The search for physics Beyond the Standard Model

Joseph Lykken Fermilab and University of Chicago

We are already in the era of Beyond the SM physics!

FROM STANDARD MODEL HELL 2002

neutrino oscillations

with this plot from SuperK in 1998, everybody started believing in atmospheric v oscillations

neutrino oscillations

neutrino masses imply new physics: need right-handed v's and/or violate lepton number

this is great!

but the situation with solar neutrino oscillations was more confused...

and the LSND result was even less convincing.

solar neutrinos

New results from SNO

direct evidence for flavor conversion of solar v's

observation of day/night effect

v Reactions in SNO

-Good measurement of v_e energy spectrum -Weak directional sensitivity $\propto 1-1/3\cos(\theta)$ - v_e only.

- Equal cross section for all v types

- Measure total ⁸B v flux from the sun.

-Low Statistics -Mainly sensitive to $\nu_{e,\prime}$ some sensitivity to ν_{μ} and ν_{τ} -Strong directional sensitivity

Shape Constrained Neutrino Fluxes Signal Extraction in Φ_{CC} , Φ_{NC} , Φ_{ES} . E_{Theshold} > 5 MeV $\Phi_{cc}(v_e) = 1.76^{+0.06}_{-0.05} (stat.)^{+0.09}_{-0.09} (syst.) x10^{6} cm^{-2}s^{-1}$ $\Phi_{es}(v_x) = 2.39^{+0.24}_{-0.23}$ (stat.) $^{+0.12}_{-0.12}$ (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{nc}(v_x) = 5.09^{+0.44}_{-0.43}$ (stat.) $^{+0.46}_{-0.43}$ (syst.) x10⁶ cm⁻²s⁻¹ Signal Extraction in Φ_{e} , $\Phi_{u\tau}$. Φ = 1.76^{+0.05}_{-0.05} (stat.) ^{+0.09}_{-0.09} (syst.) x10⁶ cm⁻²s⁻¹ $\Phi_{\rm ur} = 3.41^{+0.45}_{-0.45}$ (stat.) $^{+0.48}_{-0.45}$ (syst.) x10⁶ cm⁻²s⁻¹

Purely sterile oscillations excluded at 5.4 σ

global solar data favors LMA, disfavors SMA at nearly 4σ

Solution	Δm^2	$\tan^2(\theta)$	$f_{\rm B, best}$	$\chi^2_{ m min}$	g.o.f.
LMA	$5.0 imes10^{-5}$	$4.2 imes10^{-1}$	1.07	45.5	49%
LOW	$7.9 imes10^{-8}$	$6.1 imes10^{-1}$	0.91	54.3	19%
VAC	$4.6 imes10^{-10}$	$1.8 imes10^{0}$	0.77	52.0	25%
SMA	$5.0 imes10^{-6}$	$1.5 imes 10^{-3}$	0.89	62.7	5.1%
Just So ²	$5.8 imes10^{-12}$	$1.0 imes10^{0}$	0.46	86.3	$\sim 0\%$
Sterile VAC	$4.6 imes10^{-10}$	$2.3 imes10^{0}$	0.81	81.6	$\sim 0\%$
Sterile Just So ²	$5.8 imes10^{-12}$	$1.0 imes10^{0}$	0.46	87.1	$\sim 0\%$
Sterile SMA	$3.7 imes10^{-6}$	$4.7 imes10^{-4}$	0.55	89.3	$\sim 0\%$

Bahcall, Gonzalez-Garcia, Pena-Garay, hep-ph/0204314 Barger *et al*, hep-ph/0204253 10

are we converging on a **STANDARD MODEL** of v oscillations?

NO

two big mysteries:

➢ is the LSND result correct?

where do v masses and mixings come from?

is the LSND result correct?

With the latest results on solar, atmospheric, and accelerator v-oscillation searches (3 Δm^2 s), we have an interesting situation:

Need to definitively check the LSND result!

miniBooNE:

Goal: to definitively test the LSND signal. First, with a $\nu_{\mu} \rightarrow \nu_{e}$ appearance search. Then, with a $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance search. Then, if a signal is seen, with a 2nd detector.

Dec. 1997: Proposal submitted June 2002: experiment begins

v's violate CPT? look for it now:

- SuperK atmospheric data
- KamLAND reactor antineutrinos

Barenboim, Borissov, JL, Smirnov, hep-ph/0108199

SuperK atmospheric data is happy with CPT or without it

KamLAND is looking for LMA "solar" oscillations in reactor *antineutrinos*.

In CPT violating scenario, KamLAND does not see oscillations!

Motivations for BSM physics scenarios

> To address some theoretical deficiency or gap in the SM

> To explain some anomaly in somebody's data

> Because it isn't forbidden, and we know how to look for it

Motivations for BSM physics scenarios

> To address some theoretical deficiency or gap in the SM

Prime example: the naturalness and hierarchy problems of the SM:

- what stabilizes the separation between the electroweak breaking scale and higher scales e.g. the Planck scale?
- why is the gap between these scales so large (~16 orders of magnitude)?

Prime example: the naturalness and hierarchy problems of the SM

3 competing BIG IDEAS to solve these problems:

- Supersymmetry (with weak scale soft breakings)

new Strong Dynamics (technicolor, topcolor)

Extra Dimensions (large, warped, etc)

Note: as far as we know,

are happy with all 3 of these!

- Supersymmetry (with weak scale soft breakings)

new Strong Dynamics (technicolor, topcolor)

Extra Dimensions (large, warped, etc)

Motivations for BSM physics scenarios

> To explain some anomaly in somebody's data

Prime examples:

- the neutrino anomalies
- anomalies in b production at LEP, Tevatron

Motivations for BSM physics scenarios

> Because it isn't forbidden, and we know how to look for it

Examples:

Z primes, leptoquarks, magnetic monopoles, etc.

Prime example: the naturalness and hierarchy problems of the SM

3 competing BIG IDEAS to solve these problems:

Supersymmetry (with weak scale soft breakings)

new Strong Dynamics (technicolor, topcolor)

Extra Dimensions (large, warped, etc)

Supersymmetry

> none of the sparticles have been discovered yet

> most of the dark matter in the universe maybe the lightest sparticle

Why else do we like SUSY?

> only possible extension of spacetime symmetries

> gauge coupling unification

radiative electroweak breaking if top is heavy

> MSSM predicts light Higgs boson < 130 GeV

MSSM = Minimal Supersymmetric SM = supersymmetrize the SM with *minimal* Higgs sector

SUSY is a framework, not a model

Basic idea:

- There is a hidden sector where SUSY is spontaneously broken at some scale.
- soft SUSY breaking is communicated to the MSSM via some "messengers".
- if R-parity is conserved, the lightest superpartner particle (LSP) is stable.

Classify SUSY models by choice of messenger:

SUGRA models: supergravity mediated SUSY breaking

Gauge mediated models: SUSY breaking mediated by some new gauge interactions

Anomaly mediation, Gaugino mediation, Radion mediation, etc.

Minimal SUGRA (mSUGRA)

Universal soft breaking terms at the GUT scale:

- m_{1/2} = common gaugino mass
- $m_0^2 = \text{common scalar mass}^2$
- A₀ = common ratio of scalar³ couplings to Yukawa couplings
- $\tan \beta = \text{ratio of Higgs VEVs}$
- Arg[μ] = phase of the μ term

next few slides stolen from Steve Martin

mSUGRA sparticle spectra

Use RGEs to run down to the weak scaleUsually Bino LSP

Sfermions

Squarks
$$m_{\overline{Q}}^2 = m_0^2 + 5m_{1/2}^2$$

Sleptons $m_{\overline{\ell}_L}^2 = m_0^2 + 0.5m_{1/2}^2$
 $m_{\overline{\ell}_R}^2 = m_0^2 + 0.15m_{1/2}^2$

Gauginos

 $M_1: M_2: M_3:: 0.5: 1: 3.3$

Warning: mSUGRA is simple, but probably too simple

e.g. gaugino mass relations may be wrong!

Phenomenological argument: the electroweak scale looks more natural if M_3 is relatively smaller.

Bastero-Gil, Kane, King, hep-ph/9910506

For a typical "supergravity" model with fixed $\tan \beta$, $\operatorname{sgn}(\mu)$:

 $M_Z^2 = -1.7\mu^2 + 7.2M_{\bar{g}}^2 - 0.24M_W^2 + 0.014M_{\bar{B}}^2 + \dots$

Reason: Renormalization effects feed (gluino mass) \rightarrow (top squark mass) \rightarrow (Higgs mass) \rightarrow Weak scale.

Required cancellation is easier if $M_{\bar{g}}$ is not so big.

Most expt. searches have assumed mSUGRA

What are the expt signatures?

In every case: \tilde{N}_1 neutralino LSP escapes, yields $\not\!\!\!E_T$.

- - From Chargino+Neutralino Production:

- From Gluino, Squark production:
 pp → ĝĝ, ĝQ, QQ → jets + C[±]₁N₂ → jets + ℓ[±]ℓ'⁺ℓ'⁻ 𝔼_T
- Standard Model backgrounds are small.

The Importance of Taus for Run II:

 τ_h means a hadronic tau decay.

l means an electron or muon (direct, or from a leptonic τ decay).

For $\tan\beta\gtrsim$ 8, the two-body decays

$$egin{array}{rll} ar{N}_2 & o & au^\pm ar{ au}^\pm \ ar{C}^\pm & o &
u ar{ au}^\pm \end{array}$$

begin to go on shell, so final states dominated by au's.

- Missing Transverse Energy: Multi-Jets + ₽_T + [isolated lepton veto]
 - From Gluino, Squark production:

$$p\overline{p} \to \overline{g}\overline{g}, \ \overline{g}\overline{Q}, \ \overline{Q}\overline{Q} \to \left\{ \begin{array}{c} \overline{g} \to jj\overline{N}_i \text{ or } jj\overline{C}_i \\ \overline{Q} \to jN_i \text{ or } j\overline{C}_i \end{array} \right\} \to \text{jets} +
otag$$

(*b*-tag is optional)

From Chargino, Neutralino Production:

• Veto leptons to kill background from $W \to \ell \nu$

gluino candidate event

MISSING ENERGY + MULTIJET STANDARD MODEL COMPONENT

 $Z(\rightarrow 11) + jets$ E $W(\rightarrow 1v) + jets$ tt, single top K Diboson QCD multijet Note: The missing energy is a QCD sample

<u>Comparisons SM predictions-Data</u> <u>around the Blind Box</u>

	Description	EWK	QCD	All	Data
1	$E_T \ge 70, H_T \ge 150, N_{trk}^{iso} > 0$	13.9	6.26	20.2 ± 4.7	10
- -	$E_T \geq 70, H_T < 150, N_{trk}^{iso} = 0$	2.3	6.26	$8.6 {\pm} 4.5$	12
2	$35 < E_T < 70, H_T > 150, N_{trk}^{iso} = 0$	1.95	134.6	$136.5 {\pm} 27.8$	134
3	$E_T > 70, H_T < 150, N_{trk}^{iso} > 0$	1.73	0	$1.73{\pm}0.3$	2
4	$35 < E_T < 70, H_T > 150, N_{trk}^{iso} > 0$	13.95	9.39	$23.34{\pm}5.7$	24
F	$35 < E_T < 70, H_T < 150, N_{trk}^{iso} = 0$	4.9	413.16	418.1 ± 68.8	410
Э	$35 < E_T < 70, H_T < 150, N_{trk}^{iso} > 0$	3.3	28.17	$31.4{\pm}10.2$	35
6	$E_T > 70, H_T > 150, N_{trk}^{iso} = 0$	35.3	40.69	$76.02{\pm}12.8$?
7	$35 < E_T < 70, H_T < 150$	8.2	441.3	449.5 ± 72	445

9

 $m\,\widetilde{q}\,(GeV/c^2)$

- Like-charge Dileptons:
 ℓ[±]ℓ[±] + 𝔅_T + [jets]
 - From Chargino-Neutralino Production: (same as trilepton, but with opposite-charge lepton missed or ignored)
 - From Gluino, Squark production:

(Gluinos are Majorana, decays are independent and don't prefer a charge.)

Gauge mediated models

Goldstino is the LSP; classify models by NLSP

Neutralino NLSP Scenario

- <u>Prompt decays</u> $\overline{N}_1 \to \gamma \overline{G}$ Superpartners $\to \gamma \gamma + \not{\!\!\! D}_T + X$ Both photons have very high p_T .
- <u>Decay outside the detector</u>
 Same as usual "Minimal Supergravity" signatures

Slepton (including Stau) NLSP Scenario

- <u>Prompt decay</u> $\bar{\ell} \to \ell \bar{G} \to \text{High } p_T \text{ leptons } + \mathbb{Z}_T.$
- Decay inside detector $\overline{\ell} \to \ell \overline{G} \to Decay$ Kink Impact parameter
- Decay outside the detector "Stable" slepton $\overline{\ell}$
 - Highly Ionizing Tracks (HIT) (slow, $\beta\gamma \lesssim 0.85$)
 - Time of Flight (slow, $\beta \gamma \leq ???$)
 - Fake "muon" (fast, $\beta \gamma \gtrsim 0.85$)

new Strong Dynamics

1. Technicolor

- weak doublet technifermions condense at ~ TeV scale due to new strong interaction; breaks EW symmetry dynamically.
- not popular these days due to problems with phenomenology.

new Strong Dynamics

2. Topcolor

 at high energies, top quark sees a different, stronger SU(3) color than the lighter quarks

top condensate forms, plays role of a Higgs

phenomenology of Topcolor

 new heavy particles: pseudoscalar "top-pions" and scalar "top-higgs"; decay to te

• "colorons": extra octet of massive gluons

extra dimensions

see tomorrow's lecture

the whole concept of getting to "beyond the SM" physics is wrong on two counts:

we need to devote *more* resources to understanding SM physics, not less

we need to attack the big questions, not just add epicycles to the SM

attacking the Big questions

> what is the dark matter?

> what is the structure of spacetime?

what is the dark matter?

- stable weakly interacting massive particles (WIMPS) are attractive CDM candidates
- for large portions of the parameter space of R-parity conserving SUSY models, the weakly interacting massive *neutralino* is the stable LSP

How do we test this?

what is the dark matter?

a 5-pronged attack:

- study DM distributions, clustering
- look for high energy gamma rays from neutralino annihilation in the cosmos
- look for high energy neutrinos from neutralino annihilation in the Sun
- detect DM particles coming from space

> produce neutralinos in colliders!

what is the dark matter?

We will have a definitive answer within about 5 years!

what is the structure of spacetime?

Really many questions, all hard:

- Iarge-scale structure of spacetime?
- microscopic structure of spacetime?
- extra dimensions of spacetime?
- quantum dynamics of spacetime?

large-scale structure of spacetime

We are getting lots of information about the cosmological parameters! Cosmic Background Imager

Biggest discovery in cosmology of past 5 years is real error bars!

Priors	$\Omega_{\rm tot}$	n_s	$\Omega_{b}h^{2}$	$\Omega_{\rm cdm}h^2$	$\Omega_{\rm A}$	Ω_m	Ω_{5}	h	Age	τ_{c}
wk-h wk-h+LSS wk-h+SN wk-h+LSS+SN	$\begin{array}{c} 1.05\substack{0.05\\0.04}\\1.03\substack{0.04\\0.04}\\1.01\substack{0.03\\0.03}\\1.00\substack{0.03\\0.02}\end{array}$	$\begin{array}{c} 1.02\substack{0.06\\0.07}\\1.00\substack{0.06\\0.06}\\1.03\substack{0.06\\0.06}\\1.03\substack{0.06\\0.06}\\1.03\substack{0.06\\0.06}\end{array}$	$\begin{array}{c} 0.023 \substack{0.003\\ 0.023 \substack{0.003\\ 0.023 \substack{0.003\\ 0.003} \\ 0.024 \substack{0.003\\ 0.003\\ 0.024 \substack{0.003\\ 0.03} \\ 0.024 \substack{0.003\\ 0.003} \end{array}$	$\begin{array}{c} 0.13\substack{0.03\\0.02}\\0.12\substack{0.02\\0.02}\\0.12\substack{0.02\\0.02}\\0.12\substack{0.02\\0.02}\\0.12\substack{0.02\\0.02}\end{array}$	$\begin{array}{c} 0.54\substack{0.12\\0.13}\\0.61\substack{0.09\\0.68\substack{0.05\\0.07}\\0.69\substack{0.04\\0.06}\end{array}$	$\begin{array}{c} 0.52\substack{0.15\\ 0.12}\\ 0.42\substack{0.12\\ 0.33\substack{0.07\\ 0.07}\\ 0.32\substack{0.06\\ 0.06} \end{array}$	$\begin{array}{c} 0.080\substack{0.023\\0.067\substack{0.013\\0.067\substack{0.013\\0.013\\0.055\substack{0.014\\0.052\substack{0.011\\0.011}\end{array}}$	$\begin{array}{c} 0.55\substack{+0.09\\-0.60\-0.09\\-0.67\-0.07\\-0.67\-0.07\\-0.68\-0.06\\-0.06\end{array}$	${}^{15.0_{1.1}^{1.1}}_{14.7_{1.2}^{1.2}}_{13.9_{1.0}^{1.0}}_{13.8_{0.9}^{0.9}}$	$\begin{array}{c} 0.16\substack{0.18\\0.13}\\0.09\substack{0.07\\0.14\\0.11}\\0.13\substack{0.14\\0.10}\end{array}$

microscopic structure of spacetime?

string theory
extra dimensions
quantum gravity
dark energy?