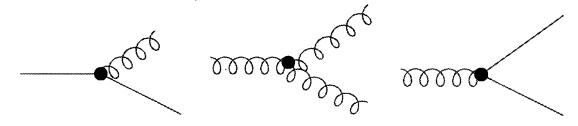
Tests of QCD at e^+e^- colliders

BIII GARY

Department of Physics U. California, <u>Riverside</u>

OPAL & BaBar Collaborations

email: bill.gary@ucr.edu


Outline

Part 2

- (I) Measurement of the color factors
- (II) Differences between gluon & quark jets
- (III) Coherence and Local Parton Hadron Duality (LPHD)
- (IV) Identified particles

Measurement of the color factors

Effective interactions in e^+e^- annihilations to $\mathcal{O}(\alpha_S^2)$

Gluon radiation Triple gluon vertex Gluon splitting

$$q \to qg$$

$$q \to qg$$
 $g \to gg$ $g \to q\overline{q}$

$$C_{F}=\frac{4}{3}$$

$$C_{F}=\frac{4}{3}$$
 $C_{A}=3$

$$T_F = \frac{1}{2}$$

The "color factors" C_{F} , C_{A} , T_{F} specify the relative probabilities of the three processes.

$$t^{\mathrm{A}}(A=1,\cdots 8) \longrightarrow \underline{\mathrm{generators}} \text{ of SU(3)}$$
 $(=\frac{1}{2} \text{ the } 3\times 3 \text{ Gell-Mann matrices})$
 $f^{\mathrm{ABC}} \longrightarrow \underline{\mathrm{structure \ constants}} \text{ of SU(3)}$
 $\longrightarrow [t^{\mathrm{A}},t^{\mathrm{B}}] = i \, f^{\mathrm{ABC}} t^{\mathrm{C}}$

$$\sum_{A=1,8} \sum_{b=1,3} t_{ab}^{A} t_{bc}^{A} = \delta_{ac} \underline{C_F} \qquad \sum_{A,B=1,8} f^{ABC} f^{ABD} = \delta^{ac} \underline{C_A}$$
$$Tr \left(t_{ab}^{A} t_{ba}^{B} \right) = \delta^{AB} \underline{T_F}$$

Ratios $C_{ m A}/C_{ m F}$, $T_{ m F}/C_{ m F}$

- \longrightarrow Can be determined with greater precision than individual color factors C_A , C_F or T_F
- --> Sufficient to distinguish between gauge groups

Models with 3 color degrees of freedom for quarks:

	SU(3) (QCD)	SO(3)	$U(1)_3$ (Abelian gluon)
$\mathrm{C_A/C_F}$	$\frac{9}{4}$	1	0
$T_{\mathrm{F}}/C_{\mathrm{F}}$	$\frac{3}{8}$	1	3

Techniques to measure the color factor ratios \longrightarrow

- Angular correlations in 4-jet events
- Angular correlations in 5-jet events (not discussed here)
- Event shapes (2- and 3-jet events, α_S)
- ullet Differences between gluon and quark jets ightarrow next section

Angular correlations in 4-jet events

Expression for $e^+e^- \! o \! 4$ jets $\mathcal{O}(lpha_S^2)$ (tree level)

[ERT: R.K. Ellis & D.A. Ross, A.E. Terrano, Nucl. Phys. B178 (1981) 421]

 $\sigma_A \cdots \sigma_E \to {
m kinematic\ terms,\ independent\ of\ the\ gauge\ group}$ ($y \to {
m 2-jet\ invariant\ masses}$)

The angular correlations between the four jets <u>differ</u> for the three diagrams, cf. $g \to gg$ (spin 1 \to 1 1) versus $g \to q\overline{q}$ (spin 1 \to 1/2 1/2)

 \longrightarrow Allows the relative contributions of the coefficients σ_A , $(C_A/C_F) \sigma_C$, etc. to be distinguished experimentally, allowing a determination of the color factor ratios, with $\sigma_A \cdots \sigma_E$ taken from theory

Procedure

- \longrightarrow Select 4-jet events using a jet finder (K_{\perp} , JADE, etc.)
- $\begin{array}{c} \longrightarrow \text{ Order jets by energy } E_1 > E_2 > E_3 > E_4 \\ \text{ Jets 1,2} \longrightarrow \text{ almost always quark jets} \\ \hline \text{ or else} \end{array}$

(DELPHI) tag two of the jets as quark jets using b-tagging (jets 1,2= tagged jets; jets 3,4=untagged jets)

- \longrightarrow For simplicity, usually employ standard angular correlation variables rather than the 2-jet invariant masses y
 - Bengtsson-Zerwas angle:

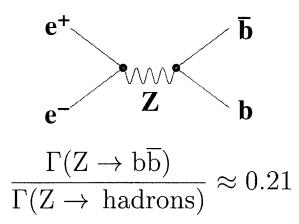
$$\cos \chi_{\rm BZ} = \left| \frac{(\vec{p}_1 \times \vec{p}_2) \cdot (\vec{p}_3 \times \vec{p}_4)}{|\vec{p}_1 \times \vec{p}_2| |\vec{p}_3 \times \vec{p}_4|} \right|$$

• (modified) Nachtmann-Reiter angle:

$$\cos \Theta_{NR^*} = \left| \frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{p}_3 - \vec{p}_4)}{|\vec{p}_1 - \vec{p}_2| |\vec{p}_3 - \vec{p}_4|} \right|$$

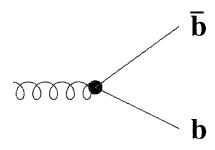
Angle between jets 3 and 4:

$$\cos \alpha_{34} = \frac{\vec{p}_3 \cdot \vec{p}_4}{|\vec{p}_3| \, |\vec{p}_4|}$$

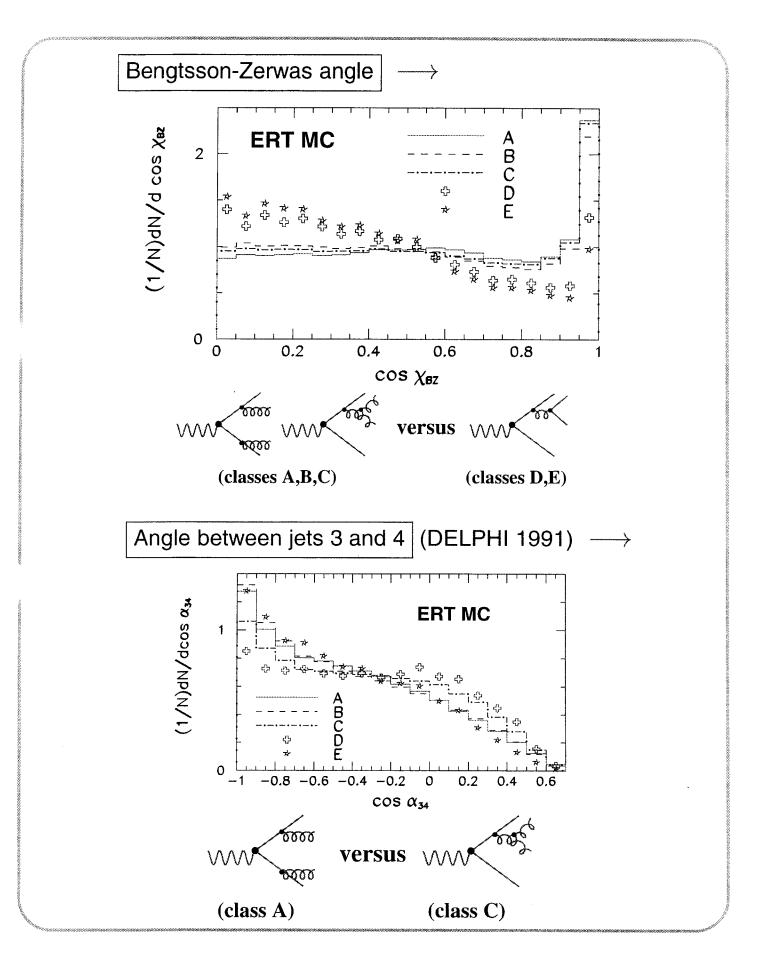

 Account for hadronization using corrections from MC, fit to theoretical expression, using

$$\frac{C_A}{C_F}$$
, $\frac{T_F}{C_F}$, Overall normalization

as the fitted parameters

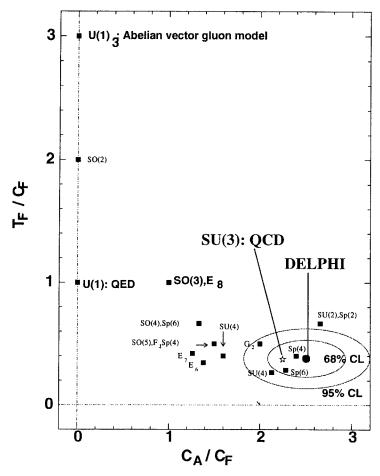

B tagging of quark jets in e⁺e⁻

Almost all b quarks in e⁺e⁻ annihilations at present energies are produced at the <u>electro-weak vertex</u>



i.e. about 1 in 5 events is a b event

lacktriangledown In contrast, only about lacktriangledown lacktriangledown In contrast, only about lacktriangledown lacktriangledow



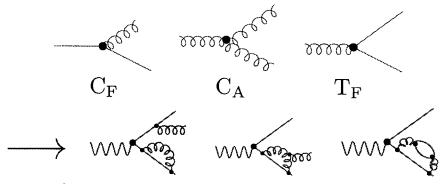
- A jet with a b hadron is overwhelmingly likely to be a QUARK JET
- \bullet This is in contrast to <u>hadron colliders</u> where $g \to b \bar b$ is the <u>dominant</u> production mechanism for b hadrons

Measured $T_{\rm F}/C_{\rm F}$ versus $C_{\rm A}/C_{\rm F}$

DELPHI at LEP-1 (1997) — (b-tagging of jets 1,2)

Of the three gauge groups with three color degrees of freedom

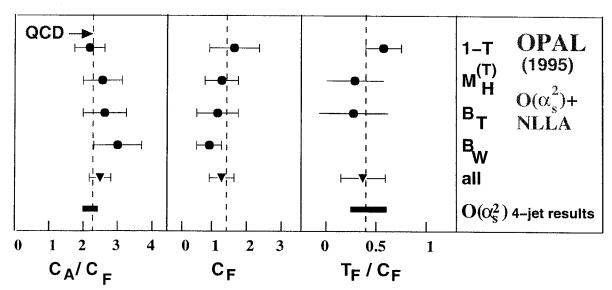
only SU(3) is consistent with the data


$$SU(3) \longrightarrow C_A/C_F = 2.25, T_F/C_F = 0.375$$

Three color degrees of freedom required by

$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$
, etc.

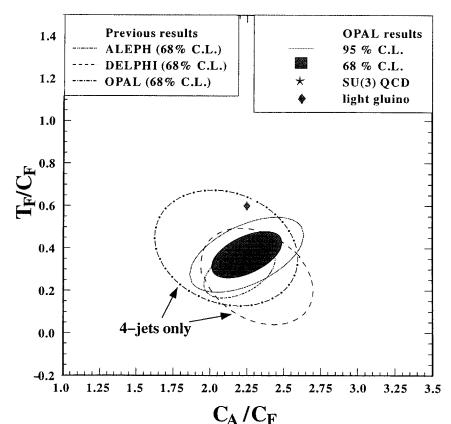
Color factors from 2- and 3-jet events (event shapes: Thrust, etc.)


Virtual corrections to the $\geq \mathcal{O}(\alpha_S^2)$ 2- and 3-jet cross sections contain the same QCD vertices as the tree level 4-jet cross section:

— The $\mathcal{O}(\alpha_S^2)$ +NLLA expressions for experimental observables like thrust can be decomposed into terms

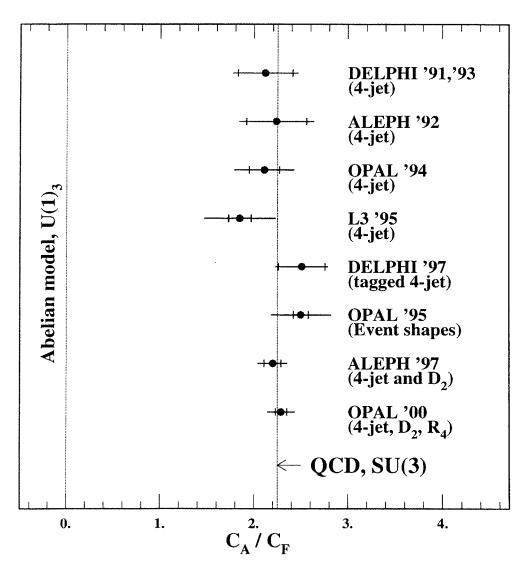
$$\sim \mathrm{C_F^2}$$
, $\mathrm{C_AC_F}$, $\mathrm{T_FC_F}$

 Extract measurements of the color factors using theory valid beyond leading order (complementary to the 4-jet results)

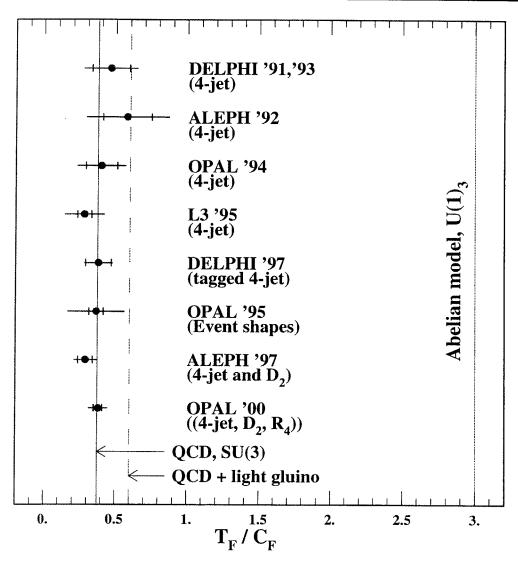


ALEPH at LEP-1 (1997)

- Fit color factor ratios simultaneously using 4-jet angular correlations AND event shapes
- \longrightarrow As the event shape, use the 2- to 3-jet transition variable D $_2$ (aka y_{23} or y_3) from the k_{\perp} jet finder


OPAL at LEP-1 (2000)

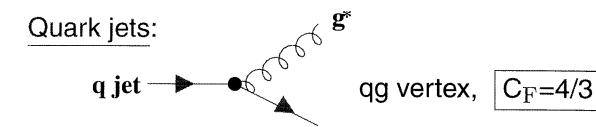
- ---- Same as ALEPH, and, in addition
 - ullet Include the 4-jet rate versus y_{cut} , defined with k_{\perp}
 - Employ NLO calculations ($\mathcal{O}(\alpha_S^3)$) for the 4-jet angular correlations (1998)

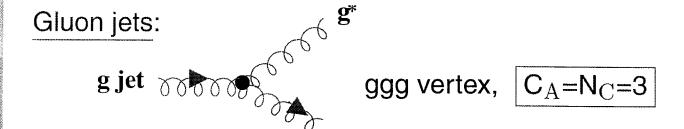

Substantial reduction in the uncertainties compared to the earlier studies based on 4-jet angular correlations alone

Color factor ratio $C_{\rm A}/C_{\rm F}$ from event shapes & 4-jet angular correlations

- --> Excellent agreement with the QCD value of 2.25
- Abelian model (no triple gluon vertex) excluded by 15 standard deviations!

Color factor ratio $T_{\rm F}/C_{\rm F}$ from event shapes & 4-jet angular correlations




- Agreement with QCD value of 0.375
- Light gluino mimics 4-quark events
 G. Farrar (1990)
- Effective number of flavors increases from 5 to 8.
- \longrightarrow Light gluino hypothesis disfavored by the data (>3 s.d.)

Differences between gluon & quark jets

QUARK and GLUON jets have different coupling strengths for gluon emission:

expressed by the color factors

The color charge of a gluon is

$$\frac{C_A}{C_F} = \frac{9}{4} = 2.25$$

larger than the color charge of a quark

Greatest theoretical interest in G/Q jet differences \longrightarrow Multiplicity ratio $r_{g/q}$

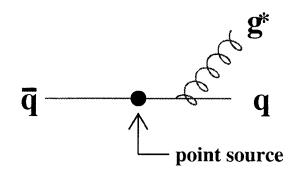
ullet Fundamental prediction of QCD \longrightarrow

The number of soft gluons emitted within a gluon jet should be $\frac{\sim \text{twice}}{}$ that emitted within a quark jet:

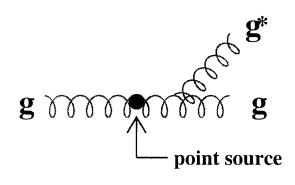
$$r_{g/q} \equiv \frac{\langle n \rangle_{gluon}}{\langle n \rangle_{quark}} \approx \frac{C_{A}}{C_{F}} = 2.25$$

This result is valid only for <u>soft</u> gluons:

$$\mathsf{E}_{gluon} << \mathsf{E}_{\mathrm{jet}} \mid \longrightarrow \mathsf{asymptotic} \; \mathsf{condition}$$


• For \underline{hard} gluon emission, the quark jet develops like a gluon jet \longrightarrow

$$\rightarrow r_{g/q} \sim 1$$


Quark & gluon jets in QCD calculations

G and Q jets are defined through pair production from a color singlet point source

Natural Occurrence

e⁺e⁻ annihilations

 $\Upsilon o \gamma$ gg decays

Jet properties defined by an $\underline{\mathit{inclusive sum}}$ over the event or event hemispheres \rightarrow UNBIASED JETS

- → No jet-finding algorithm
- No ambiguity about which particles to associate with gluon or quark jet production

QCD prediction for $r_{g/q}$ (unbiased jets)

$$r_{g/q} = \frac{\langle n \rangle_{gg \, hemis.}}{\langle n \rangle_{q\bar{q} \, hemis.}}$$

- =2.25 Asymptotic: E << E $_{
 m jet}$
 - \longrightarrow Full phase space (using <u>ALL</u> particles), $E_{\rm jet} \rightarrow \infty$ Brodsky & Gunion (1976)

Veneziano *et al.* (1978)

 $\longrightarrow \text{ Limited phase space (using } \underline{SOFT} \text{ particles only),} \\ E_{jet} = \text{finite, as applies to experiment}$

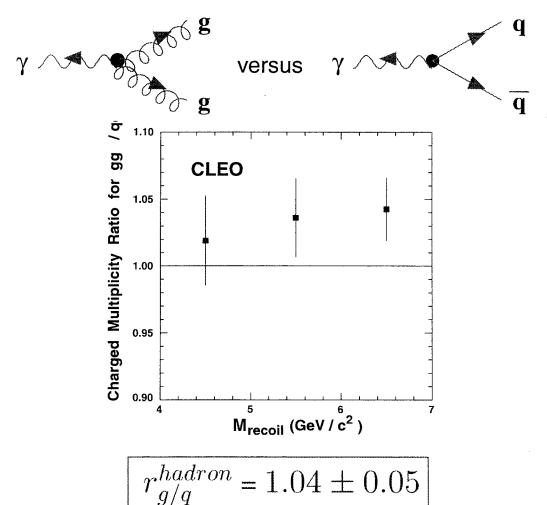
Khoze, Lupia & Ochs (1998)

- ~ 1.5 Full phase space, finite E $_{
 m jet}$ ~ 40 GeV (LEP-1)
 - $\rightarrow \alpha_S$ corrections up to n.n.l.o.: $r_{g/q} \approx 2.1$

Malaza & Webber (1984); Gaffney & Mueller (1985)

- \longrightarrow Energy conservation up to n.n.l.o.: $r_{g/q} pprox 1.7$

$$r_{g/q} \approx 1.5$$

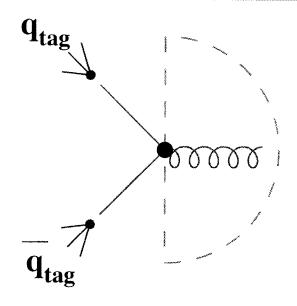

Lupia & Ochs (1997) Eden & Gustafson (1998)

These calculations are based on massless quarks

Unbiased gluon jets from \(\cap \) decays

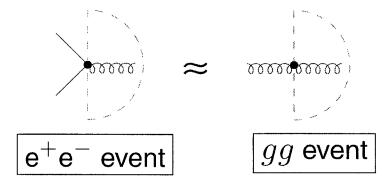
CLEO at CESR, $e^+e^ E_{c.m.} \approx 10$ GeV (1997)

- \longrightarrow Radiative Υ decays: $e^+e^- \rightarrow \Upsilon(1S) \rightarrow \gamma \, gg$
- Compare with $e^+e^- \to \gamma q \overline{q}$ initial state radiation events with the same recoil mass, collected in the continuum.

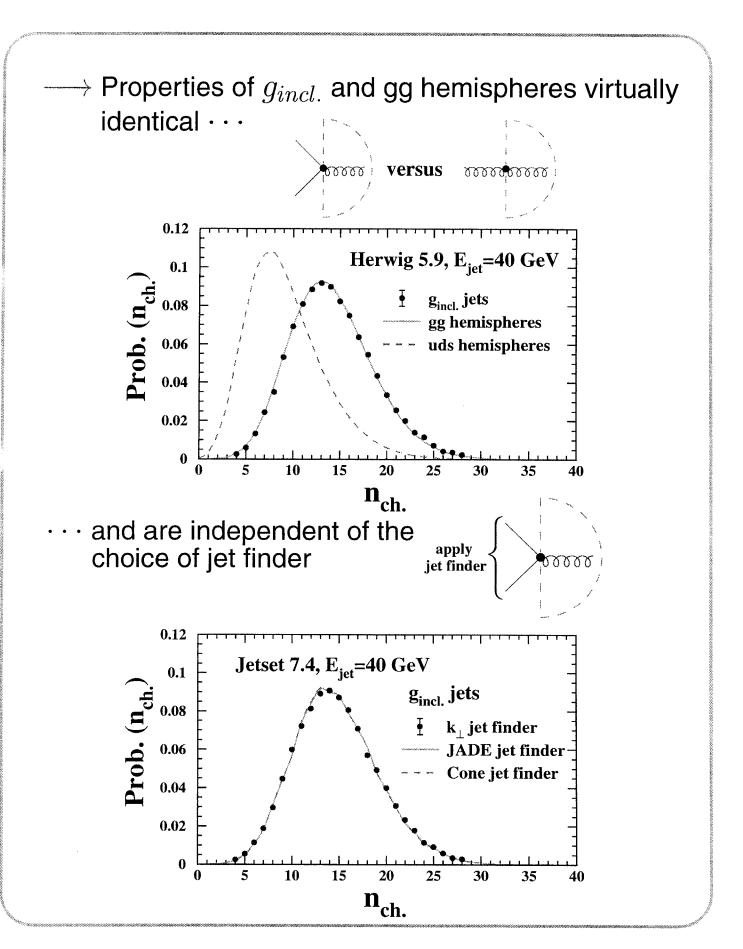


- \longrightarrow Jet energy \sim 5 GeV <u>too low</u> to observe a gluon-quark jet difference
- Non-perturbative corrections are likely to be important at this scale

Unbiased gluon jets from Z⁰ decays

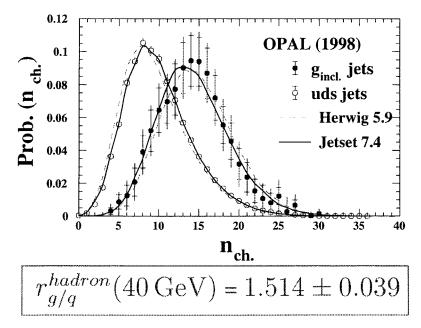

OPAL at LEP-1, $e^+e^ E_{c.m.} \approx 91$ GeV (1996-1998)

$$\longrightarrow$$
 Gluon jet hemispheres in ${
m e^+e^-}\! o {
m Z^0}\! o q_{tag}\overline{q}_{tag}g_{incl.}$ events

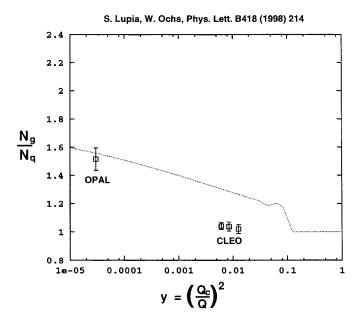


Gluon jet " $g_{incl.}$ " defined by the particles in the hemisphere opposite to a hemisphere with two tagged quark jets (tagged quark jet is a b jet)

 \longrightarrow Invoke the equivalence of the $g_{incl.}$ and gg event hemispheres (exact in the limit of colinear q and \overline{q})



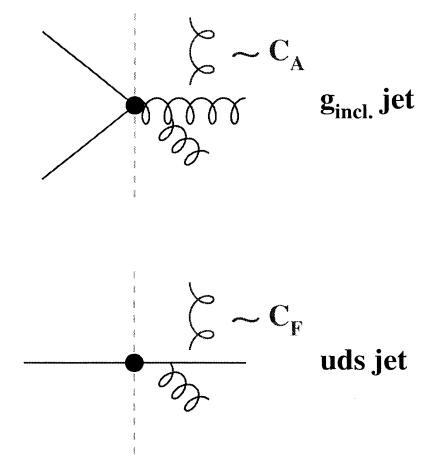
ightarrow Tested using the QCD Monte Carlo for which high energy gg production from a color singlet point source is possible!



Multiplicity distribution $\longrightarrow g_{incl.}$ jets

 $4 imes 10^6 \, {
m Z}^0 {
m decays} \, \longrightarrow \, 440 \, {
m selected} \, g_{incl.}$ jets (82% purity)

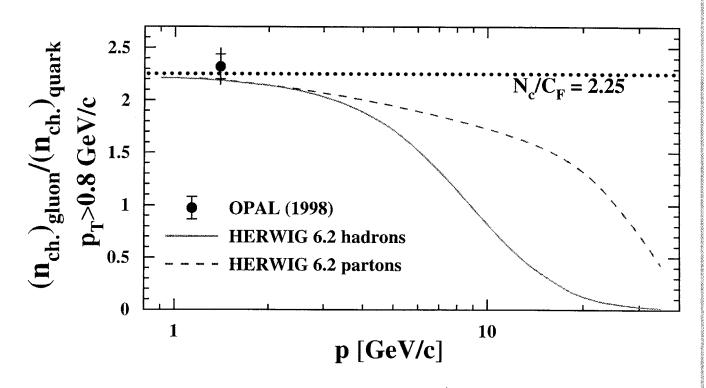
Compare the results of CLEO and OPAL to theory ------



Measurement agrees with QCD prediction at the Z^0 scale CLEO energies \rightarrow non-perturbative effects are large

Multiplicity under the asymptotic condition for finite jet energies, $E_{particle} << E_{jet}$

Fulfilled by examining soft particles at large p_{\perp} in the <u>unbiased</u> gluon and quark jets


(V. Khoze, S. Lupia & W. Ochs, Eur. Phys. J. C5 (1998) 77)

Provides a means to measure C_A/C_F directly from a ratio of hadron multiplicities

$r_{g/q}$ for soft particles at large p_{\perp}

 $p_{\perp}>0.8~{\rm GeV}/c \longrightarrow ~~p_{\perp}<0.8~{\rm GeV}/c$ dominated by hadronization, decays

Data (p < 2 GeV/c)

Herwig hadrons, 91 GeV

Herwig partons, 91 GeV

Herwig hadrons, 10 TeV

Herwig partons, 10 TeV

Jetset partons, 91 GeV, $C_A = C_F$

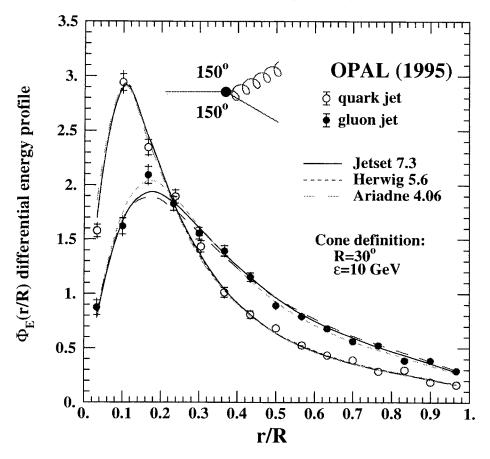
 2.32 ± 0.18

2.21

2.23

2.24

2.25

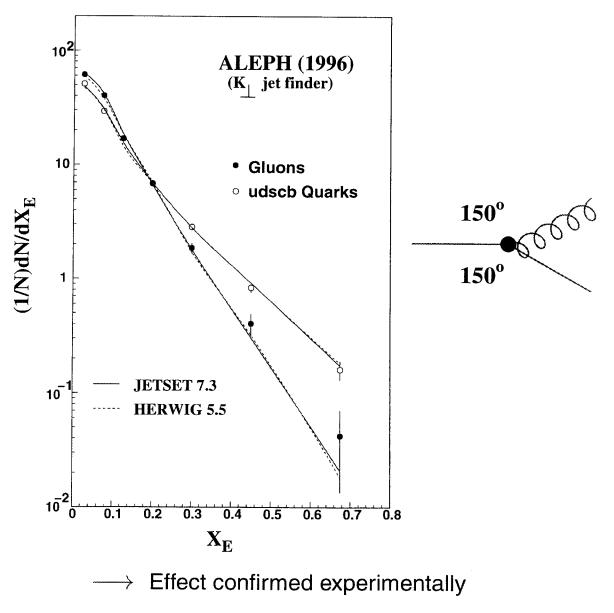

1.00

 \longrightarrow Quantitative verification of the QCD prediction from 1976!

Width difference between gluon and quark jets

Gluon jets are predicted to be less collimated than quark jets

- a consequence of the greater radiation of soft gluons in a gluon jet compared to a quark jet
- the fraction of a jet's visible energy close to the jet axis is larger for quark jets than for gluon jets



- The prediction is confirmed experimentally
- \sim 30% of the quark jet's energy is within 4° of the jet axis compared to only \sim 17% for the gluon jets
- --- QCD Monte Carlos agree well with data

Fragmentation function difference ----

$$\frac{1}{\sigma_{TOT}} \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\mathbf{x}_{\mathrm{E}}} \qquad x_E = \frac{2\,E_{particle}}{\sqrt{s}}$$

The larger multiplicity of gluon jets implies their fragmentation function is <u>softer</u>

Unbiased gluon jets from Z⁰ decays

 \longrightarrow Provide a quantitative test of the QCD prediction for $r_{g/q}$

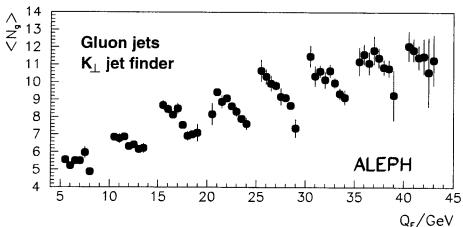
Can differences between gluon & quark jets be used for quantitative tests of QCD at other scales ?? Can we use biased jets from Z^0 decays ??

 $\underline{\mathsf{ANSWER}} \longrightarrow \underline{\mathsf{YES}}$, if the appropriate scale is chosen for the jets

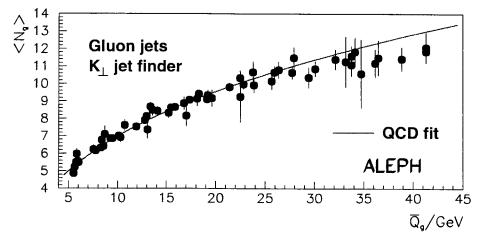
● QCD coherence → Evolution of parton cascade depends on a <u>transverse momentum-like</u> "hardness scale":

$$\kappa = \mathsf{E}_{jet} \sin\left(\frac{\theta_{\min}}{2}\right)$$

$$\theta_{\min} = \min\left(\theta_A, \theta_B\right)$$
(Dokshitzer, Khoze, Ochs ···)


Corresponds to $\kappa = \mathsf{E}_{jet}$ for $\theta \to 180^\circ$

 $\longrightarrow \underline{\mathcal{K}}$ is more appropriate for jets in a general 3-jet topology than the jet energy

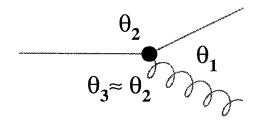

Gluon jet $\langle n_{ch.} angle ightarrow$ energy versus κ value

ALEPH at LEP-1 (1997) \longrightarrow

- (1) Gluon multiplicity in general 3-jet events versus jet energy
 - Each of the eight bands corresponds to jets with the same energy but with a different angle to the nearest jet

- The jet multiplicity in biased events depends critically on the event topology, not just the jet energy
- (2) Gluon multiplicity in 3-jet events versus \int jet κ value

 $\longrightarrow \kappa$ provides a much more meaningful scale for jets embedded in a general 3-jet event topology


Scale dependence of gluon and quark jet fragmentation functions

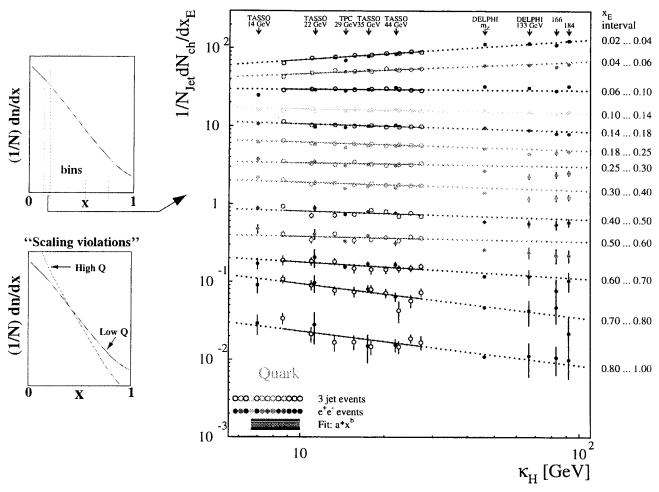
DELPHI at LEP-1 (1999) \longrightarrow

Select general 3-jet events:

and also 1-fold symmetric Y events:

using the k_{\perp} and Cambridge jet finders

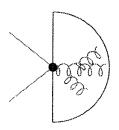
- Use b-tagging to identify <u>gluon jets</u> and light <u>udsc quark</u> events
- Measure the fragmentation functions

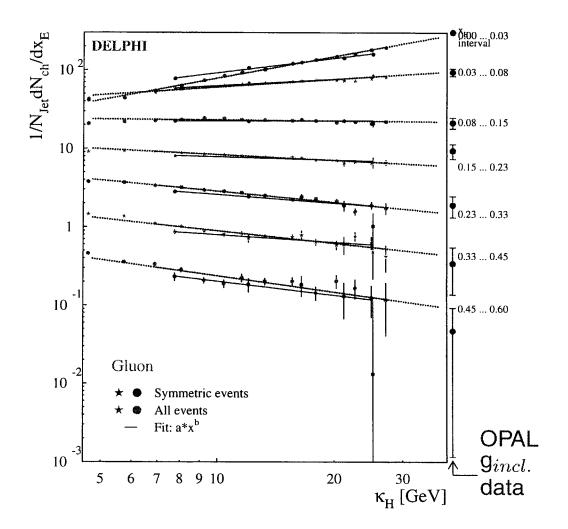

$$\longrightarrow$$
 D(x_E ,Q) = $\frac{1}{N} \frac{\mathrm{d} \, \mathrm{n}}{\mathrm{d} x_E}$; $x_E = \frac{2E}{\sqrt{s}}$

of the two lower energy jets (one gluon jet, one quark jet) versus the scale $Q = \kappa$

Quark jet fragmentation function versus κ

DELPHI (1999) *→*


Compare the quark jet ff from 3-jet events $(Q = \kappa)$ to $0.5 \times$ the ff function from unbiased quark jets (hemispheres of e^+e^- events, $Q = E_{c.m.}/2$)



- The quark jet results from 3-jet events correspond well with the results from the unbiased jets
- Another good indication that κ is a meaningful scale for jets in a general 3-jet topology

Gluon jet fragmentation function versus κ

Compare the gluon jet ff from 3-jet events $({\bf Q}=\kappa) \ \ {\rm to\ the\ ff\ function\ from\ the\ unbiased}$ gluon jet hemispheres $\ {\bf Q}{\sim}\,40\ {\rm GeV}$

The correspondence of the results between gluon jets from
 3-jet events and the unbiased gluon jets seems reasonable

Scale dependence of fragmentation functions D_g and D_q described by $DGLAP\ evolution\ equations$

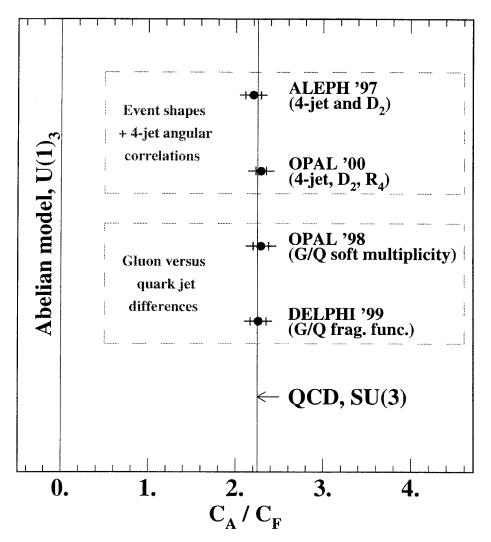
Dokshitzer, Gribov, Lipatov, Altarelli, Parisi

Leading order evolution →

$$\frac{dD_g(x_E;Q)}{d\ln Q} = \frac{\alpha_S(Q)}{2\pi} \int_{x_E}^1 \frac{dz}{z} [P_{g\to gg}(z) D_g(\frac{x_E}{z}; Q) + P_{g\to q\overline{q}}(z) D_q(\frac{x_E}{z}; Q)]$$

$$\frac{dD_q(x_E;Q)}{d\ln Q} = \frac{\alpha_S(Q)}{2\pi} \int_{x_E}^1 \frac{dz}{z} [P_{q\to qg}(z) D_q(\frac{x_E}{z}; Q) + P_{q\to gq}(z) D_g(\frac{x_E}{z}; Q)]$$

$$\longrightarrow$$
 Splitting functions $P_{g \to gg} \sim \mathrm{C_A}$, $P_{q \to qg} \sim \mathrm{C_F}$


$$\longrightarrow$$
 Parametrize D_g and D_q at $Q = \kappa = 5.5$ GeV :
$$D(x_E) = ax_E^b (1-x_E)^c \exp(-d\ln^2 x_E)$$

Perform simultaneous fit of $(a,b,c,d)_p$; p=q,g, C_A and Λ_{QCD} using 1st order DGLAP evolution

$$\longrightarrow C_A = 2.97 \pm 0.12, \ \Lambda_{QCD} = 0.40 \pm 0.11 \ {\rm GeV}$$

$$\frac{C_A}{C_F}$$
 = 2.26 ± 0.16

$C_A/C_F \longrightarrow$ Summary

- Precision of the measurement of C_A/C_F from <u>differences</u> between gluon and quark jets is similar to that from the 4-jet angular correlations & event shapes
- ---> Precise measurements using very different techniques
- Direct verification of the SU(3) gauge group underlying strong interactions!

(III) Coherence and LPHD

<u>Coherence</u>

— QCD interference effects affecting the multiplicity and radiation pattern of soft gluons

General feature —— Coherence <u>reduces</u> the multiplicity of soft gluons because of <u>destructive interference</u>

- <u>LPHD</u>

 — Local Parton-Hadron Duality:
 The conjecture that the angular and energy distributions of soft hadrons are a direct reflection of the corresponding underlying distributions of soft partons
- Three phenomenological parameters in this approach
 - (1) $\Lambda_{\rm QCD}$ (effective value of α_S),
 - (2) $Q_0 \sim m_\pi$ to terminate the perturbative shower
 - (3) An overall normalization constant $\,K\,$ to relate the hadron and parton level distributions
- \longrightarrow LPHD was used implicitly for the comparison of $r_{g/q}$ in unbiased gluon and quark jet results with the analytic results, shown earlier

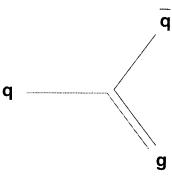
Coherence studies in e⁺e⁻

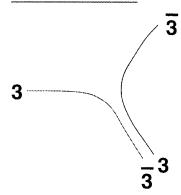
- (1) Inter-jet multiplicities ("String effect")
- (2) Event particle multiplicity versus \sqrt{s}
- (3) Shape of the particle momentum distribution "Hump-backed spectra"

Due to lack of time I will not discuss:

- (4) Heavy versus light quark jet multiplicity
- (5) Two particle correlations (azimuthal, momentum, particle-particle correlations (PPC))

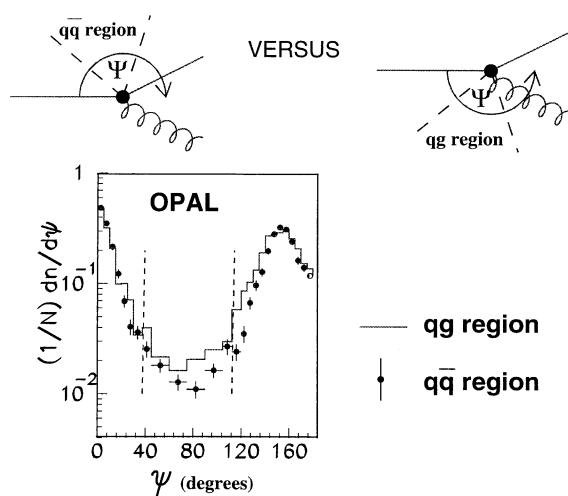
There is much additional circumstantial evidence for the existence of coherence effects and the validity of LPHD


- \longrightarrow Appropriateness of the $\kappa = \mathsf{E}_{jet} \sin\left(\frac{\theta_{\min}}{2}\right)$ scale for jets
- \longrightarrow Near perfect agreement of parton level calculations with data for the ratio $r_{g/q}$ and higher moments of multiplicity in unbiased gluon and quark jets

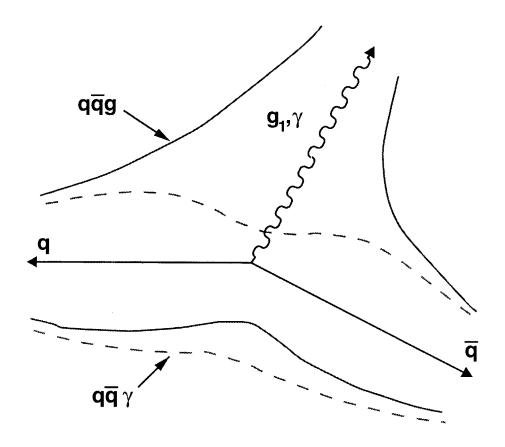

The evidence taken together provides a rather convincing case for the <u>existence of coherence effects</u>, and by implication the <u>relevance of LPHD</u> for many distributions, providing a basic and comprehensive test of perturbative QCD in the <u>soft domain</u>

(1) Inter-jet multiplicities: The String effect

First predicted in the context of the LUND string model of hadronization (ca. 1979)

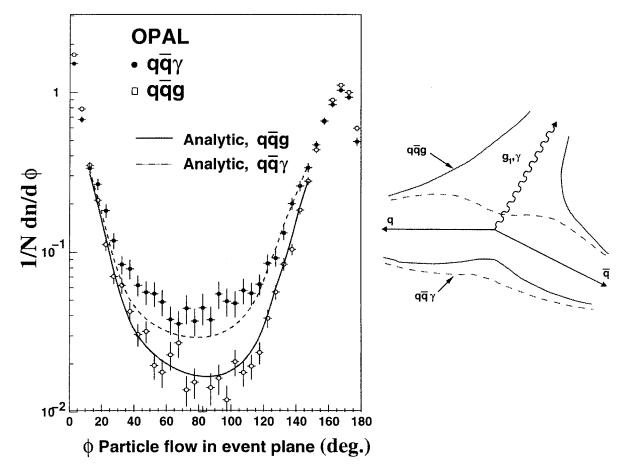

 \longrightarrow Color flow in 3-jet events connects the q and \overline{q} with the g

- $\longrightarrow \underline{suppression}$ of soft gluons in the region between the q and \overline{q} relative to the region between the q (or \overline{q}) and g
- \longrightarrow A depletion of multiplicity in the $q\overline{q}$ region compared to the qg (or $\overline{q}g$) region
- First studied experimentally by the JADE Collaboration at PETRA (1981)


OPAL (1991) — Charged particle multiplicity flow in Y events

- \longrightarrow Clear depletion in $q\overline{q}$ region compared to qg region
- \longrightarrow Integrate over inter-jet region (\sim 25-75% of the range between the peaks \longrightarrow dashed vertical lines)
- $m_{q\overline{q}} \ {
 m region} \ / n_{qg} \ {
 m region} = 1.66 \pm 0.09 \ {
 m (data)}$ $= 1.54 \ {
 m (JETSET} \ {
 m o} \ {
 m coherence} \ {
 m \& string hadronization)}$ $= 1.02 \ {
 m (COJETS} \ {
 m o} \ {
 m coherence} \ {
 m \& independent hadronization)}$
- JETSET and COJETS both describe quark gluon jet differences well
- The data provide evidence for coherence

String effect using $q\overline{q}\gamma$ versus $q\overline{q}g$ events


- → Azimov, Dokshitzer, Khoze & Troyan (1985)
- \longrightarrow Select 3-jet $(q\overline{q}g)$ and radiative 2-jet $q\overline{q}\gamma$ events with similar kinematics

- \longrightarrow Examine particle multiplicity in the $q\overline{q}$ region
- Oherence & LPHD predict a smaller particle density in this region for $q\overline{q}g$ than for $q\overline{q}\gamma$ due to soft gluon interference between the two color dipoles
- $\longrightarrow q\overline{q}\gamma$ events have only <u>one</u> dipole \to no interference

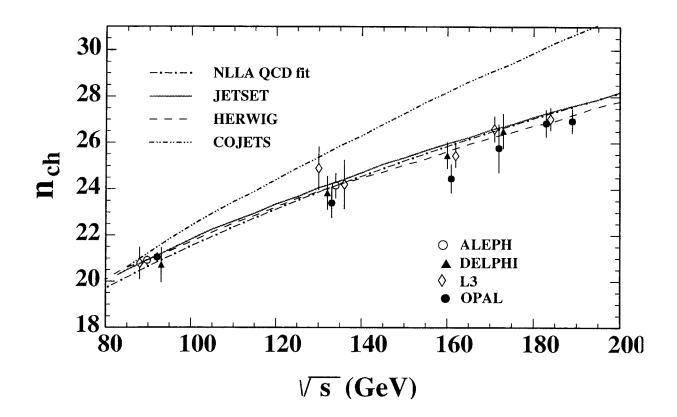
OPAL (1995) →

- \longrightarrow Measure particle flow in the $q\overline{q}$ region in $q\overline{q}g$ and $q\overline{q}\gamma$ events
- Compare data to the leading order prediction for the soft gluon radiation pattern in the corresponding events



- The predicted reduction in particle density for $q\overline{q}g$ events compared to $q\overline{q}\gamma$ events is observed
- The magnitude of the measured effect is very similar to that predicted by the analytic prediction
- Provides more circumstantial evidence for coherence
 & LPHD as the origin of the string effect

Multiplicity <u>within</u> jets ——> Intra-jet multiplicities & angular ordering


Coherence in the parton shower -----

- Destructive interference leads to a reduction in the phase space available for gluon emission
- The principal manifestation is the <u>angular ordering</u> of parton emissions

This reduction in phase space corresponds to a smaller overall multiplicity and a smaller growth of multiplicity with \sqrt{s} than in the absence of coherence

(2) Event particle multiplicity versus \sqrt{s}

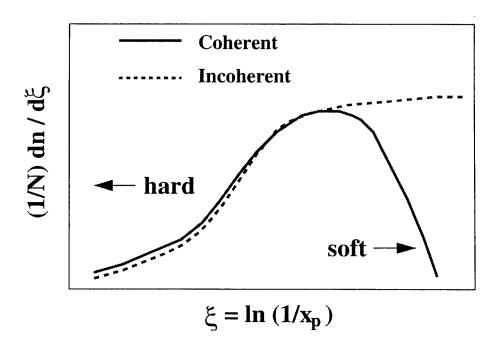
Models with coherence (PYTHIA, HERWIG, ARIADNE)

---- Energy scaling is consistent with data

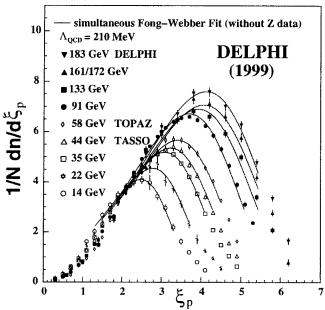
Model without coherence (COJETS)

 \longrightarrow Growth of multiplicity with \sqrt{s} is too large, as expected from the lack of suppression of phase space

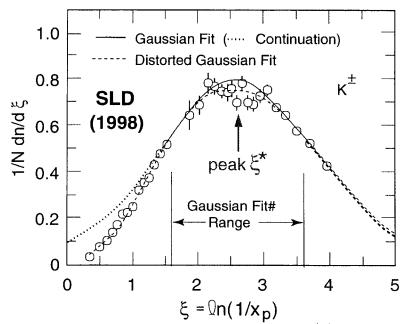
All four MCs are tuned to the 91 GeV data


They provide essentially <u>equivalent</u> descriptions for global event properties like multiplicity

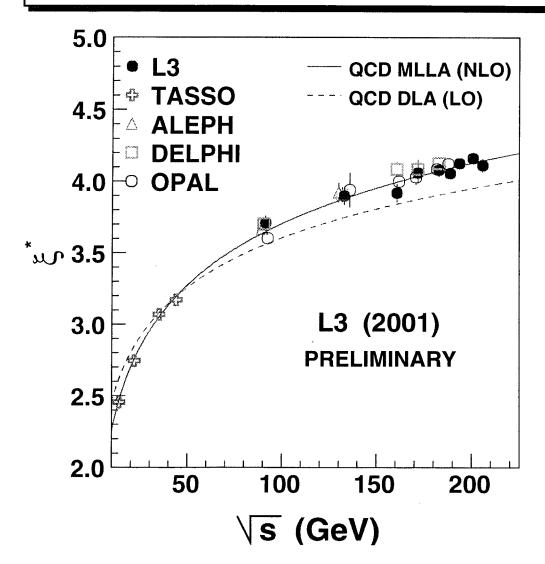
(3) Suppression of soft particle multiplicity: the "Hump-backed" spectra


- Angular ordering within jets suppresses the total event multiplicity (as discussed above)
- The suppression mostly affects soft particles
- \longrightarrow Examine the differential momentum spectra of particles, not just the mean value $\langle n \rangle$
- QCD predicts an approximately Gaussian shape for the differential particle momentum spectrum when expressed using the variable

$$\xi \equiv \ln\left(\frac{1}{x_p}\right)$$
 with $x_p = \frac{2p}{\sqrt{s}}$


Fong & Webber (1989); Dokshitzer, Khoze & Troyan (1992)

The data at the hadron level are indeed observed to follow a shape in close agreement with the parton level prediction of a "distorted Gaussian"



Two free parameters: $\Lambda_{
m QCD}$ and normalization $K(\sqrt{s})$ ($Q_0=\Lambda_{
m QCD}$ — "limited spectrum approximation")

The position of the peak, denoted ξ^* , is independent of the normalization and depends on $\Lambda_{\rm OCD}$ only

Energy evolution of the peak position: $\boldsymbol{\xi}^*$ versus \sqrt{s}

- The agreement of the LO prediction with data is <u>much</u> worse, suggesting that the agreement of the NLO result is not "trivial"
- Similar results have been obtained at HERA and the TEVATRON

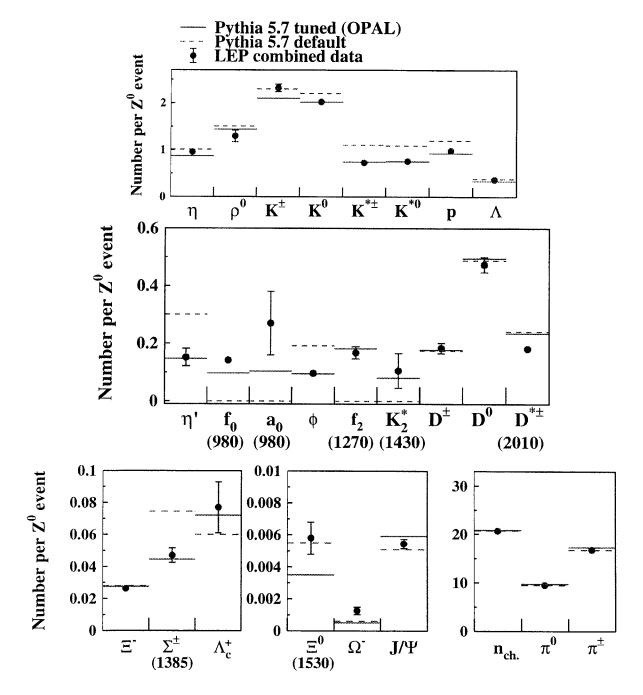
(IV) Identified particles

- \longrightarrow Much work done at PEP & PETRA (E $_{\mathrm{c.m.}} \approx 30-35$ GeV)
- \longrightarrow LEP/SLC results more precise and more extensive due to the larger data samples ($\sim 4\times 10^6$ events versus $\sim 10^5$)

Mesons with measured production rates at LEP/SLC:

Ang. mom.	Spin	J^{PC}	
L = 0	S = 0	0-+	$\pi^{\pm}, \pi^{0}, \eta, \eta', K^{0}, K^{\pm},$
			D^0, D^{\pm}, D_S^{\pm}
L = 0	S = 1	1	$\rho^{\pm}, \rho^0, \omega, \phi, K^{*0}, K^{*\pm},$
			$D^{*\pm}, D_S^{*\pm}, J/\Psi, \Psi(2S), B^*$
L=1	S = 0	1+-	\longrightarrow none observed
L=1	S = 1	0++	$f_0(980), a_0(980)$
		1++	\longrightarrow none observed
		2++	$f_2(1270), f_2'(1525)$
L = 1			B_J^st (multiplet(s) not identified)

Baryons with measured production rates at LEP-1:

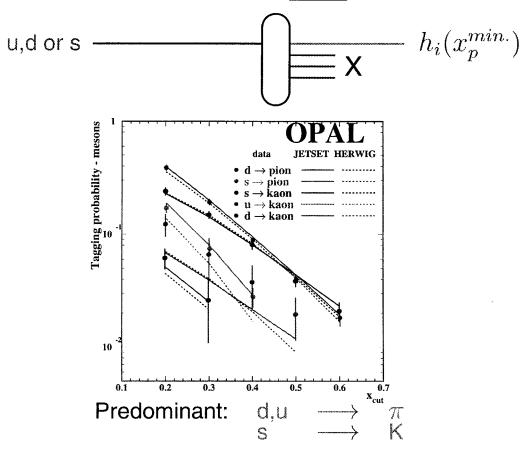

Ang. mom.	Spin	J^P	
L = 0	S = 1/2	$(1/2)^+$	$p, \Lambda, \Sigma^+, \Sigma^-, \Sigma^0,$
			$p, \Lambda, \Sigma^{+}, \Sigma^{-}, \Sigma^{0},$ Ξ^{-}, Λ_{C}^{+} $\Delta^{++}, \Sigma(1385)^{\pm},$ $\Xi(1530)^{0}, \Omega^{-}$
L = 0	S = 3/2	$(3/2)^+$	$\Delta^{++}, \Sigma(1385)^{\pm},$
		:	$\Xi(1530)^0, \Omega^-$
L = 1	S=1/2		

The measured hadron production rates can be used to extract basic information on the hadronization process

- ---> Differences between gluon & quark jet hadronization
- Tests of models for baryon production

In addition, these measurements provide basic input to tune of QCD Monte Carlo event generators, used for many other studies

Production rates of identified particles

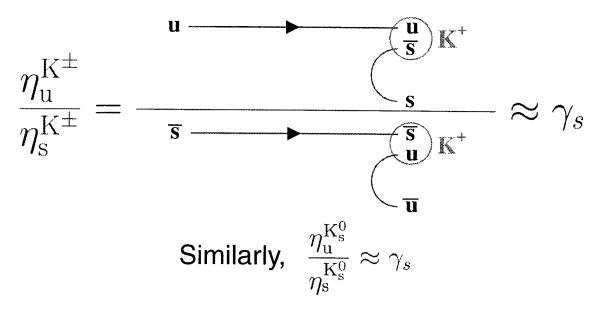


The overall description of the hadron production rates by the tuned Monte Carlo is quite good

- Measure rates H_i for a hemisphere to contain an identified $\pi^+, K^+, K_S^0, p, \Lambda$ or c.c. as its highest momentum particle
- Invert the equations

$$H_i = 2 \sum_{q \to i} \eta_{q \to i} R_q$$
 with $R_q = \Gamma(Z \to q\overline{q})/\Gamma(Z \to hadrons)$

to find the tagging probabilities $\eta_{q \to i}$ for a quark of flavor q to appear in a leading hadron of type i


Suppressed: $d,u \longrightarrow K$

The primary q, \overline{q} appear as valence quarks in the <u>highest</u> momentum hadrons (the leading particle effect)

Strangeness suppression factor:

$$\gamma_s \equiv \frac{\text{Prob.(s)}}{\text{Prob.(u,d)}}$$

 $u\overline{u}$ ($d\overline{d})$ versus $s\overline{s}$ pair production from the vacuum

Contributions from decays of higher mass resonances, etc., predicted to be small (Jetset/Pythia)

$$\gamma_s = 0.422 \pm 0.077$$
 $(x_p^{min.} > 0.20)$

Method does not compare yields for hadrons with different masses, e.g. K/π , or rely on tuning of MC parameters

$$\longrightarrow \gamma_s = 0.31$$
 in Jetset/Pythia (OPAL version)

$$\longrightarrow$$
 Similar result, $\gamma_s=0.26\pm0.12$, from SLD (PRL78 (1997) 3442)

Not discussed in these lectures

- Flavor independence of α_S
- Running b quark mass
- $ullet g
 ightarrow c \overline{c}$ and $g
 ightarrow b \overline{b}$
- \bullet Power corrections to \sqrt{s} evolution of the mean values of event shapes
- Rapidity & flavor correlations, etc.
- ullet 2γ physics