
Yesterday’s lecture: 

Phenomenological PDFs    

- nuclear effects in going from F d
2 → F

n
2

- extracting PDFs from data

- flavor asymmetries as evidence for
non-perturbative physics



3.
Connection with 

low energy models

We know much...
We understand little...



One view: since PDFs are not “calculable”, 
they can only be used to test 

self-consistency of experiments 
& QCD-parton model framework



Can one use PDFs to learn about 
low-energy nucleon structure?

Sometimes can get insight (even predictions!) 
into nucleon structure from PDFs especially

sensitive to nonperturbative physics

e.g. d̄ != ū

s != s̄ strange asymmetry

up != dn
charge symmetry

violation

∆ū != ∆d̄
spin dependent
asymmetrieds



• Parisi & Petronzio (1976)                                       
- compute twist-2 PDFs at low scale     (where 
valence quarks dominate), evolve to high              
via DGLAP evolution

• Models studies                                           
- aim: use DIS data to discriminate between models                              
- problem: how to set scale     for given model,         
and how stable is evolution from    ?                     
- select observables insensitive to     (at least 
qualitatively)

• Gluck, Reya & Vogt                                      
- global fits of PDFs evolved from low scale

Can one use PDFs to learn about 
low-energy nucleon structure?

µ

Q2

µ

µ

µ



Dynamically generated PDFs

• input PDFs at low energy scale                     
- evolve to higher energy scale using QCD 
evolution equations

• generates steep rise in sea below x ~ 0.01                   
purely perturbatively  

• valence-like input at scale                                       
- valence-like gluon, constrained by momentum 
conservation

∫ 1

0
dx x

(
uv(x, µ2) + dv(x, µ2) + 2ū(x, µ2) + 2d̄(x, µ2) + g(x, µ2)

)
= 1

µ

- light flavor asymmetry d̄(x, µ2) != ū(x, µ2)

- no strange sea

µ



0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

Q
2
 = µ

2

x

xf

u
v

g

d
v

d
–

ū
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Evolved to higher scale

Gluck, Reya, Vogt,
Eur. Phys. J. C5 (1998) 461

Input scale µ
2
NLO = 0.4 GeV

2
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Dynamically generated PDFs

Gluck, Reya, Vogt, 
Eur. Phys. J. C5 (1998) 461

input



But where do the input PDFs 
come from?

What is their relation with models
 of nucleon structure?



PDFs from models

Twist-2 quark distribution

ψ+ =
1

2
(1 + γ0γz)ψ

ξ
−

= ξ0
− ξz

q(x) =
1

4π

∫
dξ−e−iMxξ

−〈N |ψ†
+(ξ−)ψ+(0)|N〉



PDFs from models

R.L.Jaffe, ‘‘Relativistic Dynamics and Quark Nuclear Physics’’ (1985) 

q(x) =
1

4π

∫
dz e−iMxz〈N |ψ†

+(ξ−)ψ+(0)|N〉

Twist-2 quark distribution

ψ+ =
1

2
(1 + γ0γz)ψ

ξ
−

= ξ0
− ξz

Insert complete set of intermediate states |n(!p)〉

q(x) =
∑

n

∫
[dp] |〈n(!p)|ψ+(0)|N〉|2 δ(M(1 − x) − p+

n
)

d3p

4Ep(2π)3

√
m2

n
+ !p 2 + pz



PDFs from models
If nucleon = 3 constituent quarks at rest

p
+
n

= mn

delta-function gives maximum in q(x) at

x = 1 −

mn

M

largest contribution at large x
from lightest intermediate state 

|n〉 = |qq〉

expect q(x) to peak at x ~ 1/3



PDFs from models

Use specific model wave functions 
to calculate valence PDFs

• Non-relativistic quark models

• Soliton models

• Bag models

• ......                                                          

see e.g. Thomas, Weise  ‘‘The Structure of the Nucleon’’ (2001)
also nucl-th/9808008



Non-relativistic quark models

Nucleon composed of 3 massive (non-relativistic)
constituent quark “quasi-particles” bound in a 
confining potential

 classic prediction µn/µp = −3/2

may be viewed as “bare” valence quark dressed 
by “clouds” of       pairs and gluons, giving massqq̄

residual one gluon exchange
  - strong attraction for S=0, I=0

In fact the Roper is still a mystery. In the bag models it has been described as
a “breathing mode” 1, but it has also been described as the result of coupling
to the inelastic two-pion channels 2,3:

R → Nππ

→ Nη

4 One Gluon Exchange

We have so far considered only the simplest shell model picture of baryon
structure, with the quarks moving in a mean confining field. However, one
expects that there should be some residual interaction which, motivated by
QCD, is usually taken to be the non-relativistic reduction of the One Gluon
Exchange diagram shown in Fig. 3. This is proportional to the product of two
quark-gluon vertices,

∑
a
#λa

1
#λa

2 = #λ1 · #λ2. Using the fact that the eigenvalue of
the total colour wave function for a baryon or meson must be zero, one easily
finds: 〈

#λ1 · #λ2

〉
Baryons

=
1

2

〈
#λ1 · #λ2

〉
Mesons

= −8

3
. Ex#5 (20)(

Hint :
∑

a

(λa)2 =
16

3

)
(21)

g
2

!
g2

m m

2

!1

Figure 3: Picture of two quarks exchanging a gluon.

Naturally this quantity is colour invariant, even though the #λ are the colour
matrices. Defining the strong coupling constant in the usual way

αs =
g2

4π
, (22)

8

rich and successful N* spectroscopy

mq ∼ 330 MeV

MN ≈ 3mq, mρ ≈ 2mq



Weber, Phys. Rev. D49 (1994) 3160

µ
2

= 0.34 GeV
2

Q2
= 10 GeV

2

Harmonic oscillator wave functions (Isgur-Karl)



Soliton models

QCD vacuum as a color dia-electric medium 
(dielectric constant                 )κmed ! 1

color charge inserted into such
medium produces a “hole” with
(‘‘perturbative vacuum”) 

κ = 1

QCD vacuum “excludes” color electric field 

confinement of color charges

energy of charge in cavity (- free space) ∼

κ
−1

med
− 1

R

perfect dia-electric                   is confining(κmed → 0)

+

+ +

+
! = 1

+

+

+

"

Figure 4: The dia-electric is anti-shielding. Here κmed ! 1.

means that the colour electric field is given by

!Ein = ε
r2 r̂ r ≤ R,

!Eout = ε
κmedr2 r̂ r ≥ R.

(37)

Thus we find that

{Electric field energy of cavity − Electric energy without medium effect}
=

∫
All Space

1

2
!E · !D − {Electric energy w/o medium effect} (38)

Prove, as an exercise, that the above expression has the form

∼ ε2

(
κ−1

med − 1
)

R
−→ ∞ as κmed → 0, Ex#8 (39)

Hence we can see that a perfect dia-electric is confining.
Now we suppose that the dia-electric vacuum is a lower energy state, so

that it costs energy to make this hole. The energy cost of making this hole is
given by

Uhole = BV + CS (40)

where V is the volume of the hole and S is the surface energy. Therefore we
find the equilibrium radius, Requil, when

d

dR
(Uhole − Uelectric)

∣∣∣∣
R=Requil

= 0. (41)

Naturally we have that Requil → ∞ when κmed → 0. Therefore there are
only solutions of the form illustrated by Fig. 5, where the total charge inside
the cavity is zero. This figure illustrates the close analogy between the super-
conducting state, which excludes magnetic fields and the QCD vacuum which
excludes the colour electric field, leading to confinement.

12

(T. D. Lee)



Soliton models

Many variants of solitons models...

Non-Topological Soliton Model (Friedberg-Lee)
- scalar field, in which quarks “dig” a self-consistent “hole”

Color Dielectric Model (Nielseon-Patkos)

Topological Soliton (Skyrmion) Model
- baryon number identified with topological winding
  number associated with pion field

Chiral Soliton Models 
- non-linear interacting systems of quarks and pions



Friedberg-Lee soliton model

1880 M R Bate and A I Signal 
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at model scale p2 for (a) lhe Friedberg-Lee soliton models and (a) lhe colour-dielectric 
soliton models. Both data sets are compared with that for the MIT bag model with a bag 

radius of 1.14 fm. 

quarks are in a spin-singlet or spin-triplet state. If we attribute the 300 MeV mass 
difference between the delta and the nucleon entirely to OGE effects (this is not 

the case in chiral models), then the diquark singlet and triplet states will be split 
by 200 MeV Using S U ( 6 )  symmetry we can write the two-quark intermediate-state 

contributions to the up and down quark distributions as 

where the subscripts s and ZI correspond to spin singlet or triplet intermediate states, 
and F and G are the spin-independent and spin-dependent parts of the distribution 

evolved from 

Bate, Signal, J. Phys. G 18 (1992) 1875 

1882 M R Bate and A I Signal 
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Flgure 3. 7he unpolarized u-quark distribution 
functions for the Friedberg-Lee soliton models 
at QZ = 10 GeV2 evolved from (top diagram) 
fi = 0.3 GeV and (bottom diagram) p = 0.5 GeV 
Both data sets are compared wilh thal for the MIT 
bag model with a bag radius of 1.14 fm. The 
hatched region corresponds to the spread i n  lhe 
various parametrizations of the experimental data 
at Q2 = 10 GeV2. 

x 

Figure 4. The unpolarized u-quark distribution 
functions far the colourdielectric soliton models 
at 42 = 10 GeVz evolved from (top diagram) 
fi = 0.3 GeV and (bottom diagram) p = 0.5 GeV 
Both data see are compared with that for the MIT 
bag model with a bag radius of 1.14 fin. The 
hatched region corresponds Io the spread in the 
various parametrizations of the experimenlal data 
at Q2 = 10 GeV’. 

The calculated differences shown in figures 5 and 6 are much higher than the 
data for z > 0.1, however we have only included the valence contributions to the 

µ ∼ 0.5 GeV



D. Leinweber



D. Leinweber



solve Dirac equation for relativistic quarks inside cavity

Bag models

Bogoliubov (1967)

quarks in spherical cavity (radius R), 
with attractive scalar field Vs = −Θ(R − r) m

mimics asymptotic freedom (r > R)
and confinement (r < R, m → ∞)

MIT bag model

confinement achieved by requiring no quark current 
flow through surface of bag
get quark and antiquark distributions functions



DIS from the “bag”

Schreiber, Signal, Thomas, 
Phys. Rev. D44 (1991) 2653

d(x) softer than u(x) 
due to OGE between 
“spectator’’ quarks

raises energy of
S=1 qq pair relative
to S=0 qq pair

Feynman, 1972



Chiral symmetry

In massless quark limit, QCD has exact
         symmetry SU(2)L × SU(2)R

Symmetry broken spontaneously 

appearance of pesudoscalar Goldstone bosons            
- pions - which play important role in hadronic physics

satisfies

∂µAµ = −iq̄γ5
τ

2
qδS, (116)

and we see (as illustrated in Fig. 9) that the confining boundary violates chiral
symmetry – i.e. mixes left- and right-handed quarks. This is a major problem
since symmetries should always be a crucial guide in constructing models.

Bag Bag

Wall Wall

Incident (Helicity +1) Reflected (Helicity -1)

Figure 9: Violation of chiral symmetry at the bag surface

But QCD already has a problem. If ∂µAµ = 0 then∫
All Space

dV ∂µAµ = 0, (117)

implies

∂0

{∫
dV A0

}
= −

∫
dV $∇ · $A = 0, (118)

by the Gauss Theorem. By defining the axial charge as Q5 =
∫

dV A0 we find
that it is a constant of the motion, that is

[H, Q5] = 0. (119)

Thus for all positive parity eigenstates of the Hamiltonian there exists a de-
generate, negative parity state, i.e.

H
∣∣N+

〉
= m

∣∣N+
〉 ⇒ Q5

∣∣N+
〉

=
∣∣N−〉

has

H
∣∣N−〉

= m
∣∣N−〉

. (120)

This is clearly not seen in nature!
The solution comes through the Goldstone Theorem. Either these de-

generate, negative parity states exist OR Q5 |0〉 %= 0. That is, as a result
of spontaneous symmetry breaking, there exists massless, pseudoscalar Gold-
stone bosons. As the first option is clearly incorrect, in an effective low energy
description of QCD, we require a massless “pion” field, φ, in addition to the

26

Reflection of quark at bag surface 
changes helicity

violates chiral symmetry!

add pion field to bag model to restore chiral symmetry

chiral quark models, e.g. Cloudy Bag Model 
Thomas, Theberge, Miller, Phys. Rev. D24 (1981) 216 



WM, Speth, Thomas, 
Phys. Rev. D59 (1998) 014033

Pion cloud contributions to 
flavor asymmetry in proton sea

tributions do not contradict other observables, such as the

total d̄! ū distribution, which should serve as an absolute

upper limit on the strength of the form factor !6". In Fig. 8#a$
we show the contributions to the sum x( d̄! ū) from the %N
and %& components with '%N"1.5 GeV and '%&
"1.3 GeV, compared with the CTEQ4 !15" and MRS98
!16" parametrizations. While at small x the calculated distri-
butions lie safely below the parametrization #the difference is
made up by the perturbatively generated g→qq̄ antiquark

distributions$, at large x the pion cloud already saturates the
total sea with these cut-offs—although one should add a cau-

tionary note that the antiquark distribution at large x is not

determined very precisely. For softer combinations of form

factors, namely '%N"1 GeV, '%&"1.3 GeV and '%N

"'%&"1 GeV, the total non-perturbative antiquark sea in
Fig. 8#b$ is below the empirical parametrizations in both

cases.

Therefore the only way to obtain a smaller d̄ excess at

large x and still be consistent with the total antiquark distri-

bution is to reduce the %N component, having a cut-off

smaller than for the %N& vertex. It was argued in Ref. !17"
that the %N& form factor should be softer than the %NN ,
based on the observation that the M1 transition form factor

was softer for (N& than for (NN . However, there is no
clear connection between these form factors, and hence no

compelling reason why the %N& form factor cannot be

harder than that for %NN . Indeed, a comparison of the axial
form factors for the nucleon and for the N–& transition

strongly favor an N–& axial form factor that is significantly

harder than that of the nucleon. In fact, the former is best fit

by a 1.3 GeV dipole, while the latter by a 1.02 GeV dipole

parametrization !42". Within the framework of PCAC these
form factors are directly related to the corresponding form

factors for pion emission or absorption !43".
In Fig. 9 we show the difference and ratio of the d̄ and ū

distributions calculated with the softer %NN form factor,

'%N"1 GeV, and '%&"1.3 GeV. The excess at large x
now is largely canceled by the %&. However, the smaller %N
contribution means that the asymmetry is underestimated in

the intermediate x range, x#0.2.

FIG. 6. %N and %& momentum distribution functions, with di-

pole form factor cut-offs '%N"1 GeV and '%&"1.3 GeV.

FIG. 7. Contributions from the %N and %& components

#dashed$ and the combined effect #solid$ to the #a$ d̄$ ū difference

and #b$ d̄/ ū ratio. The cut-off masses are '%N"1.5 GeV and

'%&"1.3 GeV.

FIG. 8. Total x( d̄! ū) distribution #a$ from the %N and %&
components #dashed$, with '%N"1.5 GeV, '%&"1.3 GeV, and
the total #solid$, #b$ the total contribution for '%N"1.5 GeV,
'%&"1.3 GeV #largest curve$, '%N"1 GeV, '%&"1.3 GeV
#middle$, and '%N"'%&"1 GeV #smallest$. The theoretical

curves are compared with the CTEQ4 !15" and MRS98 !16" global
parametrizations #dotted$.

W. MELNITCHOUK, J. SPETH, AND A. W. THOMAS PHYSICAL REVIEW D 59 014033

014033-6

tributions do not contradict other observables, such as the
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Can get reasonable description at x < 0.2
difficult to understand downturn at large x



Which is the “true” model ?

mimic different aspects of
QCD at low-energy

the models are not “systematic”



It might be right, but it’s not systematic...

It might be wrong, but at least it’s systematic...

What about something which might be right,
AND is systematic?



4.
PDFs from the lattice



Lattice QCD (in a nutshell)

Solve QCD equations of motion numerically 
on discretized space-time grid

quarks on lattice nodes

gluons as links between nodes

Wilson (1974)

U (x)

U (x)
!

µ

x x+

x+!

µ

µ

!

Figure 1: A schematic of a lattice showing the association of the SU(3) matrices Uµ(x) with
the links of the lattice.

TrT aT b =
1

2
δab. (4)

We now introduce the field-strength tensor

F a
µν ≡ ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν , (5)

in terms of which the Euclidean continuum action is

S =
1

4

∫
d4x sF a

µνF a
µν . (6)

As we will see later, the crucial property of Euclidean space QCD for the
formulation of lattice gauge theories is that the action is real. Gauge invariance
is manifest through invariance under the transformation

Aµ(x) → Λ(x)Aµ(x)Λ−1(x) − 1

ig
(∂µΛ(x))Λ−1(x). (7)

We proceed to the lattice formulation of QCD by replacing a finite region
of continuum space-time by a discrete four-dimensional lattice, or grid, of
points. The gluon degrees of freedom are represented by SU(3) matrices Uµ(x)
associated with the links connecting the grid points, as shown in Figure 1.
We work with the elements of the group, rather than elements of the algebra,

3

and the SU(3) matrices Uµ(x) are related to the usual continuum gauge fields
through

Uµ(x) = exp ig a

∫ 1

0
dt Aµ(x + taµ̂), (8)

where g is the coupling constant, and a the lattice spacing. Under a gauge
transformation Λ(x), the link variables transform as

Uµ(x) → Λ(x)Uµ(x + µ̂)Λ−1(x), (9)

in analogy with Eq. 7. Wilson’s form of the lattice gauge action is constructed
from the elementary plaquettes 1

U!µν (x) = Uµ(x)Uν(x + µ̂)U †
µ(x + ν̂)U †

ν (x). (10)

The plaquettes are clearly gauge invariant, and the action is then written

SG =
2Nc

g2

∑
x

∑
µ>ν

[
1 − 1

Nc
#TrU!µν (x)

]
≡ − β

Nc

∑
x

∑
µ>ν

#TrU!µν , (11)

where we have ignored the constant term, and introduced

β =
2Nc

g2

with, for QCD, Nc = 3. It is straightforward to show that the Wilson lattice
gauge action is related to the continuum counterpart, Eq. (6), by

SG =
1

4

∫
d4xF a

µνF a
µν + O(a2), (12)

so that the lattice gauge action has O(a2) discretisation errors.

1.3 Observables and Lattice Gauge Simulations

Within lattice gauge theory, the expectation value of an observable O is given
by the path integral

〈O〉 =
1

Z

∫
DU O(U)e−SG(U) (13)

where
DU =

∏
x,µ

dUµ(x) (14)

4



Approximations

Observables calculated from path integrals in Euclidean space 

cost ∝ m
−4

q

OK only
at large mq

and the SU(3) matrices Uµ(x) are related to the usual continuum gauge fields
through

Uµ(x) = exp ig a

∫ 1

0
dt Aµ(x + taµ̂), (8)
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where we have ignored the constant term, and introduced

β =
2Nc
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1

4
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µν + O(a2), (12)
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1.3 Observables and Lattice Gauge Simulations

Within lattice gauge theory, the expectation value of an observable O is given
by the path integral

〈O〉 =
1

Z

∫
DU O(U)e−SG(U) (13)

where
DU =

∏
x,µ

dUµ(x) (14)

4

these uncertainties decrease as the square root of the number of configura-
tions, providing successive configurations are sufficiently widely separated to
be statistically independent.

Systematic Uncertainties

Of even greater delicacy than the statistical uncertainties are the system-
atic uncertainties that enter our computations. These arise from a variety
of sources, including:

• Finite Volume: Our box must be sufficiently large that finite volume
effects are under control. For light hadron spectroscopy, box sizes of at
least 2 fm are necessary to ensure that the hadron is not “squeezed”, but
for excited states even larger volumes may be required. In addition, the
requirement that the spatial extent of the lattice be large compared with
the correlation length, set by the pseudoscalar mass, sets a still more
stringent constraint at the physical pion mass.

• Discretisation Effects: Increasing the inverse coupling β corresponds to
progressing to weaker coupling, and hence smaller lattice spacing a. We
must ensure that β is sufficiently large that the scale-breaking discreti-
sation errors are under control, and in practice we perform calculations
at several values of a and extrapolate to the limit a = 0.

We will encounter several other potential sources of systematic errors when we
discuss the inclusion of the quarks.

1.5 Including the Quarks

The full generating functional for lattice QCD with a single flavour of quark is

Z =

∫
DU DψDψe

−SG(U)+
∑

x,y
ψ(x)M(x,y,U)ψ(y)

, (17)

where M(x, y, U) is the fermion matrix which, in its “näive” form, is

M(x, y, U) = m δx,y +
1

2

∑
µ

γµ

(
Uµ(x)δy,x+µ̂ − U †

µ(x − µ̂)δy,x−µ̂

)
(18)

with m the quark mass. Because the fermion fields are represented by Grass-
man variables, we can integrate out the fermion degrees of freedom, to obtain

Z =

∫
DU det M(U) e−SG(U). (19)
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Fermion mass matrix

- finite lattice spacing a (→ 0)

- finite lattice volume V (→ ∞)

- large quark mass  mq (→ m
phys
q

)

- “quenching” - suppression of 
background       loopsqq̄



I. INTRODUCTION

Parton distribution functions (PDFs) contain a wealth of information on the nonper-
turbative structure of the nucleon. Quark and gluon distributions probed in deep inelastic
scattering and other high energy processes have provided valuable insights into the workings
of QCD in the low energy domain. The observation of an asymmetry between d̄ and ū quarks
in the proton sea [1,2], to take just one example, has served to highlight the important role
that the pion cloud of the nucleon and the chiral symmetry of QCD [3] plays in hadronic
structure, even at high energies.

More generally, studies of PDFs can help with the task of identifying the appropriate
effective degrees of freedom of QCD at low energies. Through the application of the operator
product expansion (OPE) to QCD, high energy processes such as deep inelastic scattering
can be factorized into short and long distance contributions, allowing one to calculate the
former in perturbation theory, while isolating all of the nonperturbative physics in the
latter. Over the past two decades considerable experience has been accumulated with various
nonperturbative, low energy models of the nucleon which have been used to study PDFs
[4]. Initial studies focused on the valence quark distributions as a means of constraining
valence quark model parameters, although recently more ambitious efforts have attempted
to describe sea quark and gluon distributions from low energy models.

Although the model studies have been helpful in exploring the relationship between
high energy processes and low energy phenomenology, ultimately one would like a more
exact connection of PDFs with QCD. A mathematically more rigorous approach is provided
through lattice QCD. Indeed, the determination of the moments of the PDFs is one of the
benchmark calculations of hadron structure in lattice QCD. Modern computational advances
have allowed large scale simulations to be undertaken which are progressively improving the
errors associated with finite lattice spacings and finite volume effects. However, until recently
[5] large differences between lattice results and experiment have remained.

Because PDFs are light cone correlation functions, it is not possible to calculate them
directly on the lattice in Euclidean space. Instead one calculates moments of PDFs, defined
(for Björken x) as:

〈xn〉q =
∫ 1

0
dx xn

(
q(x) + (−1)n+1q̄(x)

)
, (1)

which are related through the OPE to matrix elements of local twist-two operators. A num-
ber of calculations of PDF moments have been performed over the last decade, most notably
by the QCDSF group [6] in the quenched approximation. More recently, the MIT group
[7] has confirmed the earlier quenched results, and in addition made the first unquenched
simulations. These results indicate that at the relatively large quark masses at which the
calculations were made, the unquenched results are indistinguishable from the quenched
within the current errors.

Despite the impressive progress of lattice calculations of moments of PDFs, there has
been a long standing problem in reconciling the lattice data with experiment, which has
posed a serious threat to the credibility of current lattice calculations. Namely, for the un-
polarized moments all of the calculations to date, which have been made at quark masses
of between 30 and 190 MeV, have yielded results which are typically 50% larger than the

2

Cannot calculate x-distribution on lattice
(no light-cone in Euclidean space) - only moments

PDFs from Lattice QCD

Use operator product expansion to relate 
moments of PDFs to matrix elements of local 
operators

〈xn〉 pµ1
· · · pµn+1

= 〈N | O{µ1···µn+1}|N〉

twist-2 operators
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Chiral extrapolation
of lattice moments

Even though structure functions are measured at high energies
   their moments have chiral expansion

ZN
2 Z∆

2

ZNN
1,U/P Z∆∆

1,U/P ZN∆
1,P Z∆N

1,P

ZNWT
1,P Z∆WT

1,P Ztad
1,U/P

FIG. 3: Contributions to the wave function and vertex renormalization of the nucleon matrix

elements of the operators Oµ1...µn

i , i = q,∆q, δq, in Eq. (3). Solid, double and dashed lines denote

nucleon, ∆ and pion propagators and the crossed circle and box indicate the insertion of the relevant

operators. Diagrams ZN
2 and Z∆

2 denote the contributions to wave function renormalization (a

derivative with respect to the external momentum is implied).

The renormalization constants for the spin-independent, helicity and transversity opera-

tors are given by

Z−1
q = 1 + ZNN

1,U + Z∆∆
1,U + Ztad

1,U , (18a)

Z−1
∆q = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P + Ztad

1,P + ZNWT
1,P + Z∆WT

1,P , (18b)

Z−1
δq = 1 + ZNN

1,P + ZN∆
1,P + Z∆N

1,P + Z∆∆
1,P +

1

2
Ztad

1,P +
1

2
ZNWT

1,P +
1

2
Z∆WT

1,P . (18c)

The contributions from the coupling to nucleon intermediate states are given by:

ZNN
1,U = − g2

A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (19)

and

ZNN
1,P =

1

3

g2
A

(4πfπ)2

∫ ∞

0

k4u2(k)dk

ω3(k)
, (20)

for the unpolarized and polarized operators, respectively. One can explicitly verify that the

LNA behavior of these contributions is m2
π log m2

π. The ∆ contributions to the unpolarized
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π

N ∆

π



Chiral extrapolation
of lattice moments

〈xn〉u−d = an

(
1 + cLNAm2

π log
m2

π

m2
π + µ2

)
+ bn

m2
π

m2
π + m2

b,n

Leading non-analytic coefficient

cLNA = −(1 + 3g2
A)/(4πfπ)2

calculated from   PT

Even though structure functions are measured at high energies
   their moments have chiral expansion

χ

  Detmold et al, Phys. Rev. Lett. 87 (2001) 172001
  also Arndt, Savage (2001), Ji, Chen (2001)



PDF in heavy quark limit

u(x) − d(x)
mq→∞

−→ δ(x −

1

3
)

Moment

〈xn〉u−d

mq→∞

−→
1

3n

bn =
1

3n
− an

(
1 − µ2cLNA

)
Coefficient ensures correct                  behaviormπ → ∞

Parameter     determines amount of curvature 
at low

µ

m
2

π
(m2

π
∝ mq)



Extraction of parton distributions from lattice QCD 5
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17

〈xn〉∆u−∆d = ∆an

(
1 + ∆cLNAm2

π log
m2

π

m2
π + µ2

)
+ ∆bn

m2
π

m2
π + m2

b,n

, (6)

and

〈xn〉δu−δd = δan

(
1 + δcLNAm2

π log
m2

π

m2
π + µ2

)
+ δbn

m2
π

m2
π + m2

b,n

, (7)

Detmold, WM, Thomas, Mod. Phys. Lett. A18 (2003) 2681

Chiral physics vital for understanding lattice data



Odds and evens

• For unpolarized parton distributions                                   
- n even         total                                    
- n odd          valence                      

• If have sufficient number of moments         
- fit odd and even moments separately                
to obtain both valence and total                                                   
- subtract 2 x empirical sea from odd 
moments

q + q̄

q − q̄

qv ≡ q − q̄ = q + q̄ − 2q̄
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FIG. 3. The lowest four moments of the valence uv − dv distribution (scaled by 3n) at the
physical quark mass, extracted from the fit to the lattice data using a linear extrapolation (di-
amonds) and the improved chiral extrapolation, Eq. (7) (stars). The solid and dot-dashed lines

are χ2 fits to the improved and linearly extrapolated moments respectively using Eq. (3), with ε

and γ constrained to their average values. The shaded region represents a 1 standard deviation of

the fit parameters about the optimal values for the improved extrapolation. The short-dashed line
represents the heavy quark limits of the moments.
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Chiral extrapolation of valence moments

Moments of uv − dv (scaled by 3n)
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FIG. 1. Quality of reconstruction of the valence x(uv(x)− dv(x)) distribution from several low
moments: the shaded region represents the spread between different next-to-leading order distri-

butions from global parameterizations [11–13] (at Q2 = 4 GeV2 in the MS scheme), while the
long–dashed line represents a parameterization of the average of the three distributions, Eq. (4).
The short–dashed line (which is almost indistinguishable from the long–dashed, average parame-

terization) is the distribution reconstructed from the lowest six moments of the average parameter-
ization using Eq. (3) with ε and γ unconstrained. The dotted curve indicates the fit obtained when

only four moments are used with the same fitting form. In contrast, the solid lines represent the
distribution reconstructed from the lowest three moments (n = 0, 1, 2) using Eq. (3) with ε and γ

constrained to the values obtained from direct fits to the average distribution, ε = ε∆ and γ = γ∆.

13

How well can one reconstruct PDFs 
from a few moments?

Test case:

xq(x) = ax
b(1 − x)c(1 + ε

√
x + γx)

fit(i) : 4 unconstrained parameters (b, c, ε, γ)

fit(vii) : 2 unconstrained parameters (b, c)
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between global parameterizations [11–13].
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xq(x) = ax
b(1 − x)c(1 + ε

√
x + γx)

Reconstructed distribution

resembles
‘‘constituent quark’’

distribution
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FIG. 5. The nonsinglet valence distribution x(uv(x) − dv(x)) extracted from the improved
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17

Quark mass dependence of PDFs

Looks like ‘‘constituent quark’’ 
distribution in heavy quark limit !



Wright, Leinweber, Thomas, Tsushima, hep-lat/0111053

3

Figure 1. Two-flavour, dynamical fermion lattice
QCD data for the ∆, N and vector meson (ρ)
mass data from UKQCD [9] (open circles) and
CP-PACS [10] (filled circles). The solid lines are
the continuum limit, infinite volume predictions
of Eqs. (4), (3) and (5). The squares (barely dis-
cernable from the data) are the predicted masses
on a lattice of the same dimensions as the data
at that pion mass.

would reduce the uncertainty in the extrapolated
value to the 5% level.

3. OTHER QUANTITIES

The advantage of calculating the mass of the
hadrons in the manner described above is that the
form allows the direct extraction of other proper-
ties of the hadron that depend upon the quark
mass dependence of the hadron mass.

3.1. The Sigma Commutator
The sigma commutator is a direct source of in-

formation about chiral symmetry breaking within
QCD [11]. As such it is a quantity of considerable
importance to extract from lattice QCD calcula-
tions. The form of the commutator is

σN = m̄〈N |ūu + d̄d|N〉 (7)

= m̄
∂mN

∂m̄
, (8)

Figure 2. Analysis of the lattice data for the vec-
tor meson (ρ) mass calculated by CP-PACS [10]
as a function of m2

π. The shaded area is bounded
below by a 1σ error bar. The upper bound is
limited by a physical constraint discussed in [2].

where m̄ is the average mass of the up and down
quarks.

σN is not directly accessible via experiment,
however world data suggests a value of 45 ± 8
MeV [12]. Early attempts at evaluating Eq. (8)
found results in the range 15 to 25 MeV, and the
attention soon changed to evaluating the matrix
element, Eq. (7), directly. In quenched calcula-
tions the results were in the 40–60 MeV range,
but a two flavour dynamical fermion calculation
by the SESAM collaboration [13] found a value
of 18 ± 5 MeV. The difficulties associated with
these approaches are two-fold. Firstly, the scale
independent quantity of σN must be constructed
from the renormalisation depended quantities m̄
and 〈N |ūu+ d̄d|N〉. Additionally there still is the
need to extrapolate the quantities to the physical
pion mass.

Our recent work showed that provided the ex-
trapolation method is under control the evalua-
tion of σN at mπ = 140 MeV, is a straightforward
calculation. The important advantage of this ap-
proach is that one need only work with renormal-
isation group invariant quantities.

We discussed previously how a chirally moti-

N

∆

ρ

as in “constituent quark” picture

slope in                   for baryons 
  ~ 3/2 x for mesons at large        

m
2

π
(∼ mq)

m
2

π



Connecting models 
with lattice QCD 

At large quark masses, observables display
 “constituent quark” behavior                               

MB ∼ 3mq

Mmeson ∼ 2mq

Mbaryon ∼ 3mq

Suggests new approach to modeling QCD
- construct ‘‘constituent quark’’ model
   at large quark masses

- extrapolate to physical quark mass using
   known chiral behavior

Cloet, Leinweber, Thomas, 
Phys. Rev. C65 (2002) 062201



Outlook

• Wealth of information contained in PDFs    
on nonperturbative structure of nucleon 

• Importance of high-energy/nuclear ‘‘frontier’’ 
- understanding nuclei is inevitable for complete 
reconstruction of  PDFs 

• Other issues:                                              
- higher twists (nonperturbative quark-gluon correlations  
in nucleon)                                                                          

- quark-hadron duality (interface between deep inelastic 
(scaling) and resonance regions)




