11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004

Models of the Nucleon &

Parton Distribution Functions

Wally Melnitchouk Jefferson Lab

Outline

- Introduction
- Phenomenological PDFs
 - large x valence quarks, nuclear EMC effect
 - small x sea quarks, nuclear shadowing
- Connection with low energy models
- PDFs from lattice QCD
 - moments
 - x dependence
- Outlook

I. Introduction

Looking for quarks in the nucleon is like looking for the Mafia in Sicily everybody *knows* they're there, but it's hard to find the evidence!

Why is (accurate) knowledge of PDFs important?

- PDFs provide basic information on structure of bound states in QCD
 DIS paved way for development of QCD
- Integrals of PDFs (moments) test fundamental sum rules (Adler, GLS, Bjorken, ...)
- Provide input into nuclear physics (relativistic heavy ion collisions) and astrophysics calculations
- Needed to understand backgrounds in searches for "new physics" in high-energy colliders

Factorization of structure functions

$$F(x,Q^2) = \sum_{i} \int dz \ C_i(x/z,Q^2/\mu^2,\alpha_s(\mu^2)) \ f_i(z,\alpha_s(\mu^2))$$

Wilson coefficient PDF

- PDFs embody nonperturbative (long-range) structure of nucleon
 cannot calculate from pQCD
- Calculated from low-energy models
 evolved to larger Q via DGLAP
- Computed on the lattice
 moments only, reconstruct PDF

2. Phenomenological PDFs

Phenomenological PDFs

- PDFs extracted in global pQCD (NLO) analyses of data from e.m. & neutrino DIS, Drell-Yan & W-boson production in hadronic collisions ...
- Parameterized using some functional form, e.g.

$$xf(x,\mu^2) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}$$

→ determined over several orders of magnitude in x and Q^2 $10^{-6} < x < 1$ $1 < Q^2 < 10^8 \text{ GeV}^2$

Recent global PDFs (CTEQ6)

Lai et al., Eur. Phys. J. C12 (2000) 375

Comparison with data

Lai et al., Eur. Phys. J. C12 (2000) 375

Lai et al., Eur. Phys. J. C12 (2000) 375

small x sea quarks and gluons dominate

Botje, Eur. Phys. J. C 14 (2000) 285

Most direct connection between PDFs and models of the nucleon is through *valence* quarks

Botje, Eur. Phys. J. C 14 (2000) 285

Nuclear effects

- Need proton *and neutron* to resolve *u* and *d* flavors
- No free neutron targets (neutron half-life ~ 12 mins)
 use deuteron as "effective neutron target"
- However $F_2^d \neq F_2^p + F_2^n$!!
- Nuclear effects obscure neutron structure information
 - nuclear binding + Fermi motion at large x
 - nuclear shadowing at small x
 - antishadowing? pion cloud? at intermediate x

Nuclear "EMC effect"

 $F_2^A(x, Q^2) \neq AF_2^N(x, Q^2)$

Aubert et al., Phys. Lett. B 123, 123 (1983)

Gomez et al., Phys. Rev. D 49, 4348 (1994)

EMC effect in d at large x

Nucleon momentum distribution in deuteron

relativistic *dNN* vertex function

 $f_{N/d}(y) = \frac{1}{4} M_d \ y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$ momentum fraction of deuteron

carried by nucleon

Nucleon momentum distribution in deuteron

relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon momentum distribution in deuteron

relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Wave function dependence only at large y

 \implies sensitive to large p components of wave function

Nucleon momentum distribution in deuteron

relativistic *dNN* vertex function

$$f_{N/d}(y) = \frac{1}{4} M_d y \int_{-\infty}^{p_{\text{max}}^2} dp^2 \frac{E_p}{p_0} \left| \Psi_d(\vec{p}^2) \right|^2$$

Nucleon off-shell correction

$$\delta^{(\text{off})}F_2^d \implies \text{kinematical: OK}$$

 $\implies \text{dynamical: }?$

An illustration of possible effects...

WM, Schreiber, Thomas, Phys. Rev. D49 (1994) 1183

Note: ratio depends on input F_2^n

AKL: Alekhin, Kulagin, Liuti, Phys. Rev. D 69 (2004) 114009
MST: WM, Schreiber, Thomas, Phys. Lett. B 335 (1994) 11

• SLAC 0.8 with binding & off-shell 2/3r 2 2 4 2 4 2 4 SU(6) Ō helicity retention 3 \bigcirc \bigcirc scalar diquarks Fermi motion only 0.25 0.5 0.75 \mathcal{X}

> Without EMC effect in d F_2^n underestimated at large x!

WM, Thomas, Phys. Lett. B 377 (1996) 11

At large x (sea quarks, gluons suppressed)

$$F_2^p \sim \frac{4}{9} u + \frac{1}{9} d$$

 $F_2^n \sim \frac{1}{9} u + \frac{4}{9} d$

$$\frac{d}{u} \sim \frac{4 - F_2^n / F_2^p}{4F_2^n / F_2^p - 1}$$

Does $d/u \to 0$ as $x \to 1$?

pQCD: $d/u \rightarrow \text{constant}$ as $x \rightarrow 1$

Farrar, Jackson, Phys. Rev. Lett. 35 (1975) 1416

$$\frac{d}{u} \to \frac{d}{u} + 0.1 \ x \ (1+x)$$

"Cleaner" methods of determining d/u

- $e^{\mp} p \to \nu(\bar{\nu})X$ need high luminosity
- $\nu(\bar{\nu}) \ p \to l^{\mp} \ X$ low statistics
- $p \ p(\bar{p}) \to W^{\pm}X$

need large lepton rapidity

 $\vec{e}_L(\vec{e}_R) \ p \to e \ X$

 $e \ p \to e \ \pi^{\pm} \ X$

 $e^{3}\mathrm{He}(^{3}\mathrm{H}) \rightarrow e^{3}X$

low count rate

need $z \sim I$, factorization

tritium target

"Cleaner" methods of determining d/u

- neutron nearly on-shell
- minimize rescattering

JLab Hall B experiment ("BoNuS")

Nuclear shadowing

Interference of multiple scattering amplitudes

For deuteron:

Nuclear impulse approximation

Double scattering

e.g. Piller, Weise, Phys. Rep. 330 (2000) 1

Nuclear shadowing

Interference of multiple scattering amplitudes

For deuteron:

 $F_2^d = F_2^p + F_2^n + \delta^{(\text{shad})} F_2^d$

e.g. Piller, Weise, Phys. Rep. 330 (2000) 1

Space-time view of shadowing

if propagation length exceeds average distance between nucleons $\lambda > d \approx 2~{\rm fm}$

coherent multiple scattering can occur x < 0.05

Shadowing in deuterium

Shadowing in deuterium

Anti-shadowing in deuterium

VMD important even at moderate Q^2

Shadowing in nuclei

Perturbative or nonperturbative origin of Q^2 dependence?

WM, Thomas, Phys. Rev. C52 (1995) 3373

NMC, Nucl. Phys. B481 (1996) 23

Comparison with data

WM, Thomas, Phys. Rev. C 52 (1995) 3373 - see also Badelek, Kwiecinski (1992), Nikolaev, Zoller (1992)

Effect on neutron structure function at small x

$$\frac{F_2^n}{(F_2^n)_{\text{exp}}} = 1 - \frac{\delta F_2^d}{F_2^d} \left(\frac{1 + (F_2^n / F_2^p)_{\text{exp}}}{(F_2^n / F_2^p)_{\text{exp}}} \right)$$

where "experimental" n/p ratio is defined as

$$\left. \frac{F_2^n}{F_2^p} \right|_{\exp} \equiv \frac{F_2^d}{F_2^p} - 1$$

Effect on neutron structure function at small x

1-2% enhancement at $x \sim 0.01$

Gottfried sum rule

Integrated difference of p and n structure functions

$$S_G = \int_0^1 dx \ \frac{F_2^p(x) - F_2^n(x)}{x}$$
$$= \frac{1}{3} + \frac{2}{3} \int_0^1 dx \ (\bar{u}(x) - \bar{d}(x))$$

Experiment: $S_G = 0.235 \pm 0.026$

NMC, Phys. Rev. D 50 (1994) 1

Saturation of Gottfried sum rule

Saturation of Gottfried sum rule

Fermilab E866 Drell-Yan experiment

 $q\bar{q}$ annihilation in hadron-hadron collisions

$$q\bar{q} \to \gamma^* \to \mu^+ \mu^-$$

Drell, Yan, Phys. Rev. Lett. 25 (1970) 316

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9Q^2} \sum_q e_q^2 \left(q(x_b)\bar{q}(x_t) + \bar{q}(x_b)q(x_t)\right)$$

For $x_b \gg x_t$

$$\frac{\sigma^{pd}}{2\sigma^{pp}} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right)$$

Ellis, Stirling, Phys. Lett. B256 (1991) 258

Towell et al., Phys. Rev. D 64 (2001) 052002

 $\int_0^1 dx \ (\bar{d}(x) - \bar{u}(x)) = 0.118 \pm 0.012$

Why is $\bar{d} \neq \bar{u}$?

Pauli blocking

Since proton has more valence u than d \implies easier to create $d\bar{d}$ than $u\bar{u}$

Field, Feynman, Phys. Rev. D15 (1977) 2590

Explicit calculations of antisymmetrization effects in $g\to u\bar{u}$ and $\,g\to d\bar{d}$

 $\implies \bar{u} > \bar{d}$

asymmetry tiny

Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 Steffens, Thomas, Phys. Rev. 55 (1997) 900

$u\bar{u}$

 $d\overline{d}$

Steffens, Thomas, Phys. Rev. 55 (1997) 900

.

Why is $\bar{d} \neq \bar{u}$?

Pion cloud some of the time the proton looks like a neutron & π^+ (Heisenberg Uncertainty Principle)

$$p \to \pi^+ \ n \to p$$

at the quark level

$$uud \to (udd)(\bar{d}u) \to uud$$

 $\implies \bar{d} > \bar{u}$!

see Nucleon Models...

p

Sullivan, Phys. Rev. D5 (1972) 1732 Thomas, Phys. Lett. 126B (1983) 97

Tomorrow's lecture:

- 3. Connection with low energy models
- 4. PDFs from the lattice