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1. 
Introduction



Looking for quarks in the nucleon 
is like looking for the Mafia in Sicily -

everybody knows they’re there,
but it’s hard to find the evidence!

Anonymous





Why is (accurate) knowledge
 of PDFs important?

• PDFs provide basic information on structure    
of bound states in QCD                                              
- DIS paved way for development of QCD

• Integrals of PDFs (moments) test fundamental 
sum rules (Adler, GLS, Bjorken, ...)

• Provide input into nuclear physics (relativistic 
heavy ion collisions) and astrophysics 
calculations

• Needed to understand backgrounds in searches 
for ‘‘new physics’’ in high-energy colliders



• PDFs embody nonperturbative         
(long-range) structure of nucleon                    
- cannot calculate from pQCD 

• Calculated from low-energy models            
- evolved to larger Q via DGLAP 

• Computed on the lattice                                 
- moments only, reconstruct PDF

I. INTRODUCTION

Resolving the quark and gluon structure of the nucleon remains one of the central chal-

lenges in strong interaction physics [1]. Information about the nucleon’s internal structure

is parameterized in the form of leading twist parton distribution functions (PDFs), which

are interpreted as probability distributions for finding specific partons (quarks, antiquarks,

gluons) in the nucleon in the infinite momentum frame. PDFs have been measured in a

variety of high energy processes ranging from deep-inelastic lepton scattering to Drell-Yan

and massive vector boson production in hadron–hadron collisions. A wealth of experimental

information now exists on spin-averaged PDFs, and an increasing amount of data is being

accumulated on spin-dependent PDFs [2].

The fact that such a vast array of high energy data can be analyzed in terms of a universal

set of PDFs stems from the factorization property of high energy scattering processes, in

which the short and long distance components of scattering amplitudes can be separated ac-

cording to a well-defined procedure. Factorization theorems allow a given differential cross

section, or structure function, F , to be written (as a function of the light-cone momen-

tum fraction x at a scale Q2) in terms of a convolution of hard, perturbatively calculable

coefficient functions, Ci, with the PDFs, fi, describing the soft, non-perturbative physics

[3]:

F (x, Q2) =
∑

i

∫
dz Ci(x/z, Q2/µ2, αs(µ

2)) fi(z, αs(µ
2)) , (1)

where µ is the factorization scale. The coefficient functions are scale and process dependent,

while the PDFs are process independent, and hence can be used to parameterize a wide

variety of high energy data.

Because the PDFs cannot be calculated within perturbative QCD, the approach com-

monly used in global analyses of high energy data is to simply parameterize the PDFs,

without attempting to assess their dynamical origin [4, 5, 6, 7]. Once fitted at a particular

scale, they can be evolved to any other scale through the DGLAP Q2-evolution equations [8].

The focus in this approach is not so much on understanding the non-perturbative (confine-

ment) physics responsible for the specific features of the PDFs, but rather on understanding

the higher order QCD corrections for high energy processes.

In a more ambitious approach one would like to extract information about non-
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2.
Phenomenological PDFs



Phenomenological PDFs

• PDFs extracted in global pQCD (NLO) analyses   
of data from e.m. & neutrino DIS, Drell-Yan          
& W-boson production in hadronic collisions ... 

• Parameterized using some functional form, e.g.

10
−6

< x < 1

1 < Q2 < 10
8

GeV
2

xf(x, µ2) = A0x
A1(1 − x)A2eA3x(1 + eA4x)A5

determined over several orders of magnitude 
in x and Q 2



3.1 The New Standard PDF Sets

The standard set of parton distributions in the MS scheme, referred to as CTEQ6M, provides an

excellent global fit to the data sets listed in Sec. 2.1. An overall view of these PDF’s is shown in

Fig. 1, at two scales Q = 2 and 100 GeV. The overall χ2 for the CTEQ6M fit is 1954 for 1811

data points. The parameters for this fit and the individual χ2 values for the data sets are given in

Appendix A. In the next two subsections, we discuss the comparison of this fit to the data sets, and

then describe the new features of the parton distributions themselves. Quantitative comparison of

data and fit is studied in more depth in Appendix B

Fig. 1 : Overview of the CTEQ6M parton distribution functions at Q = 2 and 100 GeV.

3.1.1 Comparison with Data

The fact that correlated systematic errors are now fully included in the fitting procedure allows a

more detailed study of the quality of fits than was possible in the past. We can take the correlated

systematic errors into account explicitly when comparing data and theory, by using the procedure

discussed in Sec. B.2 of Appendix B. In particular, based on the formula for the extended χ2

function expressed in the simple form Eq. (11), we obtain a precise graphical representation of the

quality of the fit by superimposing the theory curves on the shifted data points {D̂i} containing

the fitted systematic errors. The remaining errors are purely uncorrelated, hence are properly

represented by error bars. We use this method to present the results of our fits whenever possible.

Figure 2 shows the comparison of the CTEQ6M fit to the latest data of the H1 experiment

[14]. The extensive data set is divided into two plots: (a) for x < 0.01, and (b) for x > 0.01. In

order to keep the various x bins separated, the values of F2 on the plot have been offset vertically

for the kth bin according to the formula: ordinate = F2(x,Q2) + 0.15 k. The excellent fit seen

in the figure is supported by a χ2 value of 228 for 230 data points. Similarly, Fig. 3 shows the

comparison to the latest data from ZEUS [15]. One again sees very good overall agreement.
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Fig. 2 : Comparison of the CTEQ6M fit to the H1 data [14] in separate x bins. The data points

include the estimated corrections for systematic errors. The error bars contain statistical only.

Fig. 3 : Comparison of the CTEQ6M fit to the ZEUS data [15]. Same format as Fig. 2.

The χ2 value is 263 for 229 data points. This is 2σ (σ =
√

2N = 21) away from the ideal value of
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N = 229. A closer inspection of Fig. 3 does not suggest any systematic disagreement. To assess

the significance of this 2σ effect, we examine in detail the systematic shifts obtained in the fit in

Appendix B.3. We find that they are all quite reasonable, thus giving us confidence that the fit is

indeed of good quality.

The new PDF’s also fit the older fixed-target DIS experiments well—similar to previous

global analyses. Figure 4 shows the comparison to the fixed-target neutral current experiments

BCDMS and NMC. Because we are incorporating the fully correlated systematic errors, the data

sets used for these experiments are those obtained at each measured incoming energy, rather than

the “combined” data sets that are usually shown. This more detailed and quantitative comparison

is important when we try to evaluate the statistical significance of the fits in our uncertainty analysis

(cf. Appendix B).

Fig. 4 : Comparison of the CTEQ6M fit with the BCDMS [19] and NMC [21] data on µp DIS.

Same format as Fig. 2. (The offset for the kth Q value in (b) is 0.2k.)

The χ2 per data point for these data sets are 1.11 (378/339) for BCDMS and 1.52 (305/201) for

NMC. The fit to the BCDMS data is clearly excellent, both by inspection of Fig. 4a and by the

normal χ2 test. For the NMC data, Fig. 4b shows rather good overall agreement, but with some

notable large fluctuations away from the smooth theory curves. The most noticeable fluctuations—

points with almost the same (x,Q) values—are from data sets taken at different incoming energies.5

This is reflected in the χ2 value which is quite a bit larger than expected for a normal probability

distribution. This raises two issues: (i) Is the fit acceptable or unacceptable? (ii) Can the fit be
5These fluctuations are smoothed out by re-binning and other measures in the combined data set [21], which is

not used here.
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Botje, Eur. Phys. J. C 14 (2000) 285

small x -
sea quarks 
and gluons 
dominate

structure of hadron 
or structure of probe ?
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large x -

valence quarks
dominate

Most direct connection between PDFs and 
models of the nucleon is through valence quarks 

PDFs at large x are small

small uncertainties
can have large 
relative effects



Uncertainty due
 to nuclear effects 

in neutron

Botje, Eur. Phys. J. C 14 (2000) 285



Nuclear effects

• Need proton and neutron to resolve u and d 
flavors

• No free neutron targets (neutron half-life ~ 12 mins)                                                

- use deuteron as ‘‘effective neutron target’’

• However                         !!

• Nuclear effects obscure neutron structure 
information                                                            
- nuclear binding + Fermi motion at large x             
- nuclear shadowing at small x                                            
- antishadowing? pion cloud? at intermediate x

F d
2 != F

p
2

+ Fn
2



Nuclear ‘‘EMC effect’’

FA
2 (x, Q2) != AFN

2 (x, Q2)

Aubert et al., Phys. Lett. B 123, 123 (1983)

1258 P R Norton

3. The discovery of the effect

As part of a comprehensive study of muon scattering, the European Muon Collaboration
measured structure functions on hydrogen, deuterium and iron targets. The purpose of using
iron was to increase the experimental luminosity, providing more precise measurement of
structure functions at high Q2 and allowing the study of rarer processes such as charm
production.

When the iron and deuterium structure functions F2 per nucleon were compared, the ratio
of the cross-sections was not unity (Aubert et al 1983b). The ratios depended upon x, although
at fixed x there was no evidence for a Q2 dependence. Hence the ratios were averaged over
Q2, and showed the dependence on x depicted in figure 4, which is very slightly different from
the original publication. The range of Q2 varied with x: 8 < Q2 < 20GeV2 for x = 0.05–
35 < Q2 < 200GeV2 for x = 0.65. There are many points to be made concerning the
experimental ratios:
(i) There was an overall normalization uncertainty of 7% in the ratio F Fe2 / F D2 .
(ii) The error bars show an inner bar of statistical errors, and an outer bar representing all the

estimated systematic errors combined in quadrature.
(iii) The iron datawere corrected for the neutron excess in iron using the ratioF n2 / F

p
2 measured

by EMC (Aubert et al 1983a). The correction was negligible at small x and amounted to
only 2.3% at x=0.65.

(iv) No attemptwasmade to correct the iron or deuteriumdata for Fermimotion of the nucleons
in the nucleus. The effect is not expected to cancel because of the larger Fermi momentum
in iron, but predictions for the correction (Bodek and Ritchie 1981), as shown by the solid
line in figure 4, clearly do not explain the difference.

(v) It was assumed in evaluating F2 that R was zero. This was consistent with the
measurements made by EMC on iron (Aubert et al 1986) and hydrogen (Aubert et al

Figure 4. The final published EMC measurement of the structure function ratio (from Aubert et al
(1987)), which differs slightly from the original data (Aubert et al 1983b) chiefly in a normalization
change of around 3% (reproduced with permission from Elsevier).

Original EMC data The EMC effect 1261

Figure 6. Cross-section ratios compared with deuterium for SLAC data from Gomez et al (1994)
(!) and Stein et al (1975) updated by Rock and Bosted (2001) (") for Be, Al, Fe and Au. Data
were also taken on He, C, Ca and Ag by Gomez et al.

scattering have to be subtracted, and the effect of Pauli blocking on the quasielastic tail taken
into account.

4.2. Neutrino measurements

Results from many neutrino experiments have been reported. Comparison of structure
functions between heavy nuclei and deuterium or hydrogen all suffer from large statistical
uncertainties because of low event-rates on light targets. Results have been obtained from the
CDHS experiment (Abramowicz et al 1984), the BEBC-TST experiment (Parker et al 1984),
the BEBC experiments WA25 and WA59 (Cooper et al 1984, Guy et al 1987) and the 15 ft
bubble chamber at Fermilab (Ammosov et al 1984, Hanlon et al 1985). The bubble chamber
experiments compared hydrogen or deuterium with neon. While detailed comparisons with
electron and muon data are made difficult because of the limited statistics, the trends are of
an ‘EMC ratio’ somewhat below unity for x < 0.1 (in contradiction with the original EMC
result of Aubert et al (1983b)), a rise above unity for 0.1 < x < 0.3 and a steady fall beyond.
The data are at considerably lower Q2 than EMC, and any differences could conceivably be
attributed to a Q2-dependence of the effect. Nevertheless, there is no Q2-dependence visible in
the neutrino data on ratios of structure functions between neon on the one hand and hydrogen
or deuterium on the other.

As mentioned in section 2, the chief value of neutrino data is in the separation of sea and
valence contributions to the structure functions. The sea enhancement in Fe over H, integrated
over all x, found by CDHS (Abramowicz et al 1984) was 1.10±0.11(stat)±0.07(syst). Little
conclusion can be drawn because of the large errors, but it is clear that a large sea enhancement
is not favoured. The BEBC experiment has attempted to parametrize the sea distribution as a
function of x. The ratio on the sea distribution of neon and deuterium is found to be 0.92±0.05,
assuming RNe = RD and no change in shape of the sea, and 0.88 ± 0.07 if only the former
is assumed (Guy et al 1987). The absence of an enhancement of the sea is independent of

Later SLAC data

Gomez et al., Phys. Rev. D 49, 4348 (1994)



EMC effect in d at large x

qq

k

k+q

PP

k

p p

deuteron

off-shell
 nucleon

spectator nucleon

quark

F d
2 (x, Q2) =

∫
dy fN/d(y) FN

2 (x/y, Q2) + δ(off)F d
2 (x, Q2)

off-shell correctionnucleon momentum distribution

Nuclear “impulse approximation’’

incoherent scattering 
from individual nucleons
in deuteron



Nuclear physics in the deuteron

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2

momentum fraction of deuteron 
carried by nucleon



Nuclear physics in the deuteron

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2



Nuclear physics in the deuteron

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2



Nuclear physics in the deuteron

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2

Wave function dependence only at large y

not very well known

sensitive to large p components of wave function



Nuclear physics in the deuteron

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

Nucleon off-shell correction

δ
(off)

F
d
2 kinematical:  OK

dynamical:   ??

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2



FIGURES

FIG. 1. FD
2 /FN

2 ratio as a function of x for the off-shell model of Refs. [4,5] (solid) and the
on-shell model of Ref. [6] (dotted).

In Refs. [4,5] the structure function F N
2 was modeled in terms of relativistic quark–

nucleon vertex functions, which were parametrized by comparing with available data for
the parton distribution functions. The off-shell extrapolation of the γ∗N interaction was
modeled assuming no additional dynamical p2 dependence in the quark–nucleon vertices.
This enabled an estimate of the correction δ(off)F D

2 to be made, which was found to be quite
small, of the order ∼ 1−2% for x <∼ 0.9. The result of the fully off-shell calculation from Ref.
[4] is shown in Fig.1 (solid curve), where the ratio of the total deuteron to nucleon structure
functions (F D

2 /FN
2 ) is plotted. Shown also is the result of an on-mass-shell calculation from

Ref. [6] (dotted curve), which has been used in many previous analyses of the deuteron data
[7,8]. The most striking difference between the curves is the fact that the on-shell ratio has
a very much smaller trough at x ≈ 0.3, and rises faster above unity (at x ≈ 0.5) than the
off-shell curve, which has a deeper trough, at x ≈ 0.6− 0.7, and rises above unity somewhat
later (at x ≈ 0.8).

The behavior of the off-shell curve in Fig.1 is qualitatively similar to that found by
Uchiyama and Saito [9], Kaptari and Umnikov [10], and Braun and Tokarev [11], who also
used off-mass-shell kinematics, but did not include the (small) non-convolution correction
term δ(off)F D

2 . The on-shell calculation [6], on the other hand, was performed in the infinite
momentum frame where the nucleons are on their mass shells and the physical structure
functions can be used in Eq.(1). One problem with this approach is that the deuteron
wave functions in the infinite momentum frame are not explicitly known. In practice one
usually makes use of the ordinary non-relativistic S- and D-state deuteron wave functions
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An illustration of possible effects...
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A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are

7
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again significantly above those obtained previously with the aid of the on-shell prescription.
In particular, they indicate that the d/u ratio may actually approach a finite value in the
x → 1 limit, contrary to the expectation of the model of Refs. [17,18], in which d/u tends
to zero. Although it is a priori not clear at which scale the model predictions [17,18,20,21]
should be valid, for the values of Q2 corresponding to the analyzed data the effects of Q2

evolution are minimal.

FIG. 4. Extracted d/u ratio, using the off-shell deuteron calculation (full circles) and using
on-shell kinematics (open circles). Also shown for comparison is the ratio extracted from neutrino
measurements by the CDHS collaboration [23].

Naturally it would be preferable to extract F n
2 at large x without having to deal with

uncertainties in the nuclear effects. In principle this could be achieved by using neutrino
and antineutrino beams to measure the u and d distributions in the proton separately, and
reconstructing F n

2 from these. Unfortunately, as seen in Fig.4, the neutrino data from the
CDHS collaboration [23] do not extend out to very large x (x <∼ 0.6), and at present cannot
discriminate between the different methods of analyzing the electron–deuteron data.

The results of our off-shell model are qualitatively similar [22] to those obtained using the
nuclear density method suggested by Frankfurt and Strikman [24]. There the EMC effect
in deuterium was assumed to scale with that in heavier nuclei according to the ratio of the
respective nuclear densities, so that the ratio F D

2 /FN
2 in the trough region was depleted by

about 4%, similar to that in Fig.1 (solid curve). This would give an F n
2 /F p

2 ratio broadly
consistent with 3/7.

We should also point out similar consequences for the spin-dependent neutron structure
function gn

1 , where the models of Refs. [17,18] and Refs. [20,21] also give different predictions
for gn

1 /gp
1 as x → 1, namely 1/4 and 3/7, respectively. Quite interestingly, while the ratio of
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FIGURES

FIG. 1. d/u quark distribution ratio at Q2 = 10 GeV2 and Q2 = M2
W . Dashed curves are

parameterizations from Ref. [16], solid curves include the modified d quark distribution in Eqs.(1),

(2) and (6). Full (open) circles represent SLAC data from Refs. [10,11] analyzed assuming binding

plus Fermi motion (Fermi motion only) corrections in the deuteron [6].
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MRS(R2) PDF, where the corrected d!u ratio is

"d!u#0 ! "d!u# 1 d"d!u#. Based on this correction, we
obtain a MRS(R2)-modified PDF as shown in Fig. 2(a).

The correction to other PDF’s such as CTEQ3M/4M is

similar. Note that since the d quark level is small at large
x, all the sum rules are easily satisfied with a very minute
change at low x. The NMC data, when corrected for nu-
clear binding effects in the deuteron, clearly indicate that

d!u in the standard PDF’s is significantly underestimated
at high x as shown in Fig. 2(a). It also shows that the
modified d!u ratio approaches 0.2 6 0.02 as x ! 1, in
agreement with a QCD prediction [10]. In contract, if the

deuteron data are corrected only for Fermi motion effects

(as was mistakenly done in the past) both the d!u from
data and the d!u in the standard PDF’s fits approach 0 as
x ! 1. Figure 2(a) shows that d!u values extracted from
CDHSW [11] np!np data (which are free from nuclear

effects) also favor the modified PDF’s at high x.
Information (which is not affected by the corrections for

nuclear effects in the deuteron) on d!u can be also ex-
tracted from W production data in hadron colliders. Fig-

ure 2(b) shows that the predictedW asymmetry calculated

with the DYRAD NLO QCD program using our modified

PDF is in much better agreement with recent CDF data

[12] at large rapidity than standard PDF’s. When the modi-

fied PDF at Q2 ! 16 GeV2 is evolved to Q2 ! 104 GeV2

using the NLO QCD evolution, we find that the modi-

fied d distribution at x ! 0.5 is increased by about 40%
in comparison to the standard d distribution. The modi-
fied PDF’s have a significant impact on the charged current

FIG. 2. (a) The d!u distributions at Q2 ! 16 GeV2 as a
function of x for the standard and modified MRS(R2) PDF
compared to the CDHSW data. (b) Comparison of the CDF
W asymmetry data with NLO standard CTEQ3M, MRS(R2),
and modified MRS(R2) as a function of the lepton rapidity.
The standard CTEQ3M with a resummation calculation is also
shown for comparison.

cross sections [13] in the HERA high Q2 region, shown

in Fig. 3(a), because the charged current scattering with

positrons is on d quark only. Figure 3(b) shows that the
modified PDF’s also lead to an increase of 10% in the pro-

duction rate of very high PT jets [14] in hadron colliders.

Since all the standard PDF’s, including our modified

versions, are fit to data with x less than 0.75, we now

investigate the validity of the modified MRS(R2) at very

high x by comparing to F
p
2 data at SLAC. Although the

SLAC data at very high x are at reasonable values of Q2

"7 , Q2 , 31 GeV2#, they are in a region in which non-
perturbative effects such as target mass and higher twist are

very large. We use the Georgi-Politzer calculation [15] for

the target mass (TM) corrections. These involve using the

scaling variable j ! 2x!"1 1
p

1 1 4M2x2!Q2 # instead
of x. Since a complete calculation of higher twist effects
is not available, the very low Q2 data are used to obtain

information on the size of these terms.

We use two approaches in our study of the higher twist

effects: an empirical method and the renormalon model.
In the empirical approach, the higher twist contribution is

evaluated by adding a term h"x#!Q2 to the perturbative

QCD (pQCD) prediction of the structure function (includ-

ing target mass effects). The x dependence of the higher
twist coefficients h"x# is fit to the global deep-inelastic
scattering (DIS) F2 (SLAC, BCDMS, and NMC) data

[16–18] in the kinematic region "0.1 , x , 0.75, 1.25 ,
Q2 , 260 GeV2# with the following form: F2 !
F

pQCD1TM
2 $1 1 h"x#!Q2% f"x#. Here f"x# is a floating
factor to investigate possible x dependent corrections to
our modified PDF. A functional form, a$xb!"1 2 x# 2 c%
for h"x# is used in the higher twist fit to estimate the

FIG. 3. (a) The HERA charged current cross section data
and (b) the CDF and D0 inclusive jet cross section data are
compared with both standard and modified PDF’s.
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“Cleaner” methods of determining d/u

e∓ p → ν(ν̄)X

ν(ν̄) p → l∓ X

p p(p̄) → W±X

!eL(!eR) p → e X

e p → e π± X

e
3He(3H) → e X

need high luminosity

low statistics

need large lepton rapidity

low count rate

need z ~ 1, factorization 

tritium target



“Cleaner” methods of determining d/u

“Spectator Tagging”
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Nuclear shadowing
Interference of multiple scattering amplitudes
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Fig. 5.1. Single (a) and double (b) scattering contribution to virtual photon-deuteron scattering.
The corresponding cross sections are obtained from the imaginary part of the forward scattering
amplitude indicated by the dashed line.

where the photon flux (2.32) is taken in the limit x ! 1. The leading contribution to
nuclear shadowing comes from double scattering. Its mechanism is best illustrated for a
deuterium target on which we focus next.

5.1.1 Shadowing in deuterium

In this section we review the basic mechanism of shadowing in real and virtual photon-
deuteron scattering at high energies ν, or equivalently, small x. The γ∗-deuteron cross
section can be written as the sum of single and double scattering parts as illustrated in
Fig.5.1:

σγ∗d = σγ∗p + σγ∗n + δσγ∗d. (5.5)

The first two terms describe the incoherent scattering of the (virtual) photon from the
proton or neutron, while

δσγ∗d =
1

2Mdν
ImA(2)

γ∗d (5.6)

accounts for the coherent interaction of the projectile with both nucleons.

For large energies, ν > 3 GeV, or small values of the Bjorken variable, x < 0.1, the
double scattering amplitude A(2)

γ∗d is dominated by the diffractive excitation of hadronic
intermediate states (Fig.5.1 b) described by the amplitude Tγ∗N→XN. At the high energies
involved it is a good approximation to neglect the real part of this amplitude. In fact,
we expect Re Tγ∗N→XN

<∼ 0.15 ImTγ∗N→XN by analogy with high-energy hadron-hadron

52
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For deuteron:

e.g. Piller, Weise, Phys. Rep. 330 (2000) 1 
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where the photon flux (2.32) is taken in the limit x ! 1. The leading contribution to
nuclear shadowing comes from double scattering. Its mechanism is best illustrated for a
deuterium target on which we focus next.

5.1.1 Shadowing in deuterium

In this section we review the basic mechanism of shadowing in real and virtual photon-
deuteron scattering at high energies ν, or equivalently, small x. The γ∗-deuteron cross
section can be written as the sum of single and double scattering parts as illustrated in
Fig.5.1:

σγ∗d = σγ∗p + σγ∗n + δσγ∗d. (5.5)

The first two terms describe the incoherent scattering of the (virtual) photon from the
proton or neutron, while

δσγ∗d =
1

2Mdν
ImA(2)

γ∗d (5.6)

accounts for the coherent interaction of the projectile with both nucleons.

For large energies, ν > 3 GeV, or small values of the Bjorken variable, x < 0.1, the
double scattering amplitude A(2)

γ∗d is dominated by the diffractive excitation of hadronic
intermediate states (Fig.5.1 b) described by the amplitude Tγ∗N→XN. At the high energies
involved it is a good approximation to neglect the real part of this amplitude. In fact,
we expect Re Tγ∗N→XN

<∼ 0.15 ImTγ∗N→XN by analogy with high-energy hadron-hadron
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Fig. 4.7. Deep-inelastic scattering at small x ! 1 in the laboratory frame proceeds via hadronic
fluctuation present in the photon wave function.

When analyzing the spectral representation of the scattering amplitude one observes that
the bulk contribution to process (b) results from those hadronic components in the photon
wave function which have a squared mass µ2 ∼ Q2 (see Section 5.4.1). The ratio in
Eq.(4.18) is evidently small for x ! 0.1. Hence pair production, Fig.4.6b, is the leading
lab frame process in the small-x region. On the other hand, at x > 0.1, both mechanisms
(a) and (b) contribute.

In process (b) the photon couples to a quark pair which can form a complex (hadronic
or quark-gluon) intermediate state and then scatters from the target. At small x deep-
inelastic scattering can therefore be described in the laboratory frame in terms of the
interaction of quark-gluon components present in the wave function of the virtual photon
(Fig.4.7). The longitudinal propagation length λ of a specific photon-induced quark-gluon
fluctuation with mass µ is given by the inverse of the energy denominator (4.17):

λ ∼ 1

∆Eb
=

2ν

µ2 + Q2

µ2∼Q2−−−→ 1

2xM
, (4.19)

which coincides with the longitudinal correlation length l of Eq.(4.4). For x < 0.05 the
propagation length λ exceeds the average distance between nucleons in nuclei, λ > d %
2 fm. For a nuclear target, coherent multiple scattering of quark-gluon fluctuations of the
photon from several nucleons in the nucleus can then occur, and this is clearly seen in the
coordinate space analysis discussed in the previous section.

For larger values of the Bjorken variable, x > 0.2, the propagation length of intermediate
hadronic states is small, λ < d. At the same time the process in Fig.4.6a becomes promi-
nent, i.e. the virtual photon is absorbed directly by a quark or antiquark in the target.
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Space-time view of shadowing

if propagation length exceeds average distance 
between nucleons λ > d ≈ 2 fm

coherent multiple scattering can occur

x < 0.05

µ

propagation length of  hadronic 
fluctuation of mass     (in lab frame)

λ ∼

1

∆E
=

2ν

µ2 + Q2
→

1

2xM
, µ2

∼ Q2

see e.g. Piller, Weise, Phys. Rep. 330 (2000) 1 



Shadowing in deuterium

vector meson dominance

Q2
= 4 GeV

2

(higher twist)



Shadowing in deuterium

Pomeron exchange



WM, Thomas, Phys. Rev. D47 (1993) 3783

Anti-shadowing in deuterium

meson (pion) exchange



VMD important even at moderate Q2



FIG. 3. (a) Model prediction for the Q2 dependence of the structure function ratio of Sn to C,

for x = 0.0125 (lowest curve), 0.0175, 0.025, 0.035, 0.045 and 0.055 (highest curve). (b) Slope in

log Q2 of the Sn/C ratio as a function of x — solid curve is the full result, dashed is the Pomeron

contribution only.

16

Shadowing in nuclei

Fig. 5.11. The slope b = d(F Sn
2 /FC

2 )/d ln Q2 indicating the Q2 dependence of the shadowing
ratio Sn/C. The calculation is described in [169]. Data are taken from [82].

the spectral ansatz (5.38) the given value of Q2 selects that part of the hadron mass
spectrum around µ2 ∼ Q2 which dominates the interaction, and hence determines which
cross sections σhN(µ2) contribute significantly to the multiple scattering series. While the
interaction cross sections decrease as 1/µ2 with increasing mass as required by Bjorken
scaling, pairs which are aligned with the photon momentum interact with large cross
sections, even for large µ, and therefore produce strong shadowing. This is the reason for
the very weak overall Q2-dependence of shadowing in this framework. A comparison of
results from Ref.[169] with NMC data for the slope b of the ratio F Sn

2 /FC
2 ≈ a + b ln Q2

is presented in Fig.5.11. For a more detailed discussion of these issues including QCD
corrections, see Ref.[1].

5.4.2 Vector meson dominance and pomeron exchange

As indicated in Eqs.(5.11,5.18), nuclear shadowing is directly related to the diffractive pro-
duction cross section dσdiff

γ∗N /dM2
X dt or, equivalently, to the diffractive structure function

F D(4)
2 .

Diffractive production at Q2 <∼ 1 GeV2 is dominated by the excitation of the vector
mesons ρ, ω and φ. Their contributions can be described within the framework of vector
meson dominance (see e.g. [25]). Neglecting transitions between different vector mesons

72

NMC, Nucl. Phys. B481 (1996) 23WM, Thomas, Phys. Rev. C52 (1995) 3373

Perturbative or nonperturbative origin 
of Q  dependence?2

Q2
= 1 − 140 GeV

2



FIG. 4. x dependence of the slope α from the structure function ratio FA
2 /FC

2 ∝ Aα, compared

with NMC data on A = D,Li,Be,Al, Ca, Fe and Sn.

FIG. 5. x dependence of the D/p structure function ratio, compared with the low-x E665 data

[4] and NMC data [37] at larger x. The dashed curve is the result without any shadowing correction.
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Comparison with data

WM, Thomas, Phys. Rev. C 52 (1995) 3373
- see also Badelek, Kwiecinski (1992),

Nikolaev, Zoller (1992)



Effect on neutron structure function at small x
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2

(Fn
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1-2% enhancement at x ~ 0.01

Effect on neutron structure function at small x



Gottfried sum rule

Integrated difference of p and n structure functions

SG =

∫ 1

0

dx
F

p
2
(x) − Fn

2 (x)

x

flavor asymmetric sea!d̄(x) != ū(x)

NMC, Phys. Rev. D 50 (1994) 1

Experiment: SG = 0.235 ± 0.026

=
1

3
+

2

3

∫ 1

0

dx (ū(x) − d̄(x))



Saturation of Gottfried sum rule

SG(x, 1) =

∫ 1

x

dx′
F

p
2
(x′) − Fn

2 (x′)

x′



Saturation of Gottfried sum rule

~ 10% decrease due to shadowing

correction to SG(0, 1) ≈ −0.02



Fermilab E866 Drell-Yan experiment

d2σ

dxbdxt

=
4πα2

9Q2

∑

q

e2

q (q(xb)q̄(xt) + q̄(xb)q(xt))

Drell, Yan, Phys. Rev. Lett. 25 (1970) 316 

annihilation in 
hadron-hadron collisions

qq̄

qq̄ → γ
∗
→ µ

+
µ
−

σpd

2σpp
≈

1

2

(
1 +

d̄(xt)

ū(xt)

)

Ellis, Stirling, Phys. Lett. B256 (1991) 258 

For xb ! xt

“beam’’

“target”



proton. An extrapolation was made to account for the unmea-

sured region at low x. To extrapolate this integral from the

measured region, which is shown in Fig. 11, to the unmea-

sured region, MRST and CTEQ5M were used to estimate the

contribution for 0!x!0.015 and it was assumed that the
contribution for x"0.35 was negligible. The uncertainty

from this extrapolation was estimated to be 0.0041 which is

half the difference between the contributions as given by

MRST and CTEQ5M.

VII. CHARGE SYMMETRY AND SHADOWING

The analysis presented here assumes that the parton dis-

tributions of the nucleon obey charge symmetry: i.e., up(x)

!dn(x), d̄ p(x)! ūn(x), etc. This is consistent with the treat-

ment in previous experiments #1–4$ and global fits #13–15$.
The possibility that charge symmetry could be significantly

TABLE XI. The cross section ratio, d̄/ ū and d̄" ū values determined from the combination of all data sets for each x2 bin. The first

uncertainty is statistical and the second uncertainty is systematic. The quantities extracted from the cross section ratio are given for Q2

!54 GeV2/c2. The cross section ratio has a systematic uncertainty of less than 1% as shown in Table X. The average values for kinematic

variables are also shown.

x2 range %pT& %M'#'"&
min-max %x2& %xF& (GeV/c) (GeV/c2) (pd/2(pp

d̄/ ū d̄" ū

0.015–0.030 0.026 0.534 1.004 4.6 1.038$0.022 1.085$0.050$0.017 0.862$0.489$0.167

0.030–0.045 0.038 0.415 1.045 5.1 1.056$0.011 1.140$0.027$0.018 0.779$0.142$0.096

0.045–0.060 0.052 0.356 1.076 5.6 1.081$0.010 1.215$0.026$0.020 0.711$0.077$0.060

0.060–0.075 0.067 0.326 1.103 6.2 1.086$0.011 1.249$0.028$0.021 0.538$0.055$0.041

0.075–0.090 0.082 0.296 1.122 6.8 1.118$0.013 1.355$0.036$0.023 0.512$0.044$0.028

0.090–0.105 0.097 0.261 1.141 7.2 1.116$0.015 1.385$0.046$0.025 0.400$0.040$0.022

0.105–0.120 0.112 0.227 1.156 7.5 1.115$0.018 1.419$0.060$0.027 0.321$0.038$0.017

0.120–0.135 0.127 0.199 1.168 7.8 1.161$0.023 1.630$0.085$0.031 0.338$0.034$0.013

0.135–0.150 0.142 0.182 1.161 8.2 1.132$0.027 1.625$0.110$0.033 0.259$0.035$0.010

0.150–0.175 0.161 0.164 1.156 8.7 1.124$0.027 1.585$0.111$0.032 0.180$0.027$0.008

0.175–0.200 0.186 0.146 1.146 9.5 1.144$0.038 1.709$0.158$0.036 0.142$0.023$0.005

0.200–0.225 0.211 0.133 1.146 10.3 1.091$0.047 1.560$0.194$0.034 0.081$0.022$0.004

0.225–0.250 0.236 0.120 1.178 11.1 1.039$0.063 1.419$0.264$0.036 0.045$0.023$0.003

0.250–0.300 0.269 0.097 1.177 12.0 0.935$0.067 1.082$0.256$0.032 0.006$0.019$0.002

0.300–0.350 0.315 0.046 1.078 12.9 0.729$0.124 0.346$0.395$0.022 "0.040$0.036$0.002

FIG. 9. d̄(x)/ ū(x) versus x shown with statistical and system-

atic uncertainties. The combined result from all three mass settings

is shown with various parametrizations. The E866 data and the

parametrizations are at Q2!54 GeV2/c2. The NA51 data point is
also shown.

FIG. 10. d̄" ū as a function of x shown with statistical and

systematic uncertainties. The E866 results, scaled to fixed Q2

!54 GeV2/c2, are shown as the circles. Results from HERMES

(%Q2&!2.3 GeV2/c2) are shown as squares. The error bars on the
E866 data points represent the statistical uncertainty. The inner er-

ror bars on the HERMES data points represent the statistical uncer-

tainty while the outer error bars represent the statistical and system-

atic uncertainty added in quadrature.
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reviews !49,50" provide a detailed survey of the literature.
Most calculations include contributions from #N and #$

configurations. g#NN and g#N$ are the well known pion-

nucleon and pion-delta coupling constants, so the primary

difference among the various calculations is the treatment of

the #NN and #N$ vertex form factors. As an example, Fig.

15 compares the present determination of d̄(x)! ū(x) to a

pion-cloud-model calculation !51", which followed a proce-
dure detailed by Kumano !52". In this calculation, dipole
form factors were used, with %"1.0 GeV for the #NN ver-
tex and %"0.8 GeV for the #N$ vertex. This calculation is

typical of many of this type, in that the probability of finding

the nucleon in a #N configuration is approximately twice

that of finding it in the #$ configuration !53,54". However, a
recent calculation by Nikolaev et al. !55", also shown in Fig.
15, calls this into question. After isolating the contribution to

inclusive particle production from Reggeon exchange, they

conclude that the #N$ vertex should be substantially softer

than previously believed, significantly reducing the probabil-

ity of finding the nucleon in a #$ configuration. It adopts

Gaussian form factors with cutoff parameters of 1 GeV!2

for the #NN vertex and 2 GeV!2 for the #N$ vertex. This

calculation predicts that the #N component of the nucleon is
slightly more probable than in Ref. !51" and the #$ compo-

nent is very small. Thus, while it provides very good agree-

ment with the E866 results for x#0.05, it contains signifi-
cantly more singular behavior as x→0. Overall, it predicts

that

!
0

1

! d̄&x '! ū&x '"dx"0.177. &22'

While the pion-cloud calculations above give a good de-

scription of the measured d̄(x)! ū(x), they are not able to

predict d̄(x)/ ū(x) since neither one attempts to describe the

entire light antiquark sea. Rather, they assume that an addi-

tional symmetric contribution exists due to gluon splitting to

bring the d̄/ ū ratio down to the measured value. These mod-

els do however indicate that pions make up a large part of the

sea where the asymmetry is greatest. In contrast, Alberg et

al. !56" have investigated whether or not the entire light an-
tiquark sea might be understood in a meson-cloud picture.

They find that, by considering #N and (N contributions,

they can fit d̄(x)! ū(x) and simultaneously obtain a reason-

able description of d̄/ ū at x$0.25. They also speculate that
the addition of #$ , )N and *N terms would preserve the fit
to d̄! ū , because of a cancellation between the #$ and )N
effects, and further improve the agreement for d̄/ ū .

A different approach to the d̄/ ū asymmetry, based on chi-

ral perturbation theory, has been proposed by Eichten et al.

!57". Within their model, the asymmetry arises from the cou-
pling of constituent quarks to Goldstone bosons, such as u

→d#% and d→u#!. The excess of d̄ over ū is then simply

due to the additional valence u quark in the proton. Figure 15

includes the result of such a calculation, based on a calcula-

tion of d̄(x)! ū(x) at Q0"0.5 GeV/c by Szczurek et al.

!58", and evolved to Q2"54 GeV2/c2. It clearly predicts
too soft an asymmetry. This arises because the model treats

the three valence quarks equivalently at the initial scale, with

each carrying 1/4 of the nucleon momentum. &Gluons carry
the remaining 1/4.' The d̄/ ū ratio is then fixed by Clebsch-
Gordan coefficients to be 11/7 for all x at Q0. With this input,

QCD evolution requires d̄/ ū+11/7, independent of x and Q.
Hence, unlike the meson-baryon models, this model under-

predicts d̄/ ū over much of the measured x range. E866 re-

sults suggest that additional correlations between the chiral

constituents of the nucleon need to be taken into account.

The chiral quark-soliton model has been used by Pobylitsa et

al. !59" to calculate d̄(x)! ū(x) in the large-Nc limit. Figure

15 shows that this model reproduces the measured d̄(x)

! ū(x) values well for x#0.08, but it overestimates the
asymmetry at small x.

The spin and flavor structure of the nucleon sea have been

investigated in the instanton model by Dorokhov and

Kochelev !60". They derive expressions for the x dependence
of the instanton-induced sea that are appropriate for very

large and very small x. They then combine the two

asymptotic forms to obtain an ad hoc expression for all x,

d̄ I&x '! ū I&x '"1.5A
&1!x '7

x ln2x
, &23'

where A is an arbitrary constant which they chose to repro-

duce early NMC results. This form gives a poor description

FIG. 15. Comparison of the measured d̄(x)! ū(x) at Q2

"54 GeV2/c2 to predictions of several models of the nucleon sea.
The solid and short-dash curves show pion-cloud calculations by

Peng et al. and Nikolaev et al., respectively. The dotted curve

shows the chiral perturbation theory calculation of Szczurek et al.,

while the dot-dash curve shows the chiral quark-soliton calculation

of Pobylitsa et al. The long-dash curve shows the instanton model

prediction of Dorokhov and Kochelev.
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∫ 1

0

dx (d̄(x) − ū(x)) = 0.118 ± 0.012



Why is 

Pauli blocking

d̄ != ū ?

Since proton has more valence u than d 

easier to create       than uūdd̄

Field, Feynman, Phys. Rev. D15 (1977) 2590

Explicit calculations of antisymmetrization
g → uū g → dd̄ effects in               and

 Ross, Sachrajda, Nucl. Phys. B149 (1979) 497 
Steffens, Thomas, Phys. Rev. 55 (1997) 900

ū > d̄

asymmetry tiny



and five for the insertion of a u quark. The possible graphs

would be the analog of !b" and !c" from Fig. 1 for a uū in the
sea and the analog of graph !c" from Fig. 2 for a dd̄ in the

sea. Again, we would have more uū pairs than dd̄ pairs and

now it is clear why that happens: This is because there is one

free valence u quark that can be exchanged with the sea and

there is no such free valence d quark to be exchanged !in the

case of a dd̄ sea". The opposite situation happens when the
u quark emits the gluon such that the sum of all diagrams,

gluon emission from u and d valence quarks, renders an

equal probability for a uū and dd̄ pair creation, as expected

in a proton containing only one quark of each flavor. The

lesson is that we cannot treat the gluon emission in the pro-

ton from different flavors separately, and expect the Pauli
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uū

dd̄

Steffens, Thomas, Phys. Rev. 55 (1997) 900





Why is 

Pion cloud

at the quark level

uud → (udd)(d̄u) → uud

p → π
+

n → p

some of the time the proton             
π

+

(Heisenberg Uncertainty Principle)
 looks like a neutron &

Sullivan, Phys. Rev. D5 (1972) 1732

d̄ != ū ?

d̄ > ū ! Thomas, Phys. Lett. 126B (1983) 97

see Nucleon Models...

ZN
2 Z∆

2

ZNN
1,U/P Z∆∆

1,U/P ZN∆
1,P Z∆N

1,P

ZNWT
1,P Z∆WT

1,P Ztad
1,U/P

FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized

16

π
+

np p



Tomorrow’s lecture: 

3.  Connection with low energy models

4.  PDFs from the lattice




