Pope, 1971).
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1. Massive Photon Production

The parton-model picture of the Drell Yan reaction has been described above in SectionD..
In the collision of, say, two protons, a quark from one proton seeks out and annihilates with an
antiquark from the other proton to form a single, off-shell photon which subsequently converts into
the observable lepton pairs. The term “Drell-Yan” has been extended to include the production of
any spin-1 virtual particle produced by electroweak interactions.

a. General experimental techniques The choice of experimental technique depends on the
physics and the beam configuration. Because of the low cross section, and of the desirability for
high rate studies of a continuum cross section, fixed target experiments at the highest available en-
ergies or colliding beam experiments utilizing the highest possible luminosities are advantageous.
At Brookhaven, the original fixed target experiment with incident nucleon and pion beams was
utilized to produce dimuon pairs. At Fermilab, Brookhaven, and CERN, such experiments were
carried out for many years, only recently culminating with E605 at Fermilab. It was with electron
pairs, however, that the Brookhaven experiment discovered theJ/ψ in a follow-up to the original
dimuon approach. Electrons were used with this double-arm spectrometer because of better mass
resolution (a few percent). For a review of this experiment, seeTing 1977.

Simultaneous with the early fixed target experiments, the CERN ISR mounted experiments
using the collision of two proton beams in the center of mass. Presently, the tradition of high
energy colliding hadron beams is active with the final analysis of the CERN SPS facility and with
the ongoing Fermilab Tevatron program, both proton-antiproton colliding beam machines. This
tradition should be continued into the anticipated proton colliding beam facilities such as the LHC.

Because of the high intensities necessary, most fixed target experiments have concentrated on
muon final states. The production of background leptons from decays and of the “punchthrough”
of interaction and beam-related particles can be suppressed through the utilization of heavy hadron
absorbers directly downstream from the target. Muons traverse such dumps with ease and may
be momentum analyzed in a magnetic spectrometer, while electrons would be totally invisible.
The negative feature of such an approach is that the momentum resolution for muons is degraded
through multiple scattering (by about 15%). Large air-core, rather than iron, magnets have been
used to suppress this degradation. Colliding beam experiments are much cleaner in this regard
and have concentrated on the better resolution obtainable with electromagnetic calorimetry. Con-
sequently, early IVB production experiments, and the early ISR experiments were able to concen-
trate on electron final states, and key universality tests were performed in the early days. At the
highest energies, and in the forward direction, where backgrounds from decays are severe, electron
measurements are still superior, as generally iron toroids are utilized for muon analysis in these
regions. In either approach, mass resolution is important in order to distinguish the continuum
from the resonant dilepton states or, as is the case with the IVB experiments, to precisely measure
the mass of the decaying particle.

Among the notable achievements utilizing this technique of looking at dilepton final states are
the discovery of new quark species, determination of parton distributions, and the measurement of
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the normalization of the cross section.

b. New quarks Production of dileptons have served well as the indicator for theqq̄ resonant
states - the ‘onia’ of charm and beauty, in particular. Most recently, the technique was extended
to the highest energies and resulted in the discovery of the bottom quark resonant state,Υ. Of
course, the original discovery, at both SPEAR and Brookhaven, of theJ/ψ was nearly scooped by
the original Drell-Yan Brookhaven experiment which missed the interpretation of a shoulder in the
invariant mass spectrum (Fig.36). This story is one of the famous tales of high energy physics.

c. Nucleon distributions The earliest utility of continuum dilepton production was as an im-
portant test of the parton model and, with the acceptance of the parton model, determination of the
momentum distributions of the partons participating in the collision, especially the quark “sea”.

With incident proton beams, the parton distributions of the proton can be extracted in a man-
ner not dissimilar from the procedure in deeply inelastic scattering. Through the comparison of
incident proton and antiproton beams, NA3 at CERN was able to extract both the valence and sea
quark momentum content.

By parameterizing a scaling set of valence and sea distributions by shape parameters,

u(x) = Axα(1− x)βv

d(x) = 0.57u(x)

S(x) = C(1− x)βs

NA3 found (seeGrosso-Pilcher and Shochet, 1986) the results in tableVII. .1. For comparison, the
CDHS results from neutrino scattering are also shown as are the results of E288 from Fermilab,
which made DIS-inspired parameterizations of the valence distributions.

CDHS NA3 E288
α 0.51±0.07 0.60±0.08
βv 2.38±0.09 3.59±0.14
βs 8.0±0.7 9.03±0.30 7.62±0.08

TableVII. .1. Representative shape parameters for parton distributions (Rutherfoord, 1979).

d. Pion distributions With incident pion beams and assumptions about the nucleon parton
distributions, NA3 also fit for the parton distributions of quarks inside a pion. Again, they param-
eterized the distributions with a form

V(x) = AVxα(1− x)β

S(x) = AS(1− x)βs .

They foundα =0.41±0.04 andβ=0.95±0.05. More up-to-date fits to parton distributions also
employ Drell-Yan data (see SectionIX.).
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e. Scaling The parton model suggests that the cross section for lepton pairs of invariant massQ
should scale as a function of the variable,

√
τ = Q/

√
s. Figure37, reproduced fromGrosso-Pilcher

and Shochet, 1986, shows a variety of data, over a moderate range of
√

s. The scaling behavior
is reasonably demonstrated. The cross section below the Z mass at

√
s = 630 GeV is determined

to beσ = 405±51±84 pb by UA2 (Alitti et al., 1992a). This is in rough agreement withO(α2
S)

calculations. CDF has also measured the integral cross section for electron pairs below theZ mass
(seeAbeet al., 1991a).

Figure 37: Scaling behavior of pion-nucleon Drell-Yan cross section. The figure is fromGrosso-
Pilcher and Shochet, 1986.

f. The K-factor The fact that the normalization of the cross section in the parton model is off

by substantial factors is consistent with theoretical results (see SectionA.). TableVII. .2 shows a
variety of experiments and their measured “K-factor” — the correction required of the naive theory
to match the data.
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Group Beam/target cm Energy K
E288 p/Pt 27.4 1.7
E439 p/W 27.4 1.6±0.3
CHFMNP p/p 44,63 1.6±0.2
AABCSY p/p 44,63 1.7
NA3 p/Pt 27.4 3.1±0.5±0.3
E537 p̄/W 15.3 2.45±0.12±0.20
NA3 (p-p̄)/Pt 16.8 2.3±0.4
NA3 π/Pt 16.8 2.49±0.37

22.9 2.22±0.33
E326 π/W 20.6 2.70±0.08±0.40
NA10 π/W 19.1 2.8±0.1
Goliath π/Be 16.8,18.1 2.5
Omega π/W 8.7 2.6±0.5

TableVII. .2. K Factors for dilepton experiments (Grosso-Pilcher and Shochet, 1986).

As can be seen, the discrepancy is typically large, a factor of 2 or more. As we have seen above,
however, even the lowest-order correction is quite large, at least in the DIS scheme, whereK ∼
1 + 2παs/3 ∼ 1.6 for αs ∼ 0.3, appropriate for pair masses of a few GeV. Clearly, concerns
about the usefulness of the perturbation series were understandable, until it was discovered that,
for the dominant vertex corrections, the series exponentiates for all orders. The series is then
expressible asK → e2παs/3 = 1.8 (Altarelli, Ellis, and Martinelli, 1979; Parisi, 1980). That the
major part of the discrepancy is explained in this fashion is comforting, but the problem is not
fully solved. Nevertheless, considerable theoretical progress has been made recently to organize
the full set of relevant corrections (Sterman, 1987; Appell, Mackenzie, and Sterman, 1988; Catani
and Trentadue, 1991; Contopanagos and Sterman, 1993). Other sources of the discrepancy have
also been proposed. The contributions of very lowx regions, below the accessible data used for the
parameterizations, could be important since much of the cross section could still be “hidden” in that
region. Also, corrections for Fermi motion in the heavy targets and the pion parton distribution
shapes can be invoked. Most important, probably, is the uncertainty in the normalization of the
data, which could be in the tens of percent.

2. W and Z Production

While one of the original motivations for using dilepton final states was a search for the in-
termediate vector boson (IVB) of the conventional weak interaction, it was many years before its
discovery was realized. Now, the production of both W and Z bosons forms an important part of
the experimental program of all of the highest-energy colliders. The language used is that of the
original Drell-Yan prescription, with only electroweak modifications.

The importance of W and Z production is many-faceted. Primarily, the precise determination
the W mass is of utmost importance in the program of global electroweak parameter determination.
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The production of IVB plus hadronic jets serves as an important laboratory for QCD measure-
ments. The analysis of the V-A asymmetry in W decays is a sensitive measure of parton density
functions. Finally, the observation of W’s is among the clues for the uncovering of the top quark
(Abeet al., 1994).

a. General experimental techniques The three major detectors which have or will have im-
pact on the physics issues listed above are UA2 at CERN, CDF and D0 at Fermilab. The UA2
and D0 detectors feature precision calorimetry and no magnetic field measurement capability, save
for muons. CDF, on the other hand, has a central superconducting solenoidal field which aids in
electron identification (by comparing the calorimeter and momentum determination for the same
presumed electrons) and allows for muon momentum analysis without iron, except as a filter.

In most cases, precision mass determination experiments are done in the electron channel.
Only CDF, with its solenoidal field momentum determination for muons, is able to perform a
precise mass measurement, using muons uncompromised by multiple scattering errors inherent in
iron toroids. For UA2 and D0, only precision electromagnetic calorimetry is available.

UA2 has completed its runs, while CDF and D0 are in the course of a long period of experi-
mentation at the Tevatron. The total data accumulated by UA2 was 13pb−1 and by CDF up to the
fall of 1992, about 5pb−1. While it played the leading part in the initial IVB discovery, UA1 did
not have a significant role in the precision mass measurements.

Recent determinations from these experiments include (Abe et al., 1990b; Abe et al., 1991b;
Alitti et al., 1990; Alitti et al., 1992b; Zhu, 1993):

CDF mW(e) = 79.91± 0.35± 0.24± 0.19GeV
mW(µ) = 79.90± 0.53± 0.32± 0.08GeV

UA2 mW(e) = 80.35± 0.33± 0.17± 0.81GeV
D0 mW(µ) = 79.86± 0.16± 0.20± 0.31GeV

Here, the first error is statistical, the second is systematic, and the third is the energy scale uncer-
tainty. For UA2, the quantity measured is the ratio of the W mass to that of the Z mass, thereby
canceling the scale uncertainly. They findm(W)/m(Z) = 0.8813± 0.00336± 0.0019. They extract
m(W) by scaling with the LEP value ofm(Z) = 91.175±0.021 GeV. The systematic errors for both
experiments are reallystatisticallylimited by the paucity of Z events.

b. Running of αs The UA2 collaboration has expended considerable effort in a determination
of the strong coupling,αs. They determine, in a comparison ofW + 1 jet toW + 2 jet events,αs =

0.123±0.018±0.017 (Ansariet al., 1988; Alitti et al., 1991b). Here, the first error is statistical, the
second is experimental systematic (including parton distributions). This result is very dependent
on Monte Carlo simulation and an independent determination of the parton densities required by
the Monte Carlo. The relatively small value ofαs observed at these high momentum scales is
evidence that the coupling is indeed asymptotically free (Section2.).
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D. Direct Photons: Theory

In this section an overview of some of the relevant theoretical issues for direct photon produc-
tion will be presented. A more detailed review can be found inOwens, 1987. As noted previously
(SectionE.), a calculation of direct photon production starts with the twoO(ααs) subprocesses
gq→ γq (Compton) andqq→ γg (annihilation). For large values ofxT , these two subprocesses
provide the dominant contribution to direct photon production. The interplay between the two
contributions can be studied by comparing cross sections obtained with particle and antiparticle
beams. For example, the Compton subprocess dominates inpp collisions for largexT , since the
antiquark distributions are small in this region. However, the annihilation term can be significant
in pp collisions, since theu andd distributions in the antiproton are the same as theu andd distri-
butions in the proton. Both of these subprocesses result in final states which consist of a high-pT

photon balanced approximately by a recoiling jet on the opposite side of the event. There will be
very little hadronic activity in the immediate region of the photon.

For typical fixed target experimentsxT is in the range of 0.2 to 0.6 and the above two subpro-
cesses provide the dominant mechanism for direct photon production. However, in colliding beam
experiments it is possible to get to smaller values ofxT . For example, at

√
s = 1800 GeV, pT =

18 GeV corresponds toxT = 0.02.Here one can encounter sizable contributions from bremsstrahlung
processes. In this class of processes, a quark- or gluon-initiated jet in the final state radiates a pho-
ton in the process of hadronization. This gives rise to events with substantial hadronic activity in
the general region of the produced photon. In the framework under discussion here, one can take
this contribution into account by using photon fragmentation functions. These give the probability
density for a quark or gluon to produce a photon which takes a fractionz of the parent parton’s
momentum. The simplest form for these functions follows from a simple QED calculation which
yields

zDγ/q(z,Q
2) = e2

q

α

2π
[1 + (1− z)2] ln(Q2/Λ2) , (7.15)

and
zDγ/g(z,Q

2) = 0. (7.16)

HereQ represents a scale which is characteristic of the transverse momentum of the photon with
respect to the parent quark, which will typically be on the order ofpT . The quantityΛ serves as an
infrared cutoff – in typical leading-logarithm calculations it is usually set equal to the value cho-
sen for the QCD scale parameterΛQCD which appears inαs and in the scale-violating distribution
functions. It is possible to calculate QCD corrections to the fragmentation functions in Eqs. (7.15)
and (7.16) that result from gluon radiation by quarks and gluons and from the production ofqq
pairs from gluons. These may be found by using modified forms of the evolution equations for the
scale dependence of the parton distribution functions. A more detailed discussion of this proce-
dure, together with parameterizations of the resulting functions, can be found inOwens, 1987. In
addition to these calculable parts, there is also the possibility of nonperturbative contributions to
the photon fragmentation functions. Generally, this type of term is thought to give rise to relatively
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soft photons, since their production would occur late in the parton shower and would represent a
long distance effect. Vector meson dominance is often used to model this component.

The bremsstrahlung contribution can be calculated using the general factorized cross section
Eq. (3.76) with all possible two-body quark-quark, quark-gluon, and gluon-gluon subprocesses
convoluted with appropriate distribution and fragmentation functions. Notice that the fragmenta-
tion function in Eq. (7.15) increases logarithmically with the scaleQ. This feature remains true
for the QCD-corrected functions, as well. Thus, the fragmentation functions are formally of order
α/αs. When convoluted with subprocess cross sections which are of orderα2

s (such asqq→ qq,
etc.,) one obtains a result which is of orderααs.

The bremsstrahlung contribution falls off more rapidly inxT than do the other lowest order
contributions. Part of this is due to the extra convolution inz and part is due to what is called
the trigger bias effect. The distribution functions tend to fall off faster with increasing momentum
fraction than do the fragmentation functions. Thus, the most efficient way of getting a high-pT

photon is to shift towards lowerx in the distribution functions and higherz in the fragmentation
function. This tends to force the photon to havez near one, where the fragmentation function is
smaller relative to its value in the low-zregion. Hence, the bremsstrahlung contribution is largest in
the region of smallxT values typically explored at colliders. Often this contribution is suppressed
by the use of isolation cuts, which are required as part of the trigger in order to efficiently identify
photons. The effects of such cuts can be modeled by modifying the fragmentation functions. When
higher-order effects are included in the calculation some care must be used to define the isolation
cuts in a way which can be simulated in the theoretical calculation. These points are discussed, for
example, inBaer, Ohnemus, and Owens, 1990andBerger and Qiu, 1991.

Two calculations ofO(αα2
s) have been presented in the literature and corresponding computer

programs have been widely distributed. InAurenche, Douiri, Baier, Fontannaz, and Schiff, 1984,
the inclusive invariant cross section was calculated and the integrations over the unobserved partons
were done analytically. This results in a relatively fast program, but one which can only calculate a
small number of observables. InBaer, Ohnemus, and Owens, 1990, a Monte-Carlo algorithm was
used for the required integrations, resulting in a program which could be used for a greater number
of observables, but at the cost of a larger amount of computer time.

One of the reasons for the high degree of interest in direct photon production is that the gluon
distribution enters it in lowest order. In deeply inelastic scattering the gluon distribution contributes
to the structure functions only in the next-to-leading order and to the slope of theQ2 dependence
in leading order. Accordingly, deeply inelastic data are sensitive to the gluon distribution only in
the region of relatively small values ofx, where the gluon contribution is comparable to that from
the quarks. However, the direct photon data are sensitive to the gluon distribution at larger values
of x and the inclusion of such data into global fits can provide complementary information (Owens
and Tung, 1992). Such fits have been done by a number of groups (Aurenche, Baier, Fontannaz,
Owens, and Werlen, 1989; Harriman, Martin, Roberts, and Stirling, 1990; Bottset al., 1993). The
resulting gluon distributions are thus constrained both at low and high values ofx.

A process closely related to single photon production is the production of photon pairs. It
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forms a background to a possible Higgs boson signal in the intermediate mass range which covers
masses from about 80 to 160 GeV. A next-to-leading order Monte Carlo based program has been
presented inBailey, Ohnemus, and Owens, 1992, and the program has been made available. The
Monte Carlo nature of the program enables one to simulate the effects of various cuts. Thus,
predictions can be compared to current data and one can also study strategies for Higgs searches
and detector optimization. SeeBailey and Owens, 1993for an example and additional details.
Additional discussion and references to earlier work are contained inOwens, 1987andBailey,
Ohnemus, and Owens, 1992.

E. Direct Photon Production: Experiment

Direct photon production provides an excellent arena both for precision tests of QCD and for
measurements of gluon distribution functions. In this section, we concentrate on the backgrounds
to direct photon production and the experimental techniques used to extract the signal. There are
several reviews to which the reader is referred that examine these subjects in more detail (Ferbel
and Molzon, 1984; Owens, 1987; Huston, 1990; Aurenche and Whalley, 1989).

The 4-vector of a photon can, in general, be reconstructed with greater precision than the 4-
vector of a jet. The direct photon is one particle, whose position and energy can be well measured
in an electromagnetic calorimeter, while a jet consists of a number of particles spread out over
a fairly wide area of phase space. Jet energy is deposited in both electromagnetic and hadronic
calorimeters. In addition, there is an ambiguity at some level as to which particles belong to the jet
and which particles belong to the underlying event.

On the other hand, the rate for direct photon production is greatly reduced from that for jet
production, because to lowest order direct photon production is proportional toααs while jet pro-
duction is proportional toα2

s. As a result, theγ/jet ratio is typically on the order of a few times
10−4.

Direct photon measurements suffer from potentially large backgrounds, primarily from those
rare jets in which a large fraction of the momentum of the jet is carried by a singleπ0, and one of
the two photons of theπ0 decay is not detected. Since theγ/jet ratio is on the order of 10−4, and the
jet rate is suppressed by a factor of several hundred if the requirement is made that aπ0 take 80%
or more of the jet’s momentum, theγ/π0 ratio is typically on the order of a few percent or a few
tens of percent. The value of this ratio depends on the kinematic region and, as will be seen later,
it also depends crucially on the imposition of an isolation cut. Theγ/π0 ratio is the most critical
number in a direct photon measurement. If this ratio is too small, then a measurement will not
be possible, or at least will be very difficult. (Backgrounds can come from other sources such as
η → γγ, ω → π0γ, etc. decays, but the bulk (typically>80%) of the background originates from
π0’s.)

There are a number of measurement strategies that are possible, each designed to minimize the
backgrounds from these meson decays.
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c. Reconstruction This technique involves simply measuring the positions and energies of the
two photons and requiring the resultant mass to be consistent with that of theπ0 or η within experi-
mental resolution. In practice, this technique is applicable mainly for fixed target experiments, due
to the requirements of a large separation from the interaction point to the calorimeter and/or fine
lateral sampling. Losses are inevitable, even if the reconstruction technique is possible. Consider
the energy asymmetry distribution for the two photons from aπ0 from Fermilab experiment E706
shown in Fig.38(Alversonet al., 1992). For perfect detection, this distribution would be flat from
0 to 1. (A = β | cosθ∗ | whereθ∗ is the decay angle in theπ0 rest frame; since theπ0 has spin
0, the decay distribution should be flat in cosθ∗.) Experimental measurements show a “rolloff” of
this distribution at high asymmetry, either because the soft photon is outside the acceptance of the
calorimeter or because its energy is too soft to be measured. There can also be a similar “rolloff” at
low asymmetry due to the coalescence of the two photons in the calorimeter, which is not present
in this plot. These losses ofπ0’s andη’s can cause a significant background to direct photons; how-
ever, this background can be reliably calculated, given the experimental knowledge of theπ0(η)
cross sections and asymmetry distributions. In Fig.39 is shown theγ/π0 ratio measured in Exper-
iment E706 at Fermilab, along with the calculated background. The background-subtractedγ/π0

ratio is seen to be in excellent agreement with the leading log QCD prediction. Note the rise in the
γ/π0 ratio as transverse momentum increases. This is due to the running ofαs and the effect of the
π0 fragmentation function.

Figure 38: Two-photon energy asymmetry distribution inπ0 decay (Alversonet al., 1992).

d. Conversion The percentage of electromagnetic showers (due to direct photon candidates)
that convert in the material between the interaction point and the calorimeter (typically 1-2 radi-
ation lengths) can be measured. Showers originating fromπ0 or η decays will have a conversion
fraction larger than that of showers from direct photons. A calculation of the amount of material
traversed by the photons and the observed conversion percentage allows an extraction of the direct
photon fraction in the data sample. This technique works best if the direct photon fraction of the
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Figure 39:γ/π0 ratio in experiment E706 (Alversonet al., 1993).

sample is at least of the same order as theπ0 background. Fig.40 shows the measured conversion
probability, in a preshower detector, for isolated direct photon candidates in UA2 (Alitti et al.,
1992c). Also shown are the expected conversion rates if the data sample consisted solely ofπ0’s
or solely of direct photons. Note that the data are closer to the photon expectation than to theπ0

expectation, indicating that theγ/π0 ratio is larger than 1.

e. Profiles Even if the two photons cannot be resolved, a measurement of the lateral and/or
longitudinal profile of the electromagnetic shower may allow a discrimination between direct pho-
tons andπ0’s. Showers originating fromπ0’s appear broader due to the opening angle of the two
photons. This technique loses effectiveness as theπ0 energy increases, since the opening angle
decreases as 1/E0

π. The longitudinal development of direct photon andπ0 showers will also differ
as the average energy of aπ0 photon is half that of the direct photon. Since the longitudinal de-
velopment of an electromagnetic shower varies only logarithmically with the photon energy, the
differences may be subtle. As for conversion, this technique works best if theγ/π0 ratio is fairly
large.

f. Isolation This technique requires that the photon candidate be “unaccompanied” inside a
cone of a certain radiusR(R =

√
(∆η2 + ∆φ2)); typically R = 0.5 − 1.0) centered on the photon

direction, withη the pseudorapidity andφ the azimuthal angle. Unaccompanied means that the
amount of additional energy inside the cone is less than a certain fraction of the photon’s energy
or less than some fixed scale. The application of isolation discriminates strongly againstπ0 events,
since aπ0 is usually accompanied by additional particles from the fragmentation of the jet. Direct
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Figure 40: Measured preshower conversion probability (Alitti et al., 1992c).

photons from the leading order processes are unaffected, since the photon is isolated. Photons
originating from bremsstrahlung processes are also strongly discriminated against, again because
of the presence of a nearby jet. The effect of an isolation cut on the direct photon signal can be
calculated in a nonleading order calculation, of the type described in Section36 above. Isolation
cuts are used for all collider direct photon measurements. Application of an isolation cut at the
colliders can increase theγ/π0 ratio from the order of a few percent to on the order of 1 or greater.
A leading log prediction for theγ/π0 ratio for the UA2 kinematic region is shown in Fig.41(Bailey
and Owens, 1993). Note that the inclusiveγ/π0 ratio is very small (a few percent at low transverse
momentum) but the imposition of an isolation cut dramatically increases this ratio.

g. Experiments Data have been taken by many experiments using all of the techniques dis-
cussed above (Ferbel and Molzon, 1984). Good agreement is found with the predictions of pertur-
bative QCD, with the possible exception of the lowxt(= pt/

√
s) data of CDF and UA2. Some of

this direct photon data has been utilized in parton distribution fits (Aurencheet al., 1989; Harriman,
Martin, Roberts, and Stirling, 1990; Sutton, Martin, Roberts, and Stirling, 1992; Tung, 1993; Botts
et al., 1993) to measure, or at least constrain, the gluon distribution function in both protons and
pions. The fixed target data are sensitive to gluon momenta fractions between 0.2 and 0.6, while
the collider inclusive photon data probe the region from approximately 0.01-0.25.

More information about the direct photon event is possible if the jet opposite to the direct
photon is also measured. The cosθ∗ distribution forγ+ jet events from CDF is shown in Fig.42
The angular distribution is flatter than the distribution for two jet production, due to the absence of
t-channel gluon exchange diagrams at leading order. Measurement of both the photon and the jet
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Figure 41: Leading-log predictions forγ/π0 ratios with various isolation cuts (figure by J. Huston
from program of J. Owens).

completely determines the kinematics of the events, in particular the momentum fractions of the
incoming partons. This should be useful for parton distribution fits, especially for determining the
gluon distribution at very smallx ∼ (10−3 − 10−4) at CDF and D0.
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Figure 42: Angular distribution forγ+jet events at the CDF (Collider Detector Facility). LO=
leading order, NLO= next-to-leading order. From Abeet al. (CDF Collaboration) (1993b).
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VIII. QCD-induced Hard Hadron-Hadron Cross Sections

A. Jet Production in Hadron Collisions

In this section, we combine ideas developed in previous sections. First, in SectionA., we
learned that the cross section to make muon pairs in hadron collisions is determined by both short-
distance physics and long-distance physics, but that the long-distance effects can be isolated in
factors that tell the probabilities to find partons in each of the two incoming hadrons. The remaining
factor, H in Eq. (7.1), contains only short distance physics. One can interpretH as the cross
section for the incoming partons to make a muon pair plus anything else. The “anything else”
here is important: we sum over all final states of the hadronic system. Second, in SectionA., we
saw that in electron-positron annihilation it is possible to define cross sections in which certain
characteristics of the hadronic final state are specified without thereby introducing new sensitivity
to long-distance physics. In particular, we could define infrared finite jet cross sections.

Combining these ideas, we expect that one can specify jet cross sections in hadron collisions
such that the theoretical formula for the cross section is factored into parton distribution functions
that contain long distance physics associated with the initial states and a hard scattering cross sec-
tion that contains only short-distance physics. The general form of such a cross section, analogous
to Eq. (4.7) for electron-positron annihilation, can be written in the style ofKunszt and Soper, 1992
as

I =

∞∑
n=2

∫
dξA

∫
dξB

∑
a,b

fa/A(ξA, µ) fb/B(ξB, µ) (8.1)

×
∫

dη1 dp1 · · ·
∫

dηn dpn
dσ̂[n]

dη1 dp1 · · · dηn dpn
Sn(p

µ
1, . . . , p

µ
n).

(8.2)

HereξA, ξB are the momentum fractions of the incoming partons andηi is the rapidity of outgoing
partoni, while pi is its transverse momentum. The parton cross sections d ˆσ[n]/dη1 dp1 · · · dηn dpn

contain delta functions for overall four-momentum conservation. The effect of these delta func-
tions is that the total transverse momentum of the outgoing partons vanishes, whileξA andξB are
determined by conservation of longitudinal momentum and energy. The “hat” on d ˆσ[n] indicates
that infrared sensitivity arising from the initial state is factored into the parton distributions, as in
the Drell-Yan cross section, Eq. (7.1).

The functionsSn specify the measurement to be made on the hadronic final state. In order that
this measurement not introduce any sensitivity to long-distance physics (in addition to the initial-
state infrared sensitivity contained in the parton distribution functions), the measurement functions
should be “infrared-safe.” That is, they should satisfy equations analogous to (4.10),

Sn+1(p
µ
1, . . . , (1− λ)pµn, λpµn) = Sn(p

µ
1, . . . , p

µ
n) , (8.3)

and
Sn+1(p

µ
1, . . . , p

µ
n, λpµA) = Sn+1(p

µ
1, . . . , p

µ
n, λpµB) = Sn(p

µ
1, . . . , p

µ
n) , (8.4)
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for 0 ≤ λ < 1. The first equation says that two collinear partons can be replaced by a single parton
and that a zero-momentum parton can simply be eliminated without affecting the measurement.
The second equation says that partons that are collinear with one of the beam momenta do not
affect the measurement.

1. Cone definition

Measurements of jet cross sections in hadron collisions in recent years have concentrated on
a cone definition of jets (following the spirit of the original jet paper (Sterman and Weinberg,
1977) and of the early calculations of jet cross sections for hadron physics (Ellis, Furman, Haber,
and Hinchliffe, 1980; Furman, 1982)). The main features of the algorithm are specified in an
agreement reached at the 1990 Snowmass Workshop (Huth et al., 1990). The idea was that this
definition could provide a standard jet cross section for the purpose of comparing results between
different experiments – without restricting the development of improved definitions in the future.

In the definition, one wants to maintain the invariance appropriate for hadron colliders under
azimuthal rotations and longitudinal Lorentz boosts. Thus one describes the particlesi using the
absolute valuespT,i of their transverse momenta, their azimuthal anglesφi, and their rapiditiesηi.
(We treat all particles as being massless, so that the rapidities and the pseudo-rapidities are not
distinguished).

The main feature of the cone definition is that a jet consists of particles whose momentum
vectors lie in anη, φ-cone. The cone consists of the interior of a circle of radiusR in the (η, φ)
plane, centered on a cone axis (ηC, φC). Thus particlei is in the jet if

(ηi − ηC)2 + (φi − φC)2 < R2. (8.5)

A standard value for the cone radius isR = 0.7. Next, one defines the total transverse energyET

of the jet and a jet axis (ηJ, φJ) according to

ET =
∑

i∈cone

pT,i ,

ηJ =
1

ET

∑
i∈cone

pT,i ηi ,

φJ =
1

ET

∑
i∈cone

pT,i φi . (8.6)

Finally, the jet axis must coincide with the cone axis. If it does not on a first attempt, one simply
iterates until stability is achieved.

This definition is quite simple and natural. However it can happen that two jet cones produced
by the definition overlap. Thus a further specification (which is not contained in the Snowmass
agreement) is needed. Typically, one merges jets with a very large overlap and splits particles
between jets that have a smaller overlap. The reader is referred to the experimental papers for the
details.
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2. Calculations

As with electron-positron collisions, one can characterize an infrared safe cross section as “N-
jet like” if the functionsSn are zero forn < N and non-zero forn ≥ N. Cross sections that are
2-jet like in this sense can currently be calculated at the one loop level using a computer program
described inEllis, Kunszt, and Soper, 1989; Ellis, Kunszt, and Soper, 1990; Ellis, Kunszt, and
Soper, 1992andKunszt and Soper, 1992. The program takes account of the cancellations of soft
and collinear singularities between graphs with three parton final states and graphs with two parton
final states but a virtual loop. The virtual loop graphs are taken from the calculation ofEllis and
Sexton, 1986. An independent program that can calculate some 2-jet like cross sections at one loop
order is described inAversa, Greco, Chiappetta, and Guillet, 1990andAversa, Greco, Chiappetta,
and Guillet, 1991.

The extension of the above ideas to includeW or Z plusn jets was initiated byBerends, Giele,
and Kuijf, 1989. (See alsoBerends, Kuijf, Tausk, and Giele, 1991.) At present the tree amplitudes
for the reactionp+ p̄→W,Z + n jets, wheren ≤ 4 are available in the program VECBOS. However
the jets are massless partons, which are not allowed to be soft or collinear. Using sophisticated
techniques from string theory (Bern and Kosower, 1991; Bern and Kosower, 1992) the one-loop
corrections toW or Z plus one jet production have recently been calculated (Giele, Glover, and
Kosower, 1992). This program is especially important for top-quark analysis (Abe et al., 1994),
sincemt > MW implies that the top quark can decay into a W plus lighter mass quarks. The
background for detecting thet-quark therefore involves knowledge of the reactionp+ p̄→W,Z+n
jets. Without a one-loop calculation, the scales in these cross sections are not well determined.

3. Rapidity gaps in jet cross sections

It is important to emphasize that the jet cross sections described above do not give very much
information on what is often referred to as the “underlying event”, including relatively soft particles
emitted between the jets in rapidity, but not naturally associated with either jet in a cone definition.
An important example of this sort is the cross section for events that involve little or no radiation
between the two jets in a rapidity plot. The cross section for such “rapidity-gap” events would not
satisfy Eq. (8.3), because events with one or more soft particles in the central region would not be
counted (i.e.,Sn+1(. . . , pn,0) , Sn(. . . , pn)). The usual factorization theorem therefore does not
apply to such cross sections (Collins, Frankfurt, and Strikman, 1993), and the formalism we have
developed so far requires new input or analysis to supply a prediction for them.

At the same time, it has been known for some time that rapidity-gap events are reasonably com-
mon at small and moderate momentum transfers, best described as “diffractive scattering” (Bonino
et al., 1988; Brandtet al., 1992) at very high energy. In fact, some very general considerations
(Dokshitzer, Khoze, and Troyan, 1987; Bjorken, 1992) allow us to suggest that such events have
an observable cross section even at quite large momentum transfer, and might afford important
insight into QCD dynamics.

Both perturbative analysis and experiment agree that rapidity-gap events cannot cannot domi-
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nate the cross section, because of soft “bremsstrahlung” radiation associated with the scattering of
charged particles in both QED and QCD. In QCD, the tendency to radiate is even greater than in
QED, because the mere exchange ofcolor between two quarks, even without the exchange of mo-
mentum (i.e., soft gluon exchange), produces bremsstrahlung. Such a phenomenon is completely
lacking in QED, where the photon has no charge.

Now in QCD beyond the lowest order, we can exchange not only single gluons, which carry
color, but also color-singlet combinations of gluons. Therefore, at any momentum transfer, we
might expect to see two components to the scattering, one associated with non-zero color exchange
(“non-singlet”), and one with no exchange of color (“singlet”). In fact, explicit calculations show
that whent/s→ 0, the former involves much more soft gluon radiation than the latter (Sotiropou-
los and Sterman, 1994), an effect related to the “reggeization” of single-gluon exchange in QCD
(Frankfurt and Sherman, 1976; Lo and Cheng, 1976; Kuraev, Lipatov, and Fadin, 1976).

Now consider the scattering of two quarks at substantial momentum transfer, but much higher
energy. Single-gluon exchange would be associated with copious emission of soft gluons, and a
“filled” rapidity gap, while singlet-exchange (beginning at two gluons) would require much less
radiation (by analogy with QED). The search for such events has now borne fruit (see below),
although it is still too early to confidently attribute these observations to the mechansim described
here.

B. Jets in Hadron-hadron Collisions: Experiment

Experimental evidence for the existence of jets at hadron colliders was first observed by using
a single high-Pt particle to both trigger on and identify jets. This, however, results in a very
biased experimental sample, and it was first realized at the ISR at

√
s = 62.3 GeV (Ellis and

Stroynowski,1977) that one has to trigger in a more inclusive way, i.e. on the total amount of
energy in a certain region of the detector. Cross sections were measured with an inclusive trigger,
and two-jet back-to-back structure (in the transverse plane to the beam) was observed (Angeliset
al., 1984). In addition, it was shown that the transverse momentum of particles relative to the jet
axis is limited to about 500 MeV/c, independent of the momentum parallel to the jet axis. The
first studies with a cone-based algorithm concluded that an opening angle of 40 degrees=0.7 rad
includes nearly 100% of the jet energy, a value which is identical to currently used values at much
higher energies. With the increase in the center of mass energy at the CERN Spp̄S collider to 540
GeV, the UA1 and UA2 experiments showed unambiguously the existence of jets in hadron-hadron
collisions (Dilella, 1985; Banneret al., 1983b). They also enabled the measurement of the jet cross
section over a large region of transverse energy, out to 170 GeV (Arnisonet al., 1983b; Arnisonet
al., 1983c; Arnisonet al., 1986; Bagnaia,et al., 1984). Fig. 43 shows the UA1 and ISR jet cross
section as measured initially in the central rapidity region (y < 1.0).

In Fig. 43, the experimental points are compared to (at that time) known parton distributions.
The rather good agreement between theory (see alsoHorgan and Jacob 1981) and experiment, in a
quantity that varies over five orders of magnitude, was considered a major success for the predictive

141



Figure 43: The jet cross section measured at the ISR and the CERN SPS by experiment UA1 at
rapidity=0 Dilella, 1985. The dashed curve represents the original prediction as given by Horgan
and Jacob (1981), and the solid curves indicate the range of predictions.
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power of QCD. Note that the error on the experimental cross sections is of order 100% and that the
experiments defined jets in different ways: at the ISR a cone size of 30 degrees was used, whereas
UA1 was the first to propose and use a fixed cone size algorithm, with a cone size ofR = 0.7.
This value of the cone size has now become the default value, a specific example of a definition of
jets as described in the “Snowmass agreement” (Huth et al., 1990). Over the years, the accuracy
of collider experiments has improved and now the most accurate cross sections are available from
UA2 (

√
s = 630 GeV) and CDF and D0 (

√
s = 1800 GeV) at Fermilab. These experiments use a

fixed cone size algorithm to define jets, and computeEt of the jet as the sum
∑

i Et,i wherei runs
over all calorimeter cells inside the jet cone. We shall discuss the experiments separately.

The final UA2 jet inclusive cross section (Alitti et al., 1991a) measured with an upgraded
detector with extended rapidity coverage, is shown in Fig.44. Here the jet was defined by using a
fixed cone algorithm and a cone sizeR = 1.3. The basic assumption is that this cone size is large
enough so that a final state parton, including all its radiation and fragmentation, is described and
its energy contained within the cone.

Figure 44: The inclusive jet cross section measured by UA2 experimentAlitti et al., 1991afor
different pseudorapidities. The systematic error of 32% is not shown. The curves represent a
leading-order QCD calculation with scale ofEt/2, using the parton distributions of Eichtenet al.
(1984).

Corrections for energy flowing out of the cone and entering the cone from the underlying event
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(= remnants due to the fragmentation of the incoming hadrons and to color conservation) are es-
timated using the simulation program HERWIG. The experimental errors obtained have several
sources. The overall scale error on the cross section is 32%, in addition to the statistical accuracy
of each data point. The overall scale error of 32% includes the uncertainties due to absolute en-
ergy scale (11%), luminosity (5%), model dependence of acceptance corrections (25%), analysis
parameters and jet algorithm (15%). The underlying event creates an uncertainty of 0.9 GeV on
theEt scale, resulting in an additional error of typically 10% at 60 GeV and 5% at 130 GeV in the
cross section. The obtained experimental cross sections are compared to LO predictions based on
EHLQ (Eichten, Quigg, Hinchliffe, and Lane, 1984) parton distributions. The agreement between
theory and experiment is very good in the central rapidity region. To illustrate this in Fig.45 the
ratio of experiment to theory is given for the central rapidity region, and indeed, for several differ-
ent recent parton distributions the agreement is remarkable. The UA2 collaboration also chose to
do a LO comparison only and their results have not been compared to a NLO prediction. In fact, it
would not be a trivial task to compare these experimental results to NLO predictions. In order to
do so, one would want to reanalyze the data without the corrections for energy flowing into/out of
the cone and use a smaller cone size.

Figure 45: The ratio of experimental to theoretical (based on Eichtenet al., 1984) jet cross sections
at η < 0.85 in the UA2Alitti et al., 1991aexperiment (black dots). The curves represent calcula-
tions for different parton distributions, relative to the Eichtenet al. distributions: MRSB, Martin,
Roberts, and Stirling (1990), version B; DO, Duke and Owens (1984); HMRSE, Harriman, Martin,
Roberts, and Stirling (1990), version E; MT, Morfı́n and Tung (1991); HMRSB, Harriman, Martin,
Roberts, and Stirling (1990), version B; DFLM, Diemoz, Ferroni, Longo, and Martinelli (1988).
See Harrimanet al. (1990) for assumptions used in versions B and E.

The CDF experiment has measured the jet cross section at the Tevatron proton- antiproton
collider at

√
s = 1800 GeV. Their analysis of early runs is typical of Tevatron jet results. In contrast

to UA2, the CDF cross section has been treated much more like a NLO quantity and has been
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measured as a function of the jet cone size. To define a jet, a fixed cone size algorithm (R = 0.7)
was used, along with other details of the “Snowmass agreement” (Huth et al., 1990) and Eq. (8.6)
was used to derive the jet quantitiesEt, ηJ andφJ. The only deviation from the prescriptions of
Huth et al., 1990is thatEt was calculated by adding the energy of calorimeter cells in the cone
and then converting toEt by using the rapidity of the jet, instead of using the scalar sum of theEt

of each cell. The data include a correction for the energy inside the jet cone due to the underlying
event, but no corrections for energy flowing in or out of the cone. The underlying event transverse
energy correction is 1.2± 0.3 GeV per unit area inη, φ space. Jets which are close in direction
have to be merged and large transverse size jets have to be split according to some algorithm. The
algorithm used is similar to the one used at the parton level in the NLO calculation of the cross
section. For a more detailed discussion of the criteria used we refer toAbe et al., 1992b. The
experimental data (Abe et al., 1992a). are shown in Fig.46, and they cover the rapidity region
0.1 < ηJ < 0.7. The overall systematic uncertainty in the measured cross section is: 60% (mainly
due to energy resolution and unsmearing uncertainties) forEt < 80 GeV and 22% (dominated by
knowledge of absolute energy scale) forEt > 80 GeV. Also shown in Fig.46 is the absolute NLO
theoretical prediction for the same cone size using the parton distributions ofHarriman, Martin,
Roberts, and Stirling, 1990andMartin, Roberts, and Stirling 1988. The agreement between theory
and experiment is remarkably good. Fig.47 shows the ratio of the measured cross section and
theory prediction (NLO) for different parton distributions. All parton distributions (HMRSB,MT-
B and MT-S) agree very well with the data, except for HMRSE, which is inconsistent with the
shape of the measured cross section. CDF has also measured the dependence of the cross section
on the jet cone size used. This dependence is predicted in the NLO parton level calculation of
the cross section and it is informative to compare the parton level prediction with the measured
behavior at the calorimeter jet level. In Fig.48 the experimental cross section atEt=100 GeV is
determined for cone sizes 0.4, 0.7 and 1.0 and compared to the theoretical prediction for different
choices of the scale used. Although there is some scale dependence in the theoretical prediction,
the parton level prediction and calorimetric jet level measurement qualitatively show the same cone
size dependence for the jet cross section.

The agreement between theory and experiment, as illustrated above, has generally improved,
as luminosity has built up for CDF and D0 at the Tevatron (Kuhlmann, 1994). For example, studies
of jet cross sections over a range in rapidity show strong evidence for single-gluon exchange as
the dominant source of very high-energy dijet events. In addition, however, a small but intruiging
set of events show that an admixture of “color-singlet” exchange, which in pQCD begins at two
gluons, may also play an important role (see Section3. above). These are the rapidity gap events
(Abachiet al., 1994; Kuhlmann, 1994), originally seen at UA8 (Boninoet al., 1988; Brandtet al.,
1992), and recently detected as well in deeply inelastic scattering by the ZEUS detector at HERA
(ZEUS, 1993a).

Further results on rapidity gaps can be expected from the Tevatron and HERA, hopefully shed-
ding light on whether the color-singlet exchange mechanism for their generation is indeed the
correct one. In addition, closer examination of jet cross sections and their comparison with theory
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Figure 46: The inclusive jet cross section measured by CDFAbe et al., 1992cfor a cone size
R = 0.7 averaged over the pseudorapidity interval from 0.1 < η < 0.7. The curve represents the
prediction of a next-to-leading-order calculation using the parton distributions of Harrimanet al.
(1990) and Martin, Roberts, and Stirling (1988). The errors shown represent the statistical and
Et-dependent systematic errors. The overall normalization uncertainty is also indicated separately.
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Figure 47: The CDF (Collider Detector Facility) inclusive jet cross section compared to theory
as the ratio (data-theory)/theory. The dashed lines indicate the systematic uncertainty in the data,
while the error bars includeEt dependence. The reference parton distribution used is that of Harri-
manet al. (1990), and predictions using other sets are also shown: MTS, Morfı́n and Tung (1991),
version S; MTB, Morf́ın and Tung (1991), version B. The version names S, E, B signify assump-
tions used in the analysis of the data. See Harrimanet al. (1990) and Morf́ın and Tung (1991) for
descriptions of these assumptions. From (Abeet al., 1992c).
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Figure 48: The cone size dependence of the cross section as measured by CDF (data points) atEt

= 100 GeV. Statistical errors only are plotted on the data points. An overall systematic uncertainty
is indicated separately. The curves represent next-to-leading-order predictions based on the parton
distributions of Martin, Roberts, and Stirling (1988) for different choices of the renormalization
scale. From (Abeet al., 1992c).

will help elucidate the interplay of soft and hard physics in QCD. Studies along these lines will
include: (1) jet cross sections at large rapidity, (2) cone size dependence (Flaugheret al., 1992)
and (3) comparison of cone algorithms with the successive combination jet algorithms of LEP (see
SectionD.).

C. QCD Corrections: Heavy Quarks

Another important area of research in pQCD is the study of heavy-quark production. Precisely
what is understood by the term heavy quark depends on the circumstances. However there is
general agreement that u, d and s are light-mass quarks while c, b and t are heavy-mass quarks.
The obvious evidence for heavy (confined) quarks is the existence of colorless spin-1 vector meson
states such as theJ/ψ andΥ, which are produced copiously in electron-positron collisions. These
physical particles contain charmed and bottom quarks and have well-defined masses and lifetimes.
Within the context of pQCD there must be quantities which we can designate as heavy quark
massesmq with values approximately one-half those of the vector meson masses. Thenmc ≈ 1.5
GeV/c2 andmb ≈ 4.75 GeV/c2 have a phenomenological significance even though they cannot be
identified as on-mass-shell objects like electrons or hadrons. When mass effects are important, for
example just above the “threshold” for pair production, we cannot ignore terms of orderm/

√
s in

a partonic reaction. Quark masses have already been discussed in SectionE..
The heavy quarks referred to above carry color and do not have the proper quantum numbers

to make colorless hadrons. When they are produced in partonic collisions vacuum perturbations
produce light quark-antiquark pairs over the time scale∆E∆t ≈ h. The heavy quark then combines
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with a light quark to form a physical hadron with well-defined mass, which subsequently decays
into a multitude of final states with well defined branching ratios. The production of the heavy
quark is only the first stage of a complicated process, which involves both pQCD and confinement.
Here we assume that heavy quarks are produced from light quarks in the hadrons (extrinsic produc-
tion). The presence of a heavy quark component in the hardon wave function (intrinsic production)
is discussed inBrodsky, Hoyer, Mueller, and Tang, 1992.

The theoretical description of heavy quark production and decay is usually split into several
parts. One first calculates the heavy quark production cross section in the parton model, at a scale
set approximately by the heavy quark mass, including higher order corrections if possible. Then
the heavy quark becomes an on-mass-shell meson or baryon by the non-perturbative process of
finding the appropriate light quark in the sea of quark-antiquark pairs in the vacuum. There is a
phenomenological description of this part (fragmentation function). The heavy hadron then decays
into light-mass hadrons (on their mass shells) and the branching ratios can be measured experimen-
tally. The final decay involves the transition of the heavy quark into a light quark according to weak
or electromagnetic interactions. The strong corrections to the last process can again be calculated
by pQCD provided there is a heavy scale to make the running coupling constant small. If we limit
ourselves here to a discussion of the production of heavy quarks then there should be a kinematical
region where the massm and the other invariants, such as

√
s, pt, etc., are roughly of the same

magnitude and significantly larger thanΛQCD. Under such circumstances the scale parameter is the
heavy quark mass, so we measure a cross section at a coupling constant whose scale ism, using
light-mass partonic structure functions at a scalem. Differential distributions are calculable when
pt ≈ mand scaleM = (p2

t + m2)1/2. Outside these ranges there will be large logarithms in ratios of
invariants which can be controlled by an analysis of the renormalization group equation. The real
proof of these claims is the comparison between the theoretical predictions and the experimental
results.

Here we assume that the heavy quarks are detected (via their decays). At higher values of
√

s
wherem/

√
s� 1, the heavy quarks become effectively massless, and must be incorporated into

the parton distributions. The transition between these regions is still under investigation.
Heavy flavor production has been experimentally studied at electron-positron (Ali et al., 1990)

hadron-hadron (Guillet, Nason, and Plothow-Besch, 1990; Reya, Zerwas, Hollik, Khoze, Phillips,
Berends, Rein, and Zunft, 1990; Ali, Barreiro, de Troćoniz, Schuler, and van der Bij, 1990) and
lepton-hadron (Carboniet al., 1990; Witherall et al., 1988; Ali, Ingelman, Schuler, Barreiro, Gar-
cia, de Troćoniz, Eichler, and Kunszt, 1988; Schuler, 1988) facilities. For review articles we refer
to Ellis and Kernan, 1990; Ellis and Stirling 1990; Smith and Tung, 1993.

We shall now write down some Born reactions and discuss the general properties of the heavy-
quark cross sections. For this we need the lowest order matrix elements for heavy quark production
in the reactionsq + q̄→ Q + Q̄ , γ + g→ Q + Q̄ , g + g→ Q + Q̄. The differential and total cross
sections for the reactione+ + e− → µ+ + µ−, when mediated by a single virtual photon, were given
previously. One can use the perturbation theory rules in Sect. II.4 to show that the corresponding
results for the reactionq + q̄→ Q + Q̄ whereq(q̄) are light (massless) quarks andQ(Q̄) are heavy
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quarks with massm are

s2 d2σ

dt1du1
=

4πα2
s

3

[ t21 + u2
1

s2
+

2m2

s

]
δ(s+ t1 + u1) , (8.7)

and

σ(s,m2) =
8πα2

s

27s2
(s+ 2m2)β . (8.8)

We use the notationt1 = t − m2, u1 = u − m2 wheres, t andu are the standard invariants,β =

(1 − 4m2/s)1/2 is the center-of-mass velocity andαs = g2/(4π). The results include a summation
over final spins and colors and an average over initial spins and colors.

Next consider the reactionγ + g→ Q + Q̄, then the differential cross section is

s2 d2σ

dt1du1
= παemαse

2
HBQEDδ(s+ t1 + u1) , (8.9)

where

BQED =
t1
u1

+
u1

t1
+

4m2s
t1u1

(
1− m2s

t1u1

)
, (8.10)

is the same factor that appears in the QED result (i.e., in the square of the amplitude for the reaction
γ + γ → µ+ + µ−). Note that we have summed over final spins and colors and averaged over initial
polarizations and colors. The total cross section is

σ(s,m2) =
2παemαs

s
e2

H

{(
1 +

4m2

s
− 8m4

s2

)
ln

(1 + β

1− β
)
−

(
1 +

4m2

s

)
β
}
. (8.11)

Now consider the reactiong+ g→ Q+ Q̄. In this case the color structure is more complicated and
the differential scattering amplitude takes the form

s2 d2σ

dt1du1
=
πα2

s

16

{
3
(
1− 2t1u1

s2

)
− 1

3

}[ t1
u1

+
u1

t1
+

4m2s
t1u1

(
1− m2s

t1u1

)]
δ(s+ t1 + u1) , (8.12)

again summed and averaged over initial polarizations and colors. Finally the total cross section is

σ(s,m2) =
πα2

s

3s

{(
1 +

4m2

s
+

m4

s2

)
ln

(1 + β

1− β
)
−

(
7 +

31m2

s

)β
4

}
. (8.13)

The above results should be folded with the appropriate distribution functions to calculate physical
cross sections and inclusive distributions in the Born approximation.29

29The calculations of the partonic cross sections given here were first reported byWitten, 1976; Glück, Owens, and
Reya, 1978; Babcock, Sivers, and Wolfram, 1978; Jones and Wyld, 1978; Georgi,Glashow, Machacek, and Nanopou-
los,1978; Babcock and Sivers, 1978; Shifman, Vainstein, and Zakharov, 1978; Combridge, 1979; Glück and Reya,
1979; Hagiwara and Yoshino, 1979; Leveille and Weiler, 1979; Mattiae, 1981; Shifman, Vainshtein, and Zakharov,
1988andOlness, Meng, and Soper, 1992.
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The evaluation of higher order corrections in pQCD is an involved issue which has been the
subject of much theoretical investigation. The calculations fall into different classes. First of all
there are fixed order NLO QCD calculations of inclusive cross sections and distributions, for ex-
ample byEllis and Kunszt, 1988; Nason, Dawson, and Ellis,1988; Beenakker, Kuijf, van Neerven,
and Smith, 1989; Ellis and Nason, 1989; Nason, Dawson, and Ellis,1989; Beenakker, van Neer-
ven, Meng, Schuler, and Smith, 1991; Smith and van Neerven, 1992, andLaenen, Riemersma,
Smith, and van Neerven, 1993a; Laenen, Riemersma, Smith, and van Neerven, 1993b; Laenen,
Riemersma, Smith, and van Neerven, 1993c. These calculations regularize all singularities by
extending the space-time ton-dimensions so can only yield information on a few inclusive distri-
butions. Next there are applications of these calculations by various groups, of which we men-
tion Glück, 1987; Altarelli, Diemoz, Martinelli, and Nason, 1988; Glück, Godbole, and Reya,
1988; Meng, Schuler, Smith, and van Neerven, 1990; Berger, Meng, and Tung, 1992; Berger and
Meng, 1992, andRiemersma, Smith, and van Neerven, 1992. Then there are comparisons with
Monte Carlo packages, byKuebel, Pundurs, Yuan, Berger, and Paige, 1991and byMarchesini and
Webber, 1990. There are also papers on the resummation of the dominant logarithms in the thresh-
old region byLaenen, Smith, and van Neerven, 1992, and the region of large energy byEllis and
Ross, 1990; Collins and Ellis, 1991; Catani, Ciafaloni, and Hauptmann, 1990; Catani, Ciafaloni,
and Hautmann, 1992andCatani, Ciafaloni, and Hauptmann, 1990. In addition there are papers on
fully exclusive calculations where the cancellation of the singularities are incorporated within the
Monte Carlo program byvan der Bij and van Oldenborgh, 1991; Mangano, Nason, and Ridolphi,
1992. Finally there are papers on joining different approaches byAivazis, Olness, and Tung, 1990,
andAivazis, Olness, and Tung, 1993. Non perturbative effects near threshold are studied inFadin,
Khoze, and Sj̈ostrand, 1990.

All the theoretical inputs, such as the running coupling constant, the reduced cross section
σ̂i j (s,m2,Q2) and the parton distribution functionsFp

i (x,Q2) are scheme dependent.
First we have to choose the renormalization scheme. Since the cross section is a renormaliza-

tion group invariant we can limit ourselves to mass and coupling constant renormalization. Usually
mass renormalization is performed in the on-mass-shell renormalization scheme.

Let us discuss the influence of heavy quarks on the running couplingαs. For instance the
running coupling constant should be continuous across heavy quark production thresholds, so it
depends onnf . If we define the two-loop correctedαs in theMS scheme then

αs(Q
2,nf ) =

1
bf ln(Q2/Λ2)

[
1−

b′f ln ln(Q2/Λ2)

bf ln(Q2/Λ2)

]
, (8.14)

wherebf andb′f are given by (see Eq. (2.48))

bf =
33− 2nf

12π
, b′f =

153− 19nf

2π(33− 2nf )
. (8.15)

We use this form for top-quark production withΛ = Λ5 and nf = 5. For bottom and charm
production we needαs for four and three flavors respectively. So that there is continuity across the
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b and c thresholds we define, followingAltarelli, Diemoz, Martinelli, and Nason, 1988,

αs,5(Q
2) = αs(Q

2,5)

α−1
s,4(Q

2) = α−1
s (Q2,4) + α−1

s (m2
b,5)− α−1

s (m2
b,4)

α−1
s,3(Q

2) = α−1
s (Q2,3) + α−1

s (m2
c,4) + α−1

s (m2
b,5)

−α−1
s (m2

b,4)− α−1
s (m2

c,3) (8.16)

so that

αs(Q
2) = αs,5(Q

2)θ(Q2 −m2
b) + αs,4(Q

2)θ(m2
b − Q2)θ(Q2 −m2

c)

+αs,3(Q
2)θ(Q2 −m2

c) . (8.17)

This result may also be used in the calculation of the lowest order Born approximation even though
it is not imperative to do so.

The best data for a test of pQCD heavy quark production are onb-production inpp̄ collisions.
c-production is not so clean, because its mass is not heavy enough andαs(m2

c) is large. The relevant
experimental data are presented inAbe et al., 1990a; Sinervoet al., 1990; Abe et al., 1992a;
Mangano and Nason, 1992; Albajar et al., 1988; Albajar et al., 1990; McMahon, 1990; Albajar et
al., 1991. Data from theS pp̄S and Fermilab Tevatron on inclusiveb-quark production are shown
in Fig. 49 together with the results of a pQCD calculation through orderα3

s, (provided by R. Meng
using theO(α3

s) exact calculations in Beenakker, van Neerven, Meng, Schuler,
and Smith, 1991. The lower energy data are fit quite well. The higher energy data are above the
theoretical predictions so we probably need to include some part of theO(α4

s) contribution.
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Figure 49: QCD fit tob-quark production data. From R. Meng, private communication.
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IX. Global Analysis of Parton Distributions

Factorization theorems in perturbative QCD give a justification for and improvement of parton
model predictions. In the “QCD improved” parton model, physically observed cross sections in-
volving hadrons can be written as convolutions of perturbatively calculable partonic hard parts with
parton distributions, which summarize uncalculable non-perturbative effects (Owens and Tung,
1992) (see SectionIV. above).

A. Evolution of Parton Distributions

The parton distributions are often presented as functions ofx and µ f ; and are customarily
interpreted as the probability densities to find a parton within a hadron, with its momentum fraction
betweenx andx+ dx. Below we denote the factorization scale byµ f . Although perturbative QCD
cannot predict the absolute normalization of these parton distributions, their evolution with the
factorization scale can be calculated (Section3.). More precisely, the scale dependence is governed
by a set of coupled integro-differential evolution equations, valid to all orders inαs (Gribov and
Lipatov, 1972a; Altarelli and Parisi, 1977)

dφq(x, µ f )

dt
=

αs(µ f )

2π

∫ 1

x

dy
y

[
P(1)

qq(y)φq(
x
y
, µ f ) + P(1)

qg(y)φg(
x
y
, µ f )

]
+ O(α2

s) (9.1)

dφg(x, µ f )

dt
=

αs(µ f )

2π

∫ 1

x

dy
y

∑
q

P(1)
gq(y)φq(

x
y
, µ f ) + P(1)

gg(y)φg(
x
y
, µ f )

 + O(α2
s) ,

where t = ln(µ2
f /Λ

2), and the subscriptq denotes quark flavors. The kernels,Pi j (z), have the
physical interpretation as probability densities for obtaining a parton of typei from one of typej
with a fractionz of the parent parton’s momentum. At the leading order (LO), thePi j are given in
Eq. (6.7) above. The Next-to-leading-order (NLO) (or 2-loop) expressions forPi j (z) were calcu-
lated by several groups30. Up until recently, there had been an unresolved minor discrepancy for
Pgg(z) between results obtained in different gauges. This has now been clarified (Hamberg and van
Neerven, 1992).

This set of equations can be solved exactly in moment space (Reya, 1981; Altarelli, 1982),
once a set of input distributions is specified at an initial valueµ0. One can then invert the moments
to get thex andµ f -dependent parton distributions. However, this method requires the knowledge
of initial parton distributions at all values ofx from 0 to 1, and no experimental measurements at
fixed µ f can reach all the way tox = 0. In current global analysis of parton distributions, one
solves this set of equations numerically. Note that one needs input distributions only forx greater
than or equal to the smallest momentum fraction at which parton distributions are desired.

30Floratos, Ross, and Sachrajda, 1977; Floratos, Lacaze, and Kounnas, 1981a; Floratos, Lacaze, and Kounnas,
1981b; Gonzalez-Arroyoet al., 1979; Gonzalez-Arroyo and Lopez, 1979; Curci, Furmanski, and Petronzio, 1980;
Furmanski and Petronzio, 1980; Herrod and Wada, 1980andHerrodet al., 1981
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B. Global Analysis

The global analysis of parton distributions involves making use of experimental data from many
physical processes, and the use of the parton evolution equations to extract a set of universal parton
distributions which best fit the existing data. These distributions can then be used in predicting all
other physical observables at energy scales far beyond those presently achievable. Herein lies
the wide-ranging usefulness of the QCD improved parton model. Beyond this, however, the very
possibility of a global fit tests the internal consistency of our fundamental theoretical picture of
hard scattering, based on factorization and the universality of parton distributions.

A typical procedure for the global analysis involves following necessary steps:

1. Develop a program to numerically solve the evolution equations — a set of coupled integro-
differential equations;

2. Make a choice on experimental data sets, such that the data can give the best constraints on
the parton distributions;

3. Select the factorization scheme — the “DIS” or the “MS” scheme, and make a consistent set
of choices on factorization scale for all the processes;

4. Choose the parametric form for the input parton distributions atµ0, and then evolve the
distributions to any other values ofµ f ;

5. Use the evolved distributions to calculateχ2 between theory and data, and choose an algo-
rithm to minimize theχ2 by adjusting the parameterizations of the input distributions;

6. Parameterize the final parton distributions at discrete values ofx andµ f by some analytical
functions.

In all high energy data, deeply inelastic scattering of leptons on nucleon and nuclear targets
remains the primary source of information on parton distributions, because of its high-statistics.
Such data is known to be mostly sensitive to certain combinations of quark distributions. Drell-Yan
lepton-pair production, and direct photons at large transverse momenta provide important comple-
mentary information on anti-quark and gluon distributions. Most data used in obtaining recent
parton distributions are at fixed target energies. Collider results have not reached the accuracy
necessary to be included into global fits. But, they will eventually offer a significant opportunity to
probe the small-x region (sayx ≤ 10−3).

Parton distributions defined in different factorization schemes are different. Commonly used
factorization schemes in the literature are “DIS” and “MS” schemes. In principle, parton distri-
butions obtained in one scheme can be directly transformed into the other scheme. However, the
transformation is not reliable in certain kinematic regions where the perturbation series expansion
has abnormal behavior (Owens and Tung, 1992). It is preferable to perform independent analyses
in these schemes.
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The truncation of the perturbation series invariably leads to renormalization and factoriza-
tion scale dependence for QCD predictions. Consequently, parton distributions obtained from
the global analysis will depend on the choice of the scales. If significant scale dependence is found
to exist in a particular kinematic region for some processes, then the usefulness of such data is
limited, until new theoretical techniques are developed to reduce that dependence.

There is considerable freedom in choosing the parametric form of the input parton distributions
at scaleµ0. The parameterization must be general enough to accommodate all the possiblex and
quark-flavor dependence; but it should not contain so many parameters that the fitting procedure
becomes very much under-determined. In practice, for each flavor it is common to use a functional
form

φ(x, µ0) = A0xA1(1− x)A2P(x) (9.2)

whereP(x) is a smooth function. In above expression,xA1 dominates the smallx feature and
(1− x)A2 determines the largex behavior.

When calculating theχ2 for a given fit, both statistical and systematic errors should be taken
into account. The most expedient, and hence the most often used, method is to combine these
errors in quadrature (Morfı́n and Tung, 1991). However, real systematic errors are correlated; they
must eventually be incorporated in that way when the analysis reaches a truly quantitative stage.

After minimizing theχ2 (e.g., using the MINUIT package of CERN library), the resultant par-
ton distributions can be presented in two ways. One way is just to give the relevant QCD parameters
and the parameterization of input parton distributions at scaleµ0. The user can then produce the
parton distributions at another value ofµ f by using this information as input to a reliable QCD evo-
lution program. The other, more commonly used, is to approximate the outcome of a global fit over
(x, µ f ) by a set of parameterized functions. Such parameterization varies widely between the avail-
able distributions sets, ranging from a simple interpolation formula over a large three-dimensional
array (x,µ f , and flavor), to Chebeschev polynomial expansions, to simpleµ f -dependent parameter-
izations of the form of the above equation with an appropriately chosen smooth functionP(x). It
was found that a logarithmic factor of the form logA3(1/x) is particularly effective in rendering the
µ f -dependence of the coefficient functionsAi smooth for the QCD evolved distributions.

Although, in principle, the form of the parameterization is arbitrary so long as the approximated
distributions still fit the data, extrapolation of the distributions out of the fitting region (e.g., into the
smallx region) will give very different predictions. It has been demonstrated that good fits to data
can be obtained with the coefficientA1 (which controls the smallx behavior) varying, say, from -0.5
to 0.2. Such uncertainty should be regarded as evidence of our lack of knowledge of the uncharted
region. It is not meaningful to take the extrapolation of any particular set of parton distributions
as “predictions”. This uncertainty can be reduced either by new experimental measurements or
by theoretical advances which allow true predictions extending to smallx along the same way the
usual evolution equation does for theµ f variable.

156



C. Survey of Recent Parton Distributions

The first generation parton distribution sets, based on leading order evolution and data of the
early 1980’s, have been widely used in calculations of high energy processes (Duke and Owens,
1984; Eichten, Quigg, Hinchliffe, and Lane, 1984; Glück et al., 1982). However, since then ex-
perimental data have been dramatically improved (and substantially changed, in some cases), and
these distributions are no longer able to fit the new data.

The second generation global analyses, based on next-to-leading order evolution and more
recent data, have been carried out by several groups in recent years. Some of the groups perform
specialized analyses focusing on some specific issue or process, such as the gluon distributions
and direct photon production (Aurenche, Baier, Fontannaz, Owens, and Werlen, 1989), neutrino
scattering (Diemozet al., 1988), etc.; and others study a wide range of processes (Martin, Roberts,
and Stirling 1988; Martin et al., 1989; Harriman, Martin, Roberts, and Stirling, 1990; Kwiecinski
et al., 1990; Morfı́n and Tung, 1991). These analyses differ considerably on various issues, such as
the range of data used, the way experimental errors are treated, the choice of schemes, assumptions
on the input distributions, and so on.

A compilation of currently available parton distribution sets, both old and new, have been
made at CERN and it has been distributed as a program package PDFLIB (Plothow-Besch, 1991).
Because most of the older distributions are seriously inconsistent with current data, and because
of the differences mentioned above, indiscriminate use of all the distributions in this collection can
lead to meaningless results.

For example, it is important to only compare correct corresponding objects. Thus, the LO,
NLO-DIS, and NLO-MS distributions are different objects, and should not be compared or mixed.
When calculating physical quantities (such as cross sections or structure functions), LO, NLO-
DIS, and NLO-MS distributions must be convoluted with the corresponding LO, NLO-DIS, and
NLO-MS hard scattering parts in order to yield meaningful predictions.

We are about to enter yet another era of precision in QCD global analysis. Recently released
NMC data (Amaudruzet al., 1992) on Fn

2/F
p
2 , Fp

2 − Fn
2, andFp,d

2 using a muon beam and CCFR
data (Mishra et al., 1992; Leunget al., 1993; Quintaset al., 1993) on FFe

2,3 using (anti-) neutri-
nos should have a significant impact on QCD global analyses because of their extended kinematic
coverage (particularly at smallx), their high statistics and minimal systematic errors. The pre-
cision of the current generation of DIS experiments (including the previously published SLAC,
BCDMS, and CDHSW data) now far exceeds the size of next-to-leading order QCD contributions
to these processes; thus they probe the full complexity of QCD mixing effects between quarks
and gluons in a properly conducted QCD analysis. At the same time, data being accumulated at
the Fermilab Tevatron on many hadron collider processes (such as W-, Z-production, lepton pair
production, direct-photon production, jet production, and heavy flavor production) are beginning
to be quantitative enough to provide complementary information and constraints on parton distri-
butions. Finally, the HERA electron-proton collider (H1 Collaboration, 1993; H1 Collaboration,
1994; ZEUS Collaboration, 1993b) are now providing direct measurements of structure functions
at very smallx.
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The new DIS data have been incorporated in two recent global analysis efforts (Martin et al.,
1993; Botts et al., 1993). The most notable result from each of the new global analyses is the
apparent extraordinary quantitative agreement of the NLO-QCD parton framework with the very
high statistics DIS experiments over the entire kinematic range covered, and the consistency of this
framework with all available experiments on lepton pair and direct photon production as well. The
parton distributions are determined with much more precision than before.

On the other hand, these analyses also are calling into question, for the first time, the ultimate
consistency of the existing theoretical framework with all existing experimental measurements!
(This can be regarded as testimony to the progress made in both theory and experiment – con-
sidering the fact that contradictions come with precision, and they are a necessary condition for
discovering overlooked shortcomings and/or harbingers of new physics.) When all available total
inclusive DIS data and their associated errors are taken seriously in the latest analysis, the CTEQ
Collaboration (Botts et al., 1993) found a good global fit only if the strange quark has a much
softer distribution than the non-strange ones and rises above the latter in the smallx region below
x = 0.1. This result is unexpected, and it also appears to be in conflict with the dedicated measure-
ment ofs(x) done with dimuon final states in neutrino scattering (Rabinowitzet al., 1993). (The
latter is not available in a form that can be included in any of the existing global analyses.) Thus,
either there are unknown theoretical flaws in the next-to-leading order QCD analysis or some of
the experimental data sets need to be re-examined both in their measured values and in the as-
sessed systematic errors. In the MRS analysis (Martin et al., 1993), the strange quark content of
the nucleon is assumed to be consistent with the dimuon result; reasonable fits are obtained only
by letting the normalization of the data sets vary freely, unconstrained by the stated experimental
errors, and by increasing some experimental errors attributed to other sources.

The emergence of the apparent contradictions has already spurred vigorous efforts by both
theorists and experimentalists to rigorously examine the existing assumptions and to institute new
improvements in their respective analyses. These efforts, aided by data from the hadron collider
experiments and from HERA, herald an exciting new era in global QCD analysis. We expect, on
the one hand, vigorous study of small-x behavior, and on the other hand, much more stringent tests
of the pQCD framework from the many overlapping lepton-hadron and hadron-hadron processes
which can now by studied quantitatively.
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A: Color Matrix Identities and Invariants

Only a few identities are necessary for the calculations described in the text. In general, for
representationR, S U(N) generators can be picked to satisfy

Tr [ T(R)
a T(R)

b ] = T(R)δab , (1.1)

with T(R) a number characteristic of the representation. Also of special interest is the representation-
dependent invariant,C2(R), defined by

N2−1∑
a=1

(T(R)
a )

2
= C2(R)I , (1.2)

with I the identity matrix.
We encounter only two representations here, theN-dimensional “defining” representation,F,

and theN2 − 1-dimensional adjoint representation,A. The generatorsT(F)
a are a complete set of

N × N traceless hermitian matrices, while the generatorsT(A)
a are defined by theS U(N) structure

constantsCabc (Eq. (2.5)) as
(T(A)

a )bc = −iCabc . (1.3)

For these two representations, the relevant constants are

T(F) =
1
2

C2(F) =
N2 − 1

2N
T(A) = N C2(A) = N . (1.4)

Another useful identity, special to the defining representation, enables us to work with simple
products of the generators,

T(F)
a T(F)

b = 1
2[iCabcT

(F)
c + dabcT

(F)
c ] + 1

6δabI , (1.5)

with I the 3×3 identity, and thedabc real. Unlike the previous equations, this and the following
equation apply only toS U(3). A numerical value that occurs in the three-loop correction to the
totale+e− annihilation cross section is

D =
∑
abc

d2
abc =

40
3
. (1.6)
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B: Cut Diagram Notation

A convenient technique for organizing calculations of|M|2 in cross sections is throughcut
diagrams, which combine contributions toM andM∗ into a single diagram for| M |2 with slightly
modified Feynman rules.

The form of cut diagrams is derived in Fig.50, for the annihilation of a fermion pair of momenta
k1 and k2 into a set ofn final state lines, of which only a fermion with momentump1 and an
antifermion of momentumpn are exhibited.
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Figure 50: Cut diagram identities.
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The underlying identity for these manipulations is

[w̄(γµ1γµ2 · · ·σαβ · · · γνγ5 · · ·)w′]∗

= w̄′(· · · γνγ5 · · ·σαβ · · · γµ2γµ1)w , (2.1)

wherew andw′ are any two Dirac spinors.
Fig. 50a shows a typical fermion propagator and vertex inM andM∗. Fig. 50b shows the

application of Eq. (2.1) to Fig. 50a. The diagram inM∗ has been flipped over, all arrows on
fermion lines have been reversed,andall momenta have been reversed in sign. This leaves the sign
of momenta in fermion propagators the same, as shown. Color sums can be reversed in the same
manner as spinor sums, because the color generators are hermitian.

Fig. 50c exhibits the cut diagram notation, in which the contribution of any final state is a
modified forward scattering diagram. The final-state lines are indicated by a vertical line (the
“cut”). Cut lines are represented in the integral corresponding to the cut diagram by factors

(/pi + mi)(2π)δ+(p2
i −m2

i ) , (2.2)

for fermions or antifermions, after a spin sum. For polarized fermions or for vectors, the usual
spin projections replace (/pi + mi). The Feynman rules forM are the normal ones, and those for̃M
differ only in the sign ofexplicit factors ofi at vertices and in propagators. The three-gluon vertex
also changes sign iñM, because of the reversal of momenta.
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C: Dimensional Regularization

In SectionII., our description of renormalization was a bit abstract, depending as it does on
the substitution, Eq. (2.25). For many purposes, it is useful to introduce an intermediate step in
this replacement, in which the divergent integral isregulated, that is, modified to become a finite
integral. This will involve the introduction of a new, unphysical, parameter. The replacement in
Eq. (2.25) will then appear as a “subtraction”, in which the regulated integral is combined with a
term that cancels its dependence on the regularization parameter. At present, far and away the most
popular regularization scheme isdimensional regularization, primarily because of its calculational
simplicity. It is difficult to follow much of the theoretical literature of pQCD without at least a
passing acquaintance with dimensional regularization.

Most of the essential features are contained in the scalar one-loop self-energy, Fig. 1.2,

G(2)(p,n) = iµ2−n/2

∫
dnk

(2π)n

1
(k2 −m2 + iε)

(
(p− k)2 −m2 + iε

) , (3.1)

wheren is the number of dimensions, initially taken as an integer,n = 1,2, . . .. For n ≥ 4, the
integral is UV divergent ask → ∞. The factorµ4−n, with µ an arbitrary mass is included to give
keepG(2) dimensionless for alln. To simplify further, let us do the integral in “Euclidean” space,
wherek2 = k2

0 + k2. The process of relating Euclidean to Minkowski integrals (Wick rotation) is
independent of the regularization process, and for our purposes consists of multiplying by a factor
i.

For n ≥ 4, G(2)(p,n) is ill-defined, but forn < 4 it is finite. The idea of dimensional regu-
larization is to extendG to ananalytic functionof n for all <(n) < 4, and then to use analytic
continuation to extend it to the rest of the complexn plane. When we recall that analytic continu-
ation is a unique process, we begin to see the power of the method.

So, how are we to extendG to noninteger, let alone complex, values ofn? Actually, it is quite
a simple process: more general integrals require more care, but the basic steps are the same for
every Feynman diagram.

(i) First comes a technical step, calledFeynman parameterization, which is a trick to rewrite the
product of denominators as a single denominator,

G(2)(p,n) = iµ4−n

∫
dnk

(2π)n

∫ 1

0
dx [ k2 − 2xp · k + xp2 −m2 ]−2 . (3.2)

(ii) Next, we complete the square in the single denominator,` = k− xp, to get

G(2)(p,n) = iµ4−n

∫
dn`

(2π)n

∫ 1

0
dx [ `2 + x(1− x)p2 −m2 ]−2 . (3.3)

Notice that the shift of integration variable is perfectly permissible forn < 4, where the
integral is convergent.
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(iii) In this form, we can trivially change variables to polar coordinates, and do the (trivial) an-
gular integrals

G(2)(p,n) = iµ4−n Ω(n)
(2π)n

∫ 1

0
dx

∫ ∞

0

d` `n−1[
`2 + x(1− x)p2 −m2

]2
. (3.4)

(iv) At this stage, then-dependence is segregated into the angular volume,Ω(n), while the di-
vergence atn = 4 is entirely in the radial̀ integral. These two quantities are quite easy to
promote from integer to complexn.

So, we are left with two integrals to extend to the complex “n-plane”. Consider first the angular
integral. We are already familiar with one- and two-dimensional angular integrals,

Ω(2) =

∫ 2π

0
dθ1

= 2π, (3.5)

Ω(3) =

∫ π

0
dθ2 sin(θ2) Ω(2).

= 4π. (3.6)

For integern dimensions we easily find the following recursion relation:

Ω(m) =

∫ π

0
dθ sinm−2(θm)Ω(m− 1),

=
Γ(1/2)Γ ((n− 1)/2)

Γ(n/2)
Ω(m− 1), (3.7)

whereΓ(z) is the EulerGamma functiondefined by the integral representation

Γ(z) ≡
∫ ∞

0
dxxz−1e−x , (3.8)

for<z> 0.
The recursion relation Eq. (3.7) is trivially solved by use of Eq. (3.5) as an initial condition.

We find

Ω(n) =
2πn/2

Γ(n/2)
. (3.9)

We can use this result to give a meaning to the integral Eq. (3.4) for all values ofn, and not
just positive integers. But let us first list a few basic properties of the Gamma function, which
appears in the results of typical integrals like Eq. (3.4). It is defined by Eq. (3.8) for <z > 0, and
by analytic continuation for all other values ofz. A little algebra shows that for integerz≥ 1

Γ(z) = (z− 1)!. (3.10)
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The Gamma function obeys the recursion relation

Γ(z− 1) =
Γ(z)

(z− 1)
. (3.11)

SinceΓ(z) is analytic for allzwith positive real parts, it is easy to deduce that it is analytic for allz,
except at negative integers, where it has simple poles. It is precisely this last property that makes
dimensional regularization such a convenient technique.

Now let us return to our basic one-loop integral, Eq. (3.3). The remaining, radial integral in
Eq. (3.4) can be analytically continued from a finite integral forn real and less than 4, to a complex
integral by using yet another integral representation involving gamma functions,∫ ∞

0
dyyw−1(y + 1)−w−z =

Γ(w)Γ(z)
Γ(w + z)

. (3.12)

(This combination of Gamma functions is often called a “beta function”, not be be confused with
the beta function introduced in connection with renormalization.) Combining these results, we find

G(2)(p,n) =
iµ4−n

(4π)n/2
Γ(2− n/2)(p2)n/2−2

=
i

(4π)2

[
1

2− n/2
+ ln(p2/µ2) + · · ·

]
. (3.13)

In this way, the superficially divergent integral becomes the sum of a momentum-independent
pole term, plus momentum-dependent finite parts. Minimal subtraction (MS) schemes consist of
subtracting the pole terms only in dimensional regularization. The renormalization scale enters
automatically by modifying the Lagrange density, as described below.

Dimensionally continued field theory.Let us now discuss how dimensional regularization is
introduced in QCD. As its name implies, dimensional regularization involves treating the number
of spacetime dimensions as a parameter,n. The unregulated theory, of course, is defined atn = 4.
It is often convenient to parameterize the regularization in terms of the “small” quantity

ε = 2− n/2. (3.14)

The rules that we shall need to implement dimensional regularization may be summarized as

(i) For QCD, the regulated theory is defined by a Lagrangian of the form Eq. (2.2), but with all
couplings,g, replaced as

g→ gµε , (3.15)

with ε given by Eq. (2.15), and withµ an arbitrary mass scale, which we shall refer to as the
renormalization scale.
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(ii) Vector indices run from 1, . . .n and we make the replacements

d4k
(2π)4

→ dnk
(2π)n

, 4 =

4∑
µ=1

gµµ → n =

n∑
µ=1

gµµ, (3.16)

in all momentum integrals (loopand phase space). We shall see below what we mean ex-
plicitly by dnk.

(iii) There aren Dirac matricesγµ, µ = 1, . . .n, and the standard anticommutation relations

{γµ, γν}+ = 2gµν, µ = 1, . . .n, (3.17)

are satisfied by alln of them. Fortunately, however, it isnot necessary to make the number
of spinor componentsn-dependent. Thus we may retain Dirac trace identities such as

Tr[ /p1 /p2 /p3 /p4] = 4[ (p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3) − (p1 · p3)(p2 · p4) ], (3.18)

which depend on theγµ being 4× 4 matrices. We should emphasize that Eq. (3.18) may
be taken as a rule, because the trueε-dependence due to the trace will not affect physical
answers atn = 4, not because Eq. (3.18) is really correct inn dimensions. On the other
hand, the anticommutation relations, along withgµµ = n lead to the following easy-to-prove,
n-dependent identities for Dirac matrices,

γµ /pγµ = (2− n) /p

γµ /p1 /p2γ
µ = 4p1 · p2 − 2ε /p1 /p2

γµ /p1 /p2 /p3γ
µ = −2 /p3 /p2 /p1 + 2ε /p1 /p2 /p3. (3.19)

The basic one-loop integrals may now be evaluated in terms of Eqs. (3.9) and (3.12) straight-
forwardly. For instance, consider the Minkowski space integral

Is(n) =

∫
dn`

[`2 − M2 + iε]s
, (3.20)

where`2 = `0
2−

→
`

2

. Wick rotation,`0→ i`0, gives

Is(n) = (−1)si
∫

d`ndn−1`

[`E
2 + M2 − iε]s

,

= (−1)si
Ω(n− 1)

2

∫ ∞

0

d`E
2(`2

E)n/2−1

[`E
2 + M2 − iε]s

= (−1)siπn/2 (M2 − iε)n/2−s Γ(s− n/2)
Γ(s)

, (3.21)
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where we have used Eqs. (3.9) and (3.12). Similarly, we have

Īµνs (n) =

∫
dn`

`µ`ν

[`2 − M2 + iε]s

=
1
2

(−1)s−1iπn/2
Γ(s− n

2 − 1)

Γ(s)
gµν(M2 − iε)

n
2−s+1. (3.22)

These forms are all that is necessary to derive the results of Eqs. (5.19) and (5.20).
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D: Kinematics and Cross Sections

In this appendix31 we discuss the kinematics and formulas in frequently-encountered cross
sections. Upper case letters will be used to designate incoming and outgoing hadrons,h, as
A + B→ C + X , etc. Lower case letters will be used when referring to the hadron constituents
which are undergoing the hard scattering.

The cross sections below are described for the most part in the language of the parton model,
SectionIII. , with hard scattering functionsHab (see Eq. (4.38)) approximated by Born cross sec-
tions. They serve as well, however, for leading-power pQCD, when factorization scale dependence
is introduced into the distribution and fragmentation functions. At lowest order (LO), the hard scat-
tering function reduces to the Born cross section, usingαs(Q2), with Q2 an appropriate momentum
transfer squared.

Let A and B be initial state hadrons and C an observed final state hadron, with four vectorspA

, pB , andpC, respectively. For these momenta, Mandelstam variables are defined as

s = (pA + pB)2, t = (pA − pC)2, andu = (pB − pC)2 . (4.1)

With this definition,
s+ t + u = p2

A + p2
B + p2

C + (pA + pB − pC)2 . (4.2)

The variables is the squared center-of-mass energy whilet and u are the squares of the four-
momentum transfers from particles A and B to particle C. A similar set of variables describes the
partonic scattering,a + b→ c + d, identified by ‘hats’, as ˆs. Thus, by Eq. (4.2), the Mandelstam
variables for massless two-body elastic scattering satisfy the constraint ˆs+ t̂ + û = 0.

A number of additional variables will be encountered in discussions of large transverse mo-
mentum processes. These describe momentum components which are transverse or longitudinal
with respect to the beam direction. These are denoted bypT andp`, respectively. Reference will
be made to the their scaled counterparts

xT = 2pT/
√

s, xF = 2p`/
√

s. (4.3)

With these definitions the kinematically allowed ranges ofxT andxF are (0,1) and (-1,1), respec-
tively, if the masses of the hadrons are neglected. Another useful variable which is often used is
the rapidity,y, which is defined as

y =
1
2

ln
(E + p`
E − p`

)
. (4.4)

This expression, when evaluated for a massless particle, has a much simpler form. In this case,

y = ln cot
θ

2
, (4.5)

31This appendix closely follows a similar discussion inOwens, 1987
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whereθ is the center-of-mass scattering angle. This form, called thepseudorapiditywhen applied
to physical particles, is convenient experimentally, since one needs to know onlyθ. For many high
energy processes the dependence on the particle masses is negligible and therefore the rapidity and
pseudorapidity become equivalent.

In the derivations which follow it will often be necessary to work directly with the four-vectors
of the interacting partons. Suppose that parton a carries a fractionxa of hadron A’s longitudinal
momentum and that a similar definition forxb exists for parton b. Then in the overall hadron-
hadron center-of-mass system the four-vectors for a and b can, assuming massless partons and
neglecting any parton transverse momenta, be written as

pµa =
xa
√

s
2

(1,0,0,1) and pµb =
xb
√

s
2

(1,0,0,−1) , (4.6)

where the positivezaxis is taken to be along the direction of the incident hadron A. If the scattered
parton c has transverse momentumpT and rapidityy1, then its four-vector is just

pµc = pT(coshy1,1,0, sinhy1) . (4.7)

With these results it is easy to evaluate the Mandelstam variables at the parton level:

ŝ = xaxbs, t̂ = −xapT

√
se−y1, andû = −xbpT

√
sey1 . (4.8)

For the case of two-body scattering, the partonic Mandelstam variables can also be written in terms
of the four-vector of the recoiling parton d, in the event that correlations are being studied. Let

pµd = pT(coshy2,−1,0, sinhy2) . (4.9)

Thent̂ andû may also be written as

t̂ = −xbpT

√
sey2 andû = −xapT

√
se−y2 . (4.10)

Starting with two-body scattering at the parton level the partial cross section for the inclusive
production of two partons can be written as (SectionA.),

dσ(AB→ cd) =
1
2ŝ

∑
ab

φa/A(xa)dxaφb/B(xb)dxb

∑
|M(ab→ cd)|2

(2π)4δ4(pa + pb − pc − pd)
d3pc

(2π)32Ec

d3pd

(2π)32Ed
.

(4.11)

Note that unpolarized parton distributions, as defined in SectionD., say, include a sum over colors
and spins. These quantum numbers are thereforeaveragedin the initial state of the partonic cross
section, and these averages are implicit in

∑
ab in Eq. (4.11). At the level of two-body scattering one

associates a jet with each of the outgoing partons (Section3.). However, when more complicated
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final states are taken into account, e.g., 2→ 3 processes, the jet must be carefully defined using
energy and angular size resolutions, or a “JADE” algorithm, etc. (SectionsD. andB.).

In order to convert Eq. (4.11) into the invariant cross section for inclusive single jet production
it is easiest to use

d3pd

2Ed
= d4pd δ(p

2
d) , (4.12)

to integrate overpd using the four-dimensional delta function. In addition, with massless partons
it is convenient to make the replacement

δ(p2
d)→ δ(ŝ+ t̂ + û) (massless partons). (4.13)

This results in

E
d3σ

d3p
(AB→ jet + X) =

∑
abcd

∫
dxadxbφa/A(xa)φb/B(xb)

× ŝ
π

dσ
dt̂

(ab→ cd)δ(ŝ+ t̂ + û) , (4.14)

where the differential cross section for the two-body parton scattering subprocesses is denoted by

dσ
dt̂

(ab→ cd) =
1

16πŝ2

∑
|M(ab→ cd)|2 . (4.15)

The argument of the delta function in Eq. (4.14) can be expressed in terms ofxa andxb using the
results given above. Thexb integration may then be done, giving the final result

E
d3σ

d3p
(AB→ jet + X) =

∑
abcd

∫ 1

xmin
a

dxaφa/A(xa)φb/B(xb)

×2
π

xaxb

2xa − xTey

dσ
dt̂

(ab→ cd) , (4.16)

where

xb =
xaxTe−y

2xa − xTey
, (4.17)

and

xmin
a =

xTey

2− xTe−y
. (4.18)

Eq. (4.16) is also applicable for the calculation of the direct photon inclusive invariant cross section
resulting from the subprocessesqq→ γg andgq→ γq.

Next, in order to calculate single particle inclusive invariant cross sections, the fragmentation
function DC/c(zc) (Section2.) must be included. This function, when multiplied bydzc gives the
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probability for obtaining a hadron C from parton c with the hadron carrying a fractionzc of the
parton’s momentum. Usingd3p/E = z2

c(d
3pc/Ec) the resulting expression is

E
d3σ

d3p
(AB→ C + X) =

∑
abcd

∫
dxadxbdzcφa/A(xa)φb/B(xb)DC/c(zc)

× ŝ
πz2

c

dσ
dt̂

(ab→ cd)δ(ŝ+ t̂ + û) . (4.19)

As in the previous case, the argument of the delta function may be expressed in terms of the parton
kinematic variables and thezc integration may then be done. The final form for the cross section is

E
d3σ

d3p
(AB→ h + X) =

∑
abcd

∫ 1

xmin
a

dxa

∫ 1

xmin
b

dxbφa/A(xa)φb/B(xb)Dh/c(zc)

× 1
πzc

dσ
dt̂

(ab→ cd) , (4.20)

where now

zc =
xT

2xb
e−y +

xT

2xa
ey ,

xmin
b =

xaxTe−y

2xa − xTey
,

xmin
a =

xTey

2− xTe−y
. (4.21)

Eq. (4.20) is also applicable for the calculation of the single photon inclusive invariant cross section
(SectionsE. andD.), when the photon results from the fragmentation from one of the scattered
partons. In this case one must replaceDh/c by Dγ/c.

The above equations for the invariant cross sections include a summation over all of the possible
two-body parton scattering subprocesses. In addition, the summation implies a symmetrization
undert̂ andû interchange, i.e., interchange of the beam and target. Note that for the case of three
quark flavors there are 127 terms contributing to the inclusive single particle cross section.

The partial cross section in Eq. (4.11) can also be used as a starting point for a two-jet inclusive
cross section. At lowest order, the transverse momentum components of the delta function insure
that the jets are produced with equal and opposite transverse momenta. The dijet cross section
can then be written in terms of the rapidities of the two jets and the transverse momentum,pT ,
possessed by each:

dσ

dy1dy2dp2
T

(AB → jet1 + jet2 + X)

=
∑
ab

∫
dxadxbφa/A(xa)φb/B(xb)

ŝ
2

dσ
dt̂

(ab→ 12)
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×δ(xa

√
s

2
+ xb

√
s

2
− pT coshy1 − pT coshy2)

×δ(xa

√
s

2
− xb

√
s

2
− pT sinhy1 − pT sinhy2) . (4.22)

The two delta functions in this expression are the energy and longitudinal parts of the original
four-dimensional delta function appearing in Eq. (4.11). Together, they allow the integrations on
bothxa andxb to be carried out. The resulting two-jet cross section is

dσ

dy1dy2dp2
T

(AB→ jet1 + jet2 + X) =
∑
ab

xaφa/A(xa)xbφb/B(xb)
dσ
dt̂

(ab→ 12), (4.23)

where
xa =

pT√
s
(ey1 + ey2) , xb =

pT√
s
(e−y1 + e−y2) . (4.24)

Another variable which is often used in studies of jet production is the dijet invariant mass,
M2

j j . This is easily shown to be given by

M2
j j = 2p2

T

[
1 + cosh(y1 − y2)

]
, (4.25)

if the masses of the individual jets are neglected. The mass distribution is then given by

dσ
dy1dy2dM j j

=
M j j

1 + cosh(y1 − y2)
dσ

dy1dy2dp2
T

. (4.26)

The dijet cross section in Eq. (4.23) has no integrations remaining to be done. That is, knowl-
edge of the four-vectors of the two jets has completely determined the kinematics of the parton
scattering process. Thus, it is possible to use Eq. (4.23), or an equivalent expression, to determine
the parton-parton scattering angular distribution, averaged over all of the participating subpro-
cesses. Letθ∗ be the parton-parton center- of-mass scattering angle. Then, Eq. (4.23) can be
rewritten as

dσ
dxadxbd cosθ∗

=
xaxbs

2

∑
ab

φa/A(xa)φb/B(xb)
dσ
dt̂

(ab→ 12), (4.27)

wherexa andxb have the values given in Eq. (4.26).
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