Event generators predict multiparticle event configurations in HEP experiments

\[P(x) \Rightarrow N \text{ performed using Monte Carlo integration} \]

- Estimate the total cross section
- Generate events one at a time

Relies on a computer’s ability to generate (pseudo) random numbers
Lecture 1

- Defining Event Generators
 - Modularity of HEP Events
- Monte Carlo Techniques
 - Calculating Integrals
 - Sampling Distributions
- Matrix Element Calculations
 - Applications
 - Limitations
- Parton Shower
 - Sudakov Form Factor
 - Coherence
 - Dipoles
- Summary
Phases of High Energy Collisions

- hard scattering
- initial/final state radiation
- partonic decays, $t \rightarrow bW$
- parton shower evolution

- nonperturbative phase
- colorless clusters
- cluster \rightarrow hadrons
- hadronic decays
- backward parton evolution
- underlying event
Monte Carlo Basics

\[I = \int_{x_1}^{x_2} dx f(x) = (x_2 - x_1) \langle f(x) \rangle \]

\[\sigma = \int dx \frac{d\sigma}{dx} \]

\[\simeq I_N = (x_2 - x_1) \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

\[\simeq I_N \pm (x_2 - x_1) \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} \]

Non-uniform sampling can be more efficient:

\[\int_{x_1}^{x_2} dx p(x) = 1 \Rightarrow I = \int_{x_1}^{x_2} dx p(x) \frac{f(x)}{p(x)} \]

\[I = \left\langle \frac{f(x)}{p(x)} \right\rangle \pm \frac{1}{\sqrt{N}} \sqrt{\left(\left\langle \frac{f(x)^2}{p(x)^2} \right\rangle - \left\langle \frac{f(x)}{p(x)} \right\rangle^2 \right) \}} \]

Make \(f/p \) as flat as possible (reduce variance)
Stratified sampling: divide integration region into sub-volumes and sample according to variance
e.g., $\delta f(t)=0$ if sampling on intervals T_1 and T_2

Importance sampling:
choose x_N based on I_{N-1}

VEGAS is an adaptive integrator that adjusts step functions to parallel integrand
Monte Carlo (cont)

Up to here, only considered MC as a numerical integration method

If function being integrated is a probability density (positive definite), can convert it to a simulation of physical process = an event generator

Simple example: \[\sigma = \int_0^1 dx \frac{d\sigma}{dx} \]

Naive approach:

- pick events \(x \) with weights \(\frac{d\sigma}{dx} \)
- generate unweighted events by keeping them with probability \(\frac{1}{\sigma} \frac{d\sigma}{dx} \) and giving them all weight 1
- Events selected with same frequency as in nature

Often, more sophisticated sampling methods are employed
Given $f(x) > 0$ over $x_{\text{min}} \leq x \leq x_{\text{max}}$

Prob in $(x + dx, x)$ is $f(x) \, dx$

$$\int_{x_{\text{min}}}^{x} f(x) \, dx = R \int_{x_{\text{min}}}^{x_{\text{max}}} f(x) \, dx$$

$$x = F^{-1}(F(x_{\text{min}}) + R(F(x_{\text{max}}) - F(x_{\text{min}})))$$

- assumes $F(x), F^{-1}(x)$ are known
- fraction R of area under $f(x)$ should be to the left of x

Realistic $f(x)$ are rarely this nice
If \(\text{max}[f(x)] \) is known, use **hit-or-miss**

1. select \(x = x_{\text{min}} + R(x_{\text{max}} - x_{\text{min}}) \)

2. if \(f(x)/f_{\text{max}} \leq (\text{new}) R \), reject \(x \) and \(\Rightarrow 1 \).

3. otherwise, keep \(x \)

Works because probability
\[
\frac{f(x)}{f_{\text{max}}} > R \propto f(x)
\]

Acceptable method if \(f(x) \)
does not fluctuate too wildly

Usually guess at \(\text{max}[f(x)] \)
and update if a “better” estimate is found in a run
Sampling Distributions: Method 3

Find \(g(x) \), with \(f(x) \leq g(x) \) over \(x \) range

- \(G(x) \) and its inverse \(G^{-1}(x) \) known
- e.g., \(\int_{\epsilon}^{z} dx \frac{1 + x^2}{1 - x} < \int_{\epsilon}^{z} dx \frac{2}{1 - x} = 2 \ln \left[\frac{1 - \epsilon}{1 - z} \right] \)

1. select an \(x \) according to \(g(x) \), using Method 1
2. if \(f(x) / g(x) \leq \) (new) \(R \), reject \(x \) and \(\Rightarrow 1 \).
3. otherwise, keep \(x \)

first step selects \(x \) with a probability \(g(x) \)

second step retains this choice with probability \(f(x) / g(x) \)

total probability to pick a value \(x \) is then just the product of the two, i.e. \(f(x) dx \)
Radioactive Decay Problem

Know probability $f(t)$ that ‘something will happen’ (a nucleus decay, a parton branch) at time t

$something$ $happens$ at t $only$ if it did not $happen$ at $t' < t$

Equation for nothing $\mathcal{N}(t)$ to happen up to $time$ t is $(\mathcal{N}(0) = 1)$:

$$- \frac{d\mathcal{N}}{dt} = f(t) \mathcal{N}(t) = \mathcal{P}(t)$$

$$\mathcal{N}(t) = \exp \left\{ - \int_0^t f(t') \, dt' \right\}$$

$$\mathcal{P}(t) = f(t) \exp \left\{ - \int_0^t f(t') \, dt' \right\}$$

- Naive answer modified by exponential suppression
- In the parton-shower language, this corresponds to the Sudakov form factor
Veto Algorithm

If $F(t)$ and $F^{-1}(t)$ exist:

$$\int_0^t P(t') \, dt' = \mathcal{N}(0) - \mathcal{N}(t) = 1 - \exp \left\{ - \int_0^t f(t') \, dt' \right\} = 1 - R$$

$$F(0) - F(t) = \ln R \quad \Rightarrow \quad t = F^{-1}(F(0) - \ln R)$$

If not, use **veto algorithm**

1. start with $i = 0$ and $t_0 = 0$

2. $++i$ and select $t_i = G^{-1}(G(t_{i-1}) - \ln R)$

3. if $f(t_i)/g(t_i) \leq$ (new) R, \Rightarrow 2.

4. otherwise, keep t_i

- N vetos equivalent to probability of accepting first try times a partial sum of an exponential series in $f - g$
MC Overview

- Use MC to perform integrals and sample distributions
- Technique generalizes to many dimensions
 - Typical phase space $\sim d^3\vec{p} \times 100$’s particles
- Suitable for complicated integration regions
 - Kinematic cuts or detector cracks
- Error scales as $1/\sqrt{N}$ vs $1/N^{2/d}, 1/N^{4/d}$ (trap, Simp)
- Only need a few points to estimate f
- Each additional point increases accuracy
- Easy (non-rigorous) error estimate
- Can sample distributions where exact solutions cannot be found
- Veto algorithm applied to parton shower
Phase 1: Hard Scattering

Characterizes the rest of the event

Sets a high energy scale Q

Fixes a short time scale where partons are free objects

Allows use of perturbation theory

External partons can be treated as on the mass-shell

- Valid to $\max[\Lambda, m]/Q$
- Physics at scales below Q absorbed into parton distribution and fragmentation functions (Factorization Theorem)

Sets flow of Quantum numbers (Charge, Color)

- Note: Parton shower and hadronization models valid to $1/N_C$
- Gluon replaced by color-anticolor lines
- All color flows can be drawn on a piece of paper
Cross Sections and Decay Widths

Physics Quantities to calculate using Monte Carlo

\[\sigma = \frac{1}{2s} \int |M|^2 d\Phi_n(\sqrt{s}) \quad \Gamma = \frac{1}{2M} \int |M|^2 d\Phi_n(M) \]

Phase Space:

\[d\Phi_n(M) = \prod_{i=1}^{n} \frac{d^3\vec{p}_i}{(2\pi)^3(2E_i)} (2\pi)^2 \delta^{(4)} \left(p_0 - \sum_{i=1}^{n} p_i \right) \]

2-body: 2 × 3 − 4 integration variable ⇒ 2 angles \(d\Omega \)

N-body by Recursion:

\[d\Phi_n(M) = \frac{1}{2\pi} \int_{0}^{(M-m)^2} d\mu^2 d\Phi_2(M) d\Phi_{n-1}(\mu) \]
Cross Sections

\[\sigma(s) = \int_0^1 dx_1 f_1(x_1) \int_0^1 dx_2 f_2(x_2) \hat{\sigma}(x_1 x_2 s) \]

\[= \int_0^1 \frac{d\tau}{\tau} \hat{\sigma}(\tau s) \int_\tau^1 \frac{dx}{x} x f_1(x) \frac{\tau}{x} f_2 \left(\frac{\tau}{x} \right) \]

\[\frac{d\hat{\sigma}}{d\hat{t}} = \frac{1}{64s} \frac{1}{p_{1cm}^2} |\mathcal{M}|^2, \hat{t} = (p_{in} - p_{out})^2 \]

Considerations:

- \(\hat{\sigma} \) may have resonant peaks (W or Z production)
- \(f(x) \) may be steeply falling

Side-effect of Monte Carlo-ing:

- Can histogram distributions of produced particles/decay products
- Apply cuts
Tree Level Calculation of Hard Scatter

- Read Feynman rules from $i\mathcal{L}_{\text{int}}$
- Use Wave Functions from Relativistic QM
 Propagators (Green functions) for internal lines
- Specify initial and final states
 Track spins/colors/etc. if desired
- Draw all valid graphs connecting them
 Tedious, but straight-forward
- Calculate (Matrix Element)2
 Evaluate Amplitudes, Add and Square
 Symbolically Square, Evaluate
 Do something tricky
- Integrate over Phase Space
Learn by hand, then automate

Complications:

\[|\mathcal{M}|^2: \text{Number of graphs grows quickly with number of external partons} \]

\[d\Phi_n: \text{Efficiency decreases with number of internal lines} \]

Programs:

- MadEvent, CompHep, Alpgen, Amegic++
- Differ in methods of attack
- Most rely on VEGAS for MC integration

Limitations:

- Fixed number of partons
- No control of large logarithms as \(E_g, \theta_{qq}, \theta_{gg} \to 0 \)
NOT event generators

- partonic jets: no substructure
- hard, wide-angle emissions only
- colored/fractionally charged states not suitable for detector simulation
- can guide physics analyses by revealing gross kinematic features

Jacobian peak
Towards an Event Generator

HEP Events are modular:

- Events are transformations from $t = -\infty \rightarrow t = +\infty$
- Hard Interaction occurs over a short time scale $\Delta t \sim 10^{-2}\text{GeV}^{-1}$
- Perturbation theory ($\alpha_s < \pi$) should work down to time $t = .1 - 1\text{GeV}^{-1}$
- Hadronization on longer time scales
- Particle decays typically on longest time scales

Separation of time scales reduces the complex problem to manageable pieces (modules) which can be treated in series

- Previous step sets initial conditions for next one

Next piece is the parton shower
Matrix Element to Parton Shower: $\gamma^* \rightarrow q\bar{q}g$

$$d\sigma(q\bar{q}g) = \sigma_0 \frac{\alpha_s}{2\pi} dz \left\{ \frac{d s_{qg}}{s_{qg}} \left[P_{q\rightarrow q}(z) - \frac{s_{qg}}{Q^2} \right] + \frac{d s_{\bar{q}g}}{s_{\bar{q}g}} \left[P_{q\rightarrow q}(z) - \frac{s_{\bar{q}g}}{Q^2} \right] \right\}$$

$$\sigma_0 = \sigma(\gamma^* \rightarrow q\bar{q})$$

$$z = \frac{s_{qg}}{Q^2}, P_{q\rightarrow q}(z) = \frac{4}{3} \frac{1 + z^2}{1 - z}$$

$$s_{qg} = 2E_q E_g (1 - \cos \theta_{qg})$$

$s_{qg}, s_{\bar{q}g} \rightarrow 0$ when gluon is soft/collinear

$z \rightarrow 1$ when gluon is collinear

In soft/collinear limit, independent radiation from q and \bar{q}
General Result

$|\mathcal{M}|^2$ involving $q \rightarrow qg$ (or $g \rightarrow gg$) strongly enhanced whenever emitted gluon is almost collinear

Propagator factors (internal lines)

\[
\frac{1}{(p_q + p_g)^2} \approx \frac{1}{2E_q E_g (1 - \cos \theta_{qg})} \rightarrow \frac{1}{E_q E_g \theta_{qg}^2}
\]

- soft+collinear divergences
- dominant contribution to the ME

Collinear factorization

\[
|\mathcal{M}_{p+1}|^2 d\Phi_{p+1} \approx |\mathcal{M}_p|^2 d\Phi_p \frac{dQ^2}{Q^2} \frac{\alpha_s}{2\pi} P(z) dz d\phi
\]

DGLAP kernels:

\[
P_{q \rightarrow q}(z) = C_F \frac{1 + z^2}{1 - z}, \quad P_{g \rightarrow g}(z) = N_C \frac{(1 - z(1 - z))^2}{z(1 - z)}
\]

⇒ Parton shower MC
Sudakov Form Factor

Variable \(t = \ln \left(\frac{Q^2}{\Lambda^2} \right) \), \(Q^2 \sim \frac{E_q E_g}{\theta_{qg}^2} \) is like a time-ordering

\[
d\mathcal{P}_a = \sum_{b,c} \frac{\alpha_{abc}}{2\pi} P_{a \to bc}(z) \, dt \, dz
\]

\[
\mathcal{I}_{a \to bc}(t) = \int_{z_-(t)}^{z_+(t)} dz \frac{\alpha_{abc}}{2\pi} P_{a \to bc}(\hat{z})
\]

Probability for no emission in \((t, t + \delta t) \):

\[
1 - \sum_{b,c} I_{a \to bc}(t) \, \delta t
\]

Over a longer time period, product of no-emission prob’s exponentiates:

\[
\mathcal{P}_{\text{no}}(t_0, t) = \exp \left\{ - \int_{t_0}^{t} dt' \sum_{b,c} \mathcal{I}_{a \to bc}(t') \right\} = S_a(t) = \frac{\Delta(t, t_c)}{\Delta(t_0, t_c)}
\]

Notation: \(S_a(t) \) for Pythia, \(\Delta(t, t_c) \) for Herwig
Sudakov Form Factor

Actual probability that a branching of a occurs at t is:

$$\frac{dP_a}{dt} = - \frac{dP_{no}(t_0, t)}{dt} = \left(\sum_{b,c} I_{a \rightarrow bc}(t) \right) \exp \left\{ - \int_{t_0}^{t} dt' \sum_{b,c} I_{a \rightarrow bc}(t') \right\}$$

Like Radioactive Decay! $S_a(t) = P_{no}(t_0, t)$ is referred to as the Sudakov form factor.

- Leading Logarithms
- Collinear splitting prob.
- Exact E-p

Interplay between real and virtual emissions

Below resolution scale, cancellation of singularities, leaving a finite remnant
Evolution of the parton shower

Continue emissions with decreasing t down to the cutoff scale $\sim \Lambda_{QCD}$

$t_1 > t_2 > t_3 > t_c$

$t_c \rightarrow \Lambda_{QCD}$

Make transition to a model of hadronization at Λ_{QCD}
Color Coherence

In previous discussion of PS, interference effects were ignored, but they can be relevant.

Add a soft gluon to a shower of N almost collinear gluons:

- incoherent emission: couple to all gluons

 $|\mathcal{M}_{N+1}|^2 \sim N \times \alpha_s \times N_C$

- coherent emission: soft (=long wavelength) resolves only overall color charge (that of initial gluon)

 $|\mathcal{M}_{N+1}|^2 \sim 1 \times \alpha_s \times N_C$
Color Coherence Realized

Showers should be Angular-Ordered

Keep same picture but change $Q^2 \rightarrow E^2 \zeta$

$$\zeta = \frac{p_i \cdot p_j}{E_i E_j} = \left(1 - \cos \theta_{ij}\right) \sim \frac{\theta_{ij}^2}{2}$$

Soft gluon radiation off color lines i, j

$$d\sigma_{n+1} = d\sigma_n \frac{d\omega}{\omega} \frac{d\Omega}{2\pi} \frac{d\Omega}{2\pi} \alpha_s C_{ij} W_{ij}$$

$$W_{ij} = \frac{1 - \cos \theta_{ij}}{(1 - \cos \theta_{iq})(1 - \cos \theta_{jq})}$$

$$W_{ij} = W^{[i]} + W^{[j]}$$

$$\int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} W^{[i]} = \frac{1}{1 - \cos \theta_{iq}} \theta[\theta_{ij} - \theta_{iq}]$$

Running coupling should depend on $k_T^2 \sim z(1 - z)Q^2$
Generalised Dipoles

Alternative picture: dipole radiation from color charges

\[dn = \alpha_{\text{eff}} \cdot \frac{dk^2}{k^2} \cdot dy \cdot (\text{Polarization Sum}) \]

Kinematic Constraints

\[k_\perp \cosh(y) \leq \frac{\sqrt{s}}{2} \quad (\sqrt{s} \text{ is dipole mass}) \]

rapidity range \(\Delta y \approx \ln \left(\frac{s}{k^2_\perp} \right) \)

- emission of a photon leaves the electromagnetic current unchanged except for small recoil effects
- emission of a gluon changes the current
- However,

\[dn(q, g_1, g_2, \bar{q}) = dn(q, g_1, \bar{q}) \left[dn(q, g_2, g_1) + dn(g_1, g_2, \bar{q}) - \epsilon \right] \]
Generalised Dipoles

The emission of the first gluon splits the original color dipole into two dipoles which radiate independently.

Shower can be traced in origami diagram:

\[\kappa = \ln(k^2_T) \]

1. Before emission
2. 1st emission at \(\kappa_1 \)
3. After several emissions
4. Bottom view
Initial State Radiation

In hadronic collisions, incoming partons can also radiate

\[p_1 \rightarrow p_2 + k, \quad p_1^2 = p_2^2 = 0 \Rightarrow k^2 = (p_1 - p_2)^2 = -2p_1 \cdot p_2 < 0 \]

Backwards (from hard scatter) evolution of partons with virtualities increasing \(\rightarrow 0 \)

Since backwards, must normalize to the incoming flux of partons (PDF)

- Collinear parton shower obeys DGLAP evolution
- Weight Sudakov:

\[
\frac{f_i(x, Q_{lo}^2)}{f_i(x, Q_{hi}^2)}
\]
NLL Jet Structure

Typically, parton shower has complicated constraints/integrands and are evaluated numerically.

However, with some simplifications, can calculate NLL Sudakovs.

Evolution in \(k_{Tij}^2 = 2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij}) \)

Analytic Sudakov form factors:

\[
\Delta_q(Q_1, Q) = \exp \left(-\int_{Q_1}^Q dq \, \Gamma_q(q, Q) \right) \\
\Delta_g(Q_1, Q) = \exp \left(-\int_{Q_1}^Q dq \, [\Gamma_g(q, Q) + \Gamma_f(q)] \right)
\]

\[
\Gamma_q(q, Q) = \frac{2C_F}{\pi} \frac{\alpha_s(q)}{q} \left(\ln \frac{Q}{q} - \frac{3}{4} \right) \\
\Gamma_g(q, Q) = \frac{2CA}{\pi} \frac{\alpha_s(q)}{q} \left(\ln \frac{Q}{q} - \frac{11}{12} \right) \\
\Gamma_f(q) = \frac{N_f}{3\pi} \frac{\alpha_s(q)}{q}
\]
Jet Rates starting from $Z \rightarrow q\bar{q}$

2 jet rate: neither $q\bar{q}$ radiates

$$R_2(Q_1, Q) = [\Delta_q(Q_1, Q)]^2$$

3 jet rate: one intermediate state

$$R_3(Q_1, Q) = 2 [\Delta_q(Q_1, Q)]^2 \int_{Q_1}^{Q} dq \, \Gamma_q(q, Q) \Delta_g(Q_1, q)$$

The overall NLL probability is

$$\Delta_q(Q_1, Q) \frac{\Delta_q(Q_1, Q)}{\Delta_q(Q_1, \bar{q})} \Gamma_q(q, Q) \Delta_q(Q_1, \bar{q}) \Delta_g(Q_1, q)$$

$$= \Gamma_q(q, Q) [\Delta_q(Q_1, Q)]^2 \Delta_g(Q_1, q)$$

Add \bar{q} contribution and integrate over $Q_1 < q < Q$ to get R_3
Jet Rates starting from $\mathcal{Z} \rightarrow q\bar{q}$

- N limited only by phase space
- All topologies generated in Parton Shower
- Rates given by dominant soft/collinear regions
- Contrast with ME
 - One topology must be specified
 - No soft/collinear approximations, valid for large E, θ
NOT an Event Generator

By the end of the parton shower, we have nearly exhausted our ability to apply perturbation theory. This is still not enough:

+ Have a description of jet structure
+ Can ask questions about energy flow and isolation
+ See if kinematic features survive
- Don’t know response of detector to a soft quark/gluon
- Cannot tag a b quark
- Can’t ask about charged tracks or neutrals

Next step is into the Brown Muck
Parton Shower Summary

Modern PS models are very sophisticated implementations of perturbative QCD

Derived from factorization theorems of full gauge theory

- Accelerated charges radiate (QED/QCD)
- Gluons have color and radiate as well
- Parton Shower development encoded in Sudakov FF
- Performed to LL and some sub-LL accuracy with exact kinematics
- Color coherence leads to angular ordering of shower
- Still need hadronization models to connect with data
- Shower evolves virtualities of partons to a low enough values where this connection is possible
Lecture 2

• Hadronization
 string
 cluster

• Underlying Event
 parametrizations
 multiple-interactions

• The Event Generator Programs

• New Developments
Hadronization

QCD partons are free only on a **very short time scale**

Hadrons are the physical states of the strong interaction

Need a description of how partons are confined

Lacking a theory, we need a model

- **enough** variables to fit data
- **few enough** that there is some predictability
- start related to the end of the parton shower
- Use **basic** understanding of QCD
QCD is a confining theory

- Linear potential $V_{\text{QCD}}(r) \sim kr$
 - Confirmed by Lattice, Spectroscopy, Regge Trajectories
- Gluons are self-coupling
 - Field lines contract into Flux-tubes
 - Analogy with field behavior inside of superconductors
- Over time, 2 phenomenological models have survived
 - cluster
 - Lund string
- Not exactly Orthogonal, Exhaustive
Necrologos: Independent Fragmentation

- FF = Feynman-R. Field
- pure phenomenological model
- imagine $q\bar{q}$ pairs tunnel from the vacuum to dress bare quark
- $f_{q\rightarrow h}(z)$ is probability $q \rightarrow h$ with fraction z of some E/p variable
- $f_{g\rightarrow h}(z)$? $g \rightarrow q\bar{q}$?
- Lorentz invariant? (E_q)
- Useful for its time

FF: $f(z) = 1 - a + 3a(1 - z)^2$
Preconfinement

Perturbative evolution of quarks and gluons organizes them into clumps of color-singlet clusters.

In PS, color-singlet pairs end up close in phase space.

- Cluster model takes this view to the extreme.
- Non-perturbative splitting:
 \[\text{gluon} \Rightarrow \text{color-anticolor pair} \]
- Parton shower **cutoff** is a critical parameter.
Cluster hadronization in a nutshell

- Nonperturbative $g \rightarrow q\bar{q}$ splitting ($q = uds$) isotropically
 Here, $m_g \approx 750 \text{ MeV} > 2m_q$.

- Cluster formation, universal spectrum

- Cluster fission until

 $$M^p < M_{\text{fiss}}^p = M_{\text{max}}^p + (m_{q1} + m_{q2})^p$$

 where masses are chosen from

 $$M_i =
 [(M^P - (m_{qi} + m_{q3})^P) r_i + (m_{qi} + m_{q3})^P]^{1/P}$$

 with additional phase space constraints

- Cluster decay

 isotropically into pairs of hadrons

 simple rules for spin, species
Cluster Fission

- Mass spectrum of color-singlet pairs asymptotically independent of energy, production mechanism
 - Peaked at low mass
 - Broad tail at large mass

Small fraction of clusters heavier than typical

⇒ Cluster fission (string-like)

Fission threshold becomes crucial parameter

15% of primary clusters split
produces 50% of hadrons
Lund String Model

String = color flux tube is stretched between q and \bar{q}

Classical string will oscillate in space-time

Endpoints q, \bar{q} exchange momentum with the string

Quantum Mechanics: string energy can be converted to $q\bar{q}$ pairs (tension $\kappa \sim 1$ GeV/fm)

$$d\text{Prob}/dx/dt = (\text{constant})\exp(-\pi m^2/\kappa) \quad [\text{WKB}]$$

- $u : d : s : qq = 1 : 1 : 0.35 : 0.1$

Area (swept out by string) Law

$$dP_n(\{p_j\}; P_{tot}) = \prod_{j=1}^{n} N_j d^2 p_j \delta (p_j^2 - m_j^2) \delta (\sum_{j=1}^{n} p_j - P_{tot}) \exp(-bA)$$
Hadron Formation

Adjacent breaks form a hadron

\[E_{\text{had}} = \kappa |x_i - x_{i+1}| \quad \vec{p}_{\text{had}} = \vec{p}_T + \vec{\kappa}(t_i - t_{i+1}) \]

\[m_{\text{had}}^2 \propto \text{area swept out by string} \]
Iterative Solution

String breaking and hadron formation can be treated as an iterative process

Use light-cone coordinates \(x^\pm = x \pm t \)

Boundary Conditions:

\[
x_0^+ = 2E_0/\kappa, \quad x_{n+1}^- = 2\bar{E}_0/\kappa, \quad x_0^- = x_{n+1}^+ = 0
\]

1. select \(z_i \) according to \(f(z)dz \)
 - \(f^h(z, p_T) \sim \frac{1}{z}(1 - z)^a \exp\left[-\frac{b(m_h^2 + p_T^2)}{z}\right] \)

2. \(\Delta x^+ = (x_{i-1}^+ - x_i^+) = z_i x_{i-1}^+ \)

3. \(\Delta x^- = (x_{i-1}^- - x_i^-) = \frac{-m_i^2}{\kappa^2 \Delta x^+} \)
 - mass\(^2\) of hadron \(\propto \Delta x^+ \Delta x^- \)

4. Continue until string is consumed
Example Break-Up

Tunnelling of pairs leads to a string of hadrons

\[\bar{u} \quad d \quad \bar{d} \quad d \quad \bar{d} \quad s \quad \bar{s} \quad d \quad \bar{d} \quad u \quad \bar{u} \quad \bar{u}d_0 \quad ud_0 \quad s \quad \bar{s} \quad u \]

\[\rho^- \quad \omega \quad \bar{K}^{*0} \quad K^0 \quad \pi^+ \quad \bar{p} \quad \Lambda \quad K^+ \]

Simple rules for spin, isospin, etc.

Note diquarks

Algorithm can start from either end of string
Perturbative Parton Shower generates gluons
(color-anticolor pair \dagger correction in $1/N_C$ expansion)

Gluon = kink on string, i.e. some motion to system

String effect \Rightarrow particles move in direction of kink
Infrared Stability

“Hard” gluon imparts motion to string system

Soft or collinear gluons collapse into simpler string

q and \bar{q} give bits of momentum to g and vice versa

Parton that gives up all its energy is still dragged along
Hadronization Overview

<table>
<thead>
<tr>
<th>Clusters (Herwig)</th>
<th>Strings (Pythia, Ariadne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• perturbation theory can be applied down to low scales if the coherence is treated correctly</td>
<td>• dynamics of the non-perturbative phase must be treated correctly</td>
</tr>
<tr>
<td>• There must be non-perturbative physics, but it should be very simple</td>
<td>• Model includes some non-perturbative aspect of color (interjet) coherence (string effect)</td>
</tr>
<tr>
<td>• Improving data has meant successively making non-pert phase more string-like</td>
<td>• Improving data has meant successively making non-pert phase more cluster-like</td>
</tr>
</tbody>
</table>
Underlying Event

- Hadrons (protons) are extended objects
- Remnant remains after hard partons scatter
- Need a description of how partonic remnants are confined

Two Approaches

1. Soft parton-parton collisions dominate
2. Semi-Hard parton-parton cross section is large and can be calculated even at low p_T
Soft Underlying Event

UA5 Monte Carlo

- hadron-hadron scattering produces two leading clusters and several central ones
- parametrize N_{ch} and sample
- clusters given p_T and y from some distribution
 \[
 \frac{dN}{dp_T^2} \sim e^{-bp_T}, \frac{1}{(p_T + p_0)^n}
 \]
 \[y \sim \text{flat with Gaussian tails}\]
- $p_L = m \sinh(y)$

Herwig adds in their cluster model

UE model is a mechanism for producing the objects used in description of hadronization
Consequence of composite nature of hadrons!

Evidence:
- direct observation: AFS, UA1, CDF
- implied by width of multiplicity distribution + jet universality: UA5
- forward–backward correlations: UA5
- pedestal effect: UA1, H1, CDF

One new free parameter: \(p_{\perp \text{min}} \)

\[
\frac{1}{2} \sigma_{\text{jet}} = \int_{p_{\perp \text{min}}}^{s/4} \frac{d\sigma}{dp_{\perp}^2} dp_{\perp}^2 \quad \leftrightarrow \quad \int_{0}^{s/4} \frac{d\sigma}{dp_{\perp}^2} \frac{p_{\perp}^4}{(p_{\perp 0}^2 + p_{\perp}^2)^2} dp_{\perp}^2
\]

Measure of colour screening length \(d \) in hadron:
\[p_{\perp \text{min}} \langle d \rangle \approx 1 (= \bar{h}) \]
Multiple Interaction Model

\[\bar{n} = \sigma_{\text{hard}}(p_{\perp \text{min}})/\sigma_{\text{nd}}(s) > 1 \]

Not a violation of unitarity! \(\sigma_{\text{hard}} \) is inclusive

naive estimate: no E-p conservation

- must consider interactions of all partons

On average, \(\bar{n} \) semi-hard interactions in one hard collision

Collisions ranked in \(x_{\perp} = 2p_{\perp}/E_{\text{cm}} \), produced with prob

\[f(x_{\perp}) = \frac{1}{\sigma_{\text{nd}}(s)} \frac{d\sigma}{dx_{\perp}} \]

The probability that the hardest interaction is at \(x_{\perp 1} \):

\[f(x_{\perp 1}) \exp \left\{ - \int_{x_{\perp 1}}^{1} f(x_{\perp}') \, dx_{\perp}' \right\} \]

- like radioactive decay
Multiple Interaction Model

generate a chain of scatterings \(1 > x_{\perp 1} > x_{\perp 2} > \cdots > x_{\perp i} \)
using \(x_{\perp i} = F^{-1}(F(x_{\perp i-1}) - \ln R_i) \)

- \(F(x_\perp) = \int_{x_\perp}^{1} f(x_\perp') \, dx_\perp' = \frac{1}{\sigma_{nd}(s)} \int_{sx_{\perp i}^2/4}^{s/4} \frac{d\sigma}{dp_{\perp}^2} \, dp_{\perp}^2 \)

Refinements

Parton \(x_i \) for PDF evaluation is rescaled \(x_i' = \frac{x_i}{\sum_{j=1}^{i-1} x_j} \)

Almost no experimental information on correlated PDFs

Include "Matter" distributed in hadrons

\(\mathcal{O}(b) \propto \int dt \int d^3x \, \rho(x, y, z) \rho(x + b, y, z + t) \)

\(\langle N_{int} \rangle \sim k \, \mathcal{O}(b) \)
Strings and the UE

Each additional interaction adds more color flow

- Color information encoded in strings
- Subsequent interactions mainly reconnect to pre-existing strings
- Fits prefer a minimization of total string length
Pythia Options

MSTP(82) :

(D=1) structure of multiple interactions. For QCD processes, used down to values below, it also affects the choice of structure for the one hard/semi-hard interaction.

= 0 :
 simple two-string model without any hard interactions. Toy model only!
= 1 :
 multiple interactions assuming the same probability in all events, with an abrupt cut-off at PARP(81). (With a slow energy dependence given by PARP(89) and PARP(90).)
= 2 :
 multiple interactions assuming the same probability in all events, with a continuous turn-off of the cross section at PARP(82). (With a slow energy dependence given by PARP(89) and PARP(90).)
= 3 :
 multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a Gaussian matter distribution, with a continuous turn-off of the cross section at PARP(82). (With a slow energy dependence given by PARP(89) and PARP(90).)
= 4 :
 multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a double Gaussian matter distribution given by PARP(83) and PARP(84), with a continuous turn-off of the cross section at PARP(82). (With a slow energy dependence given by PARP(89) and PARP(90).)
Pythia at Run2: Underlying Event

Table: Parameters and Tuning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Tune</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP(67)</td>
<td>1.0</td>
<td>4.0</td>
<td>Scale factor for ISR</td>
</tr>
<tr>
<td>MSTP(82)</td>
<td>1.0</td>
<td>4</td>
<td>Double Gaussian matter distribution</td>
</tr>
<tr>
<td>PARP(82)</td>
<td>1.9</td>
<td>2.0</td>
<td>Cutoff (GeV) for MPIs</td>
</tr>
<tr>
<td>PARP(83)</td>
<td>0.5</td>
<td>0.5</td>
<td>Warm Core with % of matter within a given radius</td>
</tr>
<tr>
<td>PARP(84)</td>
<td>0.2</td>
<td>0.4</td>
<td>Prob. that two gluons have NNC</td>
</tr>
<tr>
<td>PARP(85)</td>
<td>0.33</td>
<td>0.9</td>
<td>gg versus qq</td>
</tr>
<tr>
<td>PARP(86)</td>
<td>0.66</td>
<td>0.95</td>
<td>Reference energy (GeV)</td>
</tr>
<tr>
<td>PARP(89)</td>
<td>1000.0</td>
<td>1800.0</td>
<td>Power of Energy scaling for cutoff</td>
</tr>
</tbody>
</table>

Graph: Charge Density

- AVE Transverse Charge Density: \(dN/d\eta d\phi \)
- 1.96 TeV
- Charged Particles \(|\eta|<1.0, PT>0.5\) GeV/c
- ET(jet#1) (GeV)

Legend:
- PY Tune A
- Leading Jet
- HW
- Back-to-Back

Graph: Jet Clustering

- Jet Clustering #1 Direction
- \(\Delta \phi \)
- Toward
- Transverse
- “Away”
The Parton Shower Programs

Programs

<table>
<thead>
<tr>
<th>PS Ordering</th>
<th>Mass</th>
<th>Angle</th>
<th>k_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle veto</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hadronization</th>
<th>String</th>
<th>Cluster</th>
<th>String</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Underlying Event</th>
<th>Mult. Int</th>
<th>UA6/(Jimmy)</th>
<th>LDCM</th>
</tr>
</thead>
</table>

Finding them: http://cepa.fnal.gov/mrenna/generator.html

- http://www.thep.lu.se/tf2/staff/torbjorn/Pythia.html
- http://hepwww.rl.ac.uk/theory/seymour/herwig/
- http://www.thep.lu.se/~leif/ariadne/

Fortran codes

http://www.ibiblio.org/pub/languages/fortran/ch1-1.html
“The Future” ≡ C++ ≡ ThePEG

Toolkit for high energy Physics Event Generation
http://www.thep.lu.se/ThePEG/

Share administrative overhead common to event generators

Independent *physics* implementation

Common basis for Pythia7/Herwig++

- Lack of independence.
- Less possibility to test codes against each other.
- Physics is still independent.
- Beneficial for the user to have the same framework.
- Use Herwig++ with String Fragmentation from Pythia7
Sherpa is also C++ event generator in a different framework
Developments

- Improved showers for Pythia and Herwig
- More detailed models of Underlying Event
- New programs for automating Tree-Level calculations
- Event generators for NLO calculations
- Matrix Element and Parton Shower Matching
New ME Programs

Automatically calculate code needed for a given HEP process and generate events

List of those actively supporting hadron colliders

- Alpgen http://m.home.cern.ch/m/mlm/www/alpgen/
- CompHep http://theory.sinp.msu.ru/comphep
- MadEvent http://madgraph.hep.uiuc.edu/index.html
- Sherpa/Amegic++ http://141.30.17.181/

Advantages and disadvantages of each

An impressive improvement from several years ago
Next-to-Leading-Order Calculations give an improved description of the hard kinematics and cross sections not event generators

Solution (MC@NLO):
Remove divergences by adding and subtracting the Monte Carlo result for one emission
Event Generators for Many Legs

Want to exploit tools for generating tree level diagrams

Each topology (e.g. $W + 0, 1, 2, 3, 4$ partons) has no soft/collinear approximation

How do I add a parton shower to each topology with no double counting?

Solution (CKKW):

1. Make the $|M|^2$ result “look” like a parton shower down to a reasonable cutoff scale ($k_T^{\text{cut}}/Q_{\text{hard}} \sim .1$)

2. Add on ordinary parton shower below K_T^{cut}

$$k_T^2 = 2\min(E_i, E_j)^2(1 - \cos \theta_{ij}) \sim \min(E_i/E_j, E_j/E_i)m^2$$
W+0 ⊕ ⋯ ⊕ W+4 hard partons

Dashed is Pythia with default (ME) correction

Solid is Pseudoshower result

Combines ME contributions \((0, 1, 2, 3, 4\) partons)
Overall Summary

- Event Generators accumulate our understanding of the Standard Model into one package
- Apply perturbation theory whenever possible
 - hard scattering, parton showering, decays
- Rely on models or parametrizations when present calculational methods fail
 - hadronization, underlying event, beam remnants
- Out of the box, they give reliable estimates of the full, complicated structure of HEP events
- Attentive users will find more flexibility & applications
- Understanding the output can lead to a broader understanding of the Standard Model (and physics beyond)
MC4Run2: MC/ME Tuning

http://cepa.fnal.gov/patriot/mc4run2

• Forum for CDF, DØ, & Theorists
 – LHC participation is welcome/encouraged

• Discussions/Presentations on:
 – Underlying Event Tunes
 – B Production Tunes
 – Parton Shower Matching
 – PDF systematics
 * LHAPDF interface ala PDFLIB
 – Herwig/Pythia Problems with Photon-Jet Balancing
 – Non-perturbative corrections to Jet Cross Sections
 – ResBos-A
 – ...