

History:

Discovery of J/ ψ , Upsilon, W/Z, and "New Physics" ???

Calculation of $q q \rightarrow \mu^+ \mu^-$ in the Parton Model

Scaling form of the cross section

Rapidity, longitudinal momentum, and x_F

Comparison with data:

NLO QCD corrections essential (the K-factor) $\sigma(pd)/\sigma(pp)$ important for d-bar/ubar W Rapidity Asymmetry important for slope of d/u at large x Where are we going? P_T Distribution W-mass measurement Resummation of soft gluons

Historical

Background

Our story begins in the late 1960's

Brookhaven National Lab Alternating Gradient Synchrotron

An Early Experiment:

with the decay of the W into muone as the signature 1,2 Failure to observe a muon signal from any

What is the explanation???

In DIS, we have two choices for an interpretation:

Discovery of the J/Psi Particle

(Received 12 November 1974)

We report the observation of a heavy particle J, with mass m = 3.1 GeV and width approximately zero. The observation was made from the reaction $p + \text{Be} \rightarrow e^+ + e^- + x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

This experiment is part of a large program to

daily with a thin Al foil. The beam spot

very narrow width \Rightarrow long lifetime

The November Revolution

currents. The run at reduced current was taken two months later than the normal run.

More Discoveries with Drell-Yan

1974: The J/Psi (charm) discovery

 $p{+}N \rightarrow J/\psi$

... 1976 Nobel Prize

1977: The Upsilon (bottom) discovery

$$p+N \rightarrow \Upsilon$$

1983: The W and Z discovery

 $p + \overline{p} \rightarrow W/Z$

... 1984 Nobel Prize

 $\sigma(Z)Br(Z \rightarrow ee) = 294 \pm 11(N_z) \pm 8(sys) \pm 29(lumi)$ pb

C. Gerber (UIC)

- 1139 Z \rightarrow ee candidates . η^e <1.1, E-25 GeV, no
- ε(Z)≈8%, bkgd ~ 18%

LHC Symposium 5/2/2003

7

The Future of Drell-Yan

Where do we find

New Physics??

- New Higgs Bosons
- New W' or Z'
- SUSY
- ... unknown...

- High Mass Dileptons
 - electrons & muons used
- Sensitive to Z' and Randall-Sundrum Graviton
- No excess observed

Let's

Calculate

First, we'll compute the partonic $\hat{\sigma}$ in the partonic CMS

Gathering factors and contracting $g^{\mu\nu}$, we obtain:

$$-iM = iQ_i \frac{e^2}{q^2} \{\overline{v}(p_2) \gamma^{\mu} u(p_1)\} \{\overline{u}(p_3) \gamma_{\mu} v(p_4)\}$$

Squaring, and averaging over spin and color,

$$\overline{|M|^2} = \left(\frac{1}{2}\right)^2 3\left(\frac{1}{3}\right)^2 Q_i^2 \frac{e^4}{q^4} Tr\left[p_{\overline{2}}\gamma^{\mu}p_{\overline{1}}\gamma^{\nu}\right] Tr\left[p_{\overline{3}}\gamma_{\mu}p_{\overline{4}}\gamma_{\nu}\right]$$

Let's work out some parton level kinematics

$$p_{1} = \frac{\sqrt{\hat{s}}}{2} (1,0,0,+1)$$

$$p_{2} = \frac{\sqrt{\hat{s}}}{2} (1,0,0,-1)$$

$$p_{3} = \frac{\sqrt{\hat{s}}}{2} (1,+\sin(\theta),0,+\cos(\theta))$$

$$p_{4} = \frac{\sqrt{\hat{s}}}{2} (1,-\sin(\theta),0,-\cos(\theta))$$

Defining the Mandelstam variables ...

$$\hat{s} = (p_1 + p_2)^2 = (p_3 + p_4)^2 \qquad \hat{t} = -\frac{\hat{s}}{2} \left(1 - \cos(\theta)\right)$$
$$\hat{t} = (p_1 - p_3)^2 = (p_2 - p_4)^2 \qquad \hat{u} = -\frac{\hat{s}}{2} \left(1 + \cos(\theta)\right)$$
$$\hat{u} = (p_1 - p_4)^2 = (p_2 - p_3)^2 \qquad \hat{u} = -\frac{\hat{s}}{2} \left(1 + \cos(\theta)\right)$$

Manipulating the traces, we find ...

$$Tr\left[p_{\overline{2}}\gamma^{\mu}p_{\overline{1}}\gamma^{\nu}\right] Tr\left[p_{\overline{3}}\gamma_{\mu}p_{\overline{4}}\gamma_{\nu}\right] = 4\left[p_{1}^{\mu}p_{2}^{\nu}+p_{2}^{\mu}p_{1}^{\nu}-g^{\mu\nu}(p_{1}\cdot p_{2})\right] \times 4\left[p_{3}^{\mu}p_{4}^{\nu}+p_{4}^{\mu}p_{3}^{\nu}-g^{\mu\nu}(p_{3}\cdot p_{4})\right] = 2^{5}\left[(p_{1}\cdot p_{3})(p_{2}\cdot p_{4})+(p_{1}\cdot p_{4})(p_{2}\cdot p_{3})\right] = 2^{3}\left[\hat{t}^{2}+\hat{u}^{2}\right]$$

Where we have used:

$$p_1^2 = p_2^2 = p_3^2 = p_4^2 = 0$$

$$\hat{s} = 2(p_1 \cdot p_2) = 2(p_3 \cdot p_4)$$
$$\hat{t} = 2(p_1 \cdot p_3) = 2(p_2 \cdot p_4)$$
$$\hat{u} = 2(p_1 \cdot p_4) = 2(p_2 \cdot p_3)$$

Putting all the pieces together, we have:

$$\overline{|M|^{2}} = Q_{i}^{2} \alpha^{2} \frac{2^{5} \pi^{2}}{3} \left(\frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}\right) \quad \mathbf{v}$$

with

$$q^{2} = (p_{1} + p_{2})^{2} = \hat{s}$$
$$\alpha = \frac{e^{2}}{4\pi}$$

... and put it together to find the cross section

$$d\hat{\sigma} \simeq \frac{1}{2\hat{s}} \overline{|M|^2} d\Gamma$$
 In the partonic CMS system

$$d\Gamma = \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4) = \frac{d\cos(\theta)}{16\pi}$$

Recall,

$$\hat{t} = \frac{-\hat{s}}{2} \left(1 - \cos(\theta) \right) \quad and \quad \hat{u} = \frac{-\hat{s}}{2} \left(1 + \cos(\theta) \right)$$

so, the differential cross section is ...

$$\frac{d\,\widehat{\sigma}}{d\cos(\theta)} = Q_i^2 \,\alpha^2 \,\frac{\pi}{6} \,\frac{1}{\widehat{s}} \left(1 + \cos^2(\theta)\right)$$

and the total cross section is ...

$$\widehat{\sigma} = Q_i^2 \alpha^2 \frac{\pi}{6} \frac{1}{\widehat{s}} \int_{-1}^{1} d\cos(\theta) \left(1 + \cos^2(\theta)\right) = \frac{4\pi \alpha^2}{9\widehat{s}} Q_i^2 \equiv \widehat{\sigma}_0$$

Some Homework:

#1) Show:

$$\frac{d^{3}p}{(2\pi)^{3}2E} = \frac{d^{4}p}{(2\pi)^{4}} (2\pi) \delta^{+}(p^{2}-m^{2})$$

This relation is often useful as the RHS is manifestly Lorentz invariant

#2) Show that the 2-body phase space can be expressed as:

$$d\Gamma = \frac{d^{3}p_{3}}{(2\pi)^{3}2E_{3}} \frac{d^{3}p_{4}}{(2\pi)^{3}2E_{4}} (2\pi)^{4} \delta(p_{1}+p_{2}-p_{3}-p_{4}) = \frac{d\cos(\theta)}{16\pi}$$

Note, we are working with massless partons, and θ is in the partonic CMS frame

#3) Let's work out the general $2\rightarrow 2$ kinematics for general masses.

a) Start with the incoming particles.

Show that these can be written in the general form:

$$p_1 = (E_1, 0, 0, +p) \qquad p_1^2 = m_1^2$$
$$p_2 = (E_2, 0, 0, -p) \qquad p_2^2 = m_2^2$$

... with the following definitions:

$$E_{1,2} = \frac{\hat{s} \pm m_1^2 \mp m_2^2}{2\sqrt{\hat{s}}} \quad p = \frac{\Delta(\hat{s}, m_1^2, m_2^2)}{2\sqrt{\hat{s}}}$$
$$\Delta(a, b, c) = \sqrt{a^2 + b^2 + c^2 - 2(ab + bc + ca)}$$

Note that $\Delta(a,b,c)$ is symmetric with respect to its arguments, and involves the only invariants of the initial state: s, m_1^2 , m_2^2 .

b) Next, compute the general form for the final state particles, p_3 and p_4 . Do this by first aligning p_3 and p_4 along the z-axis (as p_1 and p_2 are), and then rotate about the y-axis by angle θ .

What does the angular dependence tell us?

Observe, the angular dependence: $q + \overline{q} \rightarrow e^+ + e^-$

$$\frac{d\,\widehat{\sigma}}{d\cos\left(\theta\right)} = Q_i^2 \,\alpha^2 \,\frac{\pi}{6} \,\frac{1}{\widehat{s}} \left(1 + \cos^2(\theta)\right)$$

Characteristic of scattering of spin 1/2 constitutients by a spin 1 vector

Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution. The W has V-A couplings, so we'll find: $(1+\cos\theta)^2$

Next, we'll compute the hadronic CMS

Kinematics in the Hadronic Frame

$$P_{1} = \frac{\sqrt{s}}{2} (1,0,0,+1) \qquad P_{1}^{2} = 0$$
$$P_{2} = \frac{\sqrt{s}}{2} (1,0,0,-1) \qquad P_{2}^{2} = 0$$

$$s = (P_1 + P_2)^2 = \frac{\hat{s}}{x_1 x_2} = \frac{\hat{s}}{\tau}$$

$$\tau = x_1 x_2 = \frac{\hat{s}}{s} \equiv \frac{Q^2}{s}$$

• Fractional energy² between partonic and hadronic system

$$\frac{d \sigma}{dQ^2} = \sum_{q,\overline{q}} \int dx_1 \int dx_2 \left\{ q(x_1)\overline{q}(x_2) + \overline{q}(x_1)q(x_2) \right\} \widehat{\sigma}_0 \ \delta(Q^2 - \widehat{s})$$
Hadronic Parton Partonic cross distribution cross section functions section

Scaling form of the Drell-Yan Cross Section

Using:
$$\widehat{\sigma}_0 = \frac{4\pi\alpha^2}{9\widehat{s}}Q_i^2$$
 and $\delta(Q^2 - \widehat{s}) = \frac{1}{sx_1}\delta(x_2 - \frac{\tau}{x_1})$

we can write the cross section in the scaling form:

$$Q^{4} \frac{d\sigma}{dQ^{2}} = \frac{4\pi\alpha^{2}}{9} \sum_{q,\bar{q}} Q_{i}^{2} \int_{\tau}^{1} \frac{dx_{1}}{x_{1}} \tau \left\{ q(x_{1})\bar{q}(\tau/x_{1}) + \bar{q}(x_{1})q(\tau/x_{1}) \right\}$$

Notice the RHS is a function of only τ , not Q.

This quantity should lie on a universal scaling curve.

Cf., DIS case, & scattering of point-like constituents Partonic CMS has longitudinal momentum w.r.t. the hadron frame

$$p_1 = x_1 P_1 \qquad p_2 = x_2 P_2$$

$$p_{12}$$

$$p_{12} = (p_1 + p_2) = (E_{12}, 0, 0, p_L)$$
$$E_{12} = \frac{\sqrt{s}}{2}(x_1 + x_2)$$
$$p_L = \frac{\sqrt{s}}{2}(x_1 - x_2) \equiv \frac{\sqrt{s}}{2}x_F$$

 x_F is a measure of the longitudinal momentum

The rapidity is defined as: $x_{1,2} = \sqrt{\tau} e^{\pm y}$ $y = \frac{1}{2} \ln \left\{ \frac{E_{12} + p_L}{E_{12} - p_L} \right\} = \frac{1}{2} \ln \left\{ \frac{x_1}{x_2} \right\}$ $dx_1 dx_2 = d\tau dy$ $dQ^2 dx_F = dy d\tau \ s \ \sqrt{x_F^2 + 4\tau}$

$$\frac{d\sigma}{dQ^2 dx_F} = \frac{4\pi\alpha^2}{9Q^4} \frac{1}{\sqrt{x_F^2 + 4\tau}} \tau \sum_{q,\bar{q}} Q_i^2 \{q(x_1)\bar{q}(\tau/x_1) + \bar{q}(x_1)q(\tau/x_1)\}$$

So, we're ready to compare with data

(or so we think...)

Let's compare data and theory

Table 1.2:	Experimental	K-factors
------------	--------------	-----------

Expe	eriment	Interaction	Beam Momentum	$K = \sigma_{\rm meas.}/\sigma_{\rm DY}$
E288	[Kap 78]	p P t	$300/400~{ m GeV}$	~ 1.7
WA39	[Cor 80]	$\pi^{\pm} W$	$39.5~{ m GeV}$	~ 2.5
E439	[Smi 81]	p W	$400~{ m GeV}$	1.6 ± 0.3
NA3 [Bad 83]	$(\bar{p} - p)Pt$	$150 { m GeV}$	2.3 ± 0.4	
	$p \ Pt$	$400~{ m GeV}$	$3.1\pm0.5\pm0.3$	
	$\pi^{\pm} Pt$	$200~{ m GeV}$	2.3 ± 0.5	
	$\pi^- Pt$	$150 { m GeV}$	2.49 ± 0.37	
		$\pi^- Pt$	$280 { m GeV}$	2.22 ± 0.33
NA10	[Bet 85]	$\pi^- W$	$194~{ m GeV}$	$\sim 2.77 \pm 0.12$
E326	[Gre 85]	$\pi^- W$	$225~{ m GeV}$	$2.70 \pm 0.08 \pm 0.40$
E537	[Ana 88]	$\bar{p} W$	$125~{ m GeV}$	$2.45 \pm 0.12 \pm 0.20$
E615	[Con 89]	$\pi^- W$	$252~{ m GeV}$	1.78 ± 0.06

Oooops,

we need the

QCD corrections

$$K = 1 + \frac{2\pi\alpha}{3}(...) + ... = ? = e^{2\pi\alpha}/3$$

p + Cu at 800 GeV

p + d at 800 GeV

pp & pN processes sensitive to anti-quark distributions

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne,
Eur. Phys. J. C23, 73 (2002);
Eur. Phys. J. C14, 133 (2000);
Eur. Phys. J. C4, 463 (1998)

Drell-Yan can give us unique and detailed information about PDF's.

We'll now examine two examples:

1) Ratio of pp/pd cross section

2) W Rapidity Asymmetry

A measurement of $\overline{d}(x)/\overline{u}(x)$ Antiquark asymmetry in the Nucleon Sea FNAL E866/NuSea

ACU, ANL, FNAL, GSU, IIT, LANL, LSU, NMSU, UNM, ORNL, TAMU, Valpo.

800 GeV
$$p + p$$
 and $p + d \rightarrow \mu^+ \mu^- X$

 $u \Leftrightarrow d$ Obtain the neutron PDF via isospin symmetry: $\overline{u} \Leftrightarrow \overline{d}$ $\sigma^{pp} \propto \frac{4}{9} u(x_1) \overline{u}(x_2) + \frac{1}{9} d(x_1) \overline{d}(x_2)$ In the limit $x_1 >> x_2$: $\sigma^{pn} \propto \frac{4}{9} u(x_1) \overline{d}(x_2) + \frac{1}{9} d(x_1) \overline{u}(x_2)$ For the ratio we have: $\frac{\sigma^{pd}}{2\sigma^{pp}} \approx \frac{1}{2} \frac{\left(1 + \frac{1}{4}\frac{d_1}{u_1}\right)}{\left(1 + \frac{1}{4}\frac{d_1}{u_1}\frac{\overline{d}_2}{\overline{u}_2}\right)} \quad \left(1 + \frac{\overline{d}_2}{\overline{u}_2}\right) \approx \frac{1}{2} \left(1 + \frac{\overline{d}_2}{\overline{u}_2}\right)$

As promised, this provides information about the sea-quark distributions

$$\frac{\sigma^{pd}}{2\,\sigma^{pp}} \approx \frac{1}{2} \left(1 + \frac{\overline{d}_2}{\overline{u}_2} \right)$$

EXERCISE: Verify the above.

Does the theory match the data???

E866 required significant changes in the hi-x sea distributions

With increased flexibility in the parameterization of the sea-quark distributions, good fits are obtained

E.A. Hawker, et al. [FNAL E866/NuSea Collaboration], Measurement of the light antiquark flavor asymmetry in the nucleon sea, PRL 80, 3715 (1998)

H. L. Lai, et al. } [CTEQ Collaboration], Global {QCD} analysis of parton structure of the nucleon: CTEQ5 parton distributions, EPJ C12, 375 (2000)

2) W Rapidity Asymmetry
Where do the W's and Z's come from ???

$$\frac{d\sigma}{dy}(W^{\pm}) = \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \sum_{q\bar{q}} |V_{q\bar{q}}|^2 \left[q(x_a) \bar{q}(x_b) + q(x_b) \bar{q}(x_a)\right]$$
flavour decomposition of W cross sections
$$\frac{u(x_a)}{proton} \frac{d(x_b)}{W^+} \text{ anti-proton}$$
For anti-proton:
$$u(x) \Leftrightarrow \bar{u}(x) \quad d(x) \Leftrightarrow \bar{d}(x)$$
Therefore
$$\frac{d\sigma}{dy}(W^+) \approx \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \left[u(x_a) d(x_b)\right]$$

$$\frac{d\sigma}{dy}(W^-) \approx \frac{2\pi}{3} \frac{G_F}{\sqrt{2}} \left[d(x_a) u(x_b)\right]$$
A.D. Marin, R. G. Roberts, W. Juffing and R. S. There,

Eur. Phys. J. C23, 73 (2002); Eur. Phys. J. C4, 463 (1998)

A bit of calculation

$$A(y) = \frac{\frac{d\sigma}{dy}(W^{+}) - \frac{d\sigma}{dy}(W^{-})}{\frac{d\sigma}{dy}(W^{+}) + \frac{d\sigma}{dy}(W^{-})}$$

With the previous approximation,

$$A \approx \frac{u(x_a)d(x_b) - d(x_a)u(x_b)}{u(x_a)d(x_b) + d(x_a)u(x_b)} =$$

where
$$R_{du}(x) = \frac{d(x)}{u(x)}$$

We can make Taylor expansions:

Thus, the asymmetry is:

EXERCISE: Verify the above.

$$\frac{R_{du}(x_b) - R_{du}(x_a)}{R_{du}(x_b) + R_{du}(x_a)}$$

$$x_{1,2} = x_0 e^{\pm y} \simeq x_0 (1 \pm y)$$
$$R_{du}(x_{1,2}) \approx R_{du}(x_0) \pm y x_0 R'_{du}(\sqrt{\tau})$$
$$A(y) = -y x_0 \frac{R'_{du}(x_0)}{R_{du}(x_0)}$$

Charged Lepton Asymmetry

Unfortunately, we don't measure the W directly since W→ev.

Still the lepton contains important information

$$A(y) = \frac{\frac{d\sigma}{dy}(l^{+}) - \frac{d\sigma}{dy}(l^{-})}{\frac{d\sigma}{dy}(l^{+}) + \frac{d\sigma}{dy}(l^{-})}$$

d/u Ratio at High-x

The form of the d/u ratio at large x as a function of

1) Parameterization

2) Nuclear Corrections

S. Kuhlmann, et al., Large-x parton distributions, PL B476, 291 (2000)

History:

Discovery of J/ ψ , Upsilon, W/Z, and "New Physics" ???

Calculation of $q q \rightarrow \mu^+ \mu^-$ in the Parton Model

Scaling form of the cross section

Rapidity, longitudinal momentum, and x_F

Comparison with data:

NLO QCD corrections essential (the K-factor) $\sigma(pd)/\sigma(pp)$ important for d-bar/ubar W Rapidity Asymmetry important for slope of d/u at large x Where are we going? P_T Distribution W-mass measurement Resummation of soft gluons

Finding the W Boson Mass:

The Jacobian Peak, and the W Boson P_{T}

Multiple Soft Gluon Emissions

Single Hard Gluon Emission

Road map of Resummation

Summing 2 logs per loop: multi-scale problem (Q,q_T)

Correlated Gluon Emission

Non-Perturbative physics at small q_{T} .

Transverse Mass Distribution:

Improvement over P_{T} distribution

What can we expect in future?

Tevatron Run II

LHC

Side Note: From $pp \rightarrow \gamma/Z/W$, we can obtain $pp \rightarrow \gamma/Z/W \rightarrow l^+l^-$

For example:

$$\frac{d\sigma}{dQ^2 d\hat{t}}(q\bar{q} \rightarrow l^+ l^- g) = \frac{d\sigma}{d\hat{t}}(q\bar{q} \rightarrow \gamma^* g) \times \frac{\alpha}{3\pi Q^2}$$

How do we measure the W-boson mass?

$$u + \overline{d} \to W^+ \to e^+ \nu$$

- Can't measure W directly
- Can't measure v directly
- Can't measure longitudinal momentum

We can measure the P_{T} of the lepton

How can we use this to extract the W-Mass???

The Jacobian Peak

Suppose lepton distribution is uniform in θ

The dependence is actually $(1+\cos\theta)^2$ *, but we'll take care of that later*

What is the distribution in P_{T} ?

The Jacobian Peak

Now that we've got the picture, here's the math ... (in the W CMS frame)

$$p_T^2 = \frac{\hat{s}}{4} \sin^2 \theta \qquad \cos \theta = \sqrt{1 - \frac{4 p_T^2}{\hat{s}}} \qquad \frac{d \cos \theta}{d p_T^2} = \frac{2}{\hat{s}} \frac{1}{\cos \theta}$$

So we discover the P_T distribution has a singularity at $\cos\theta=0$, or $\theta=\pi/2$

Measuring the Jacobian peak is complicated if the W boson has finite P_{T} .

BUT !!!

1) The W-mass is important fundamental quantity of the Standard Model

2) P_T Distribution is important for measuring the W-mass

The W-Mass is an important fundamental quantity

The W-Mass is an important fundamental quantity

What gives the W

P_T ???

What about the intrinsic k_{T} of the partons?

For high P_{T} , we need a hard parton emission

The complete P_{T} spectrum for the W boson

Road map for Resumation

NLO P_{T} distribution for the W boson

Resummation of soft gluons: Step #1

We just resummed (exponentiated) an infinite series of soft gluon emissions

I've skipped over some details ..

Parisi & Petronzio, NP B154, 427 (1979) Dokshitzer, D'yakanov, Troyan, Phy. Rep. 58, 271 (1980)

Curci, Greco, Srivastava, PRL 43, 834 (1979); NP B159, 451 (1979) Jeff Owens, 2000 CTEQ Summer School Lectures 1) We summed only the leading logarithmic singularity, $\alpha_s L^2$. We'll need to do better to ensure convergence of perturbation series

2) We assumed exponentiation; proof of this is non-trivial. The existence of two scales $(Q,p_T) \equiv (Q,q_T)$ yields 2 logs per loop

3) Gluon emission was assumed to be uncorrelated. This leads to too strong a suppression at $P_T=0$. Will need to impose momentum conservation for P_T .

4) In the limit $P_T \rightarrow 0$, terms of order $\alpha_s(\mu=P_T) \rightarrow \infty$; Must handle this Non-Perturbative region.

1) We summed only the leading logarithmic singularity

2) We assumed exponentiation; proof is non-trivial

Review where the logs come from

Review one-scale problem (Q) resummation via RGE

Review two-scale problem (Q,q_T)

resummation via RGE+ Gauge Invariance

Where do the

Logs come from?

Total Cross Section: σ(e⁺e⁻) at 3 Loops

$$\sigma(Q^{2}) = \sigma_{0} \left[1 + \frac{\alpha_{s}(Q^{2})}{4\pi} (3C_{F}) + \left[\frac{\alpha_{s}(Q^{2})}{4\pi} \right]^{2} \right] + C_{F}^{2} \left[\frac{3}{2} \right] + C_{F}C_{A} \left[\frac{123}{2} - 44\xi(3) \right] - C_{F}Tn_{f}(-22 + 16\xi(3)) \right] + \left[\frac{\alpha_{s}(Q^{2})}{4\pi} \right]^{2} \left[C_{F}^{2} \left[-\frac{69}{2} \right] + C_{F}^{2}C_{A}(-127 - 572\xi(3) + 880\xi(5)) + C_{F}C_{A} \left[\frac{90445}{54} - \frac{10948}{9} \xi(3) + \frac{440}{3} \xi(5) \right] + C_{F}C_{A} \left[\frac{90445}{54} - \frac{10948}{9} \xi(3) + \frac{440}{3} \xi(5) \right] + C_{F}C_{A} \left[Tn_{f} \left[-\frac{31040}{27} + \frac{7168}{9} \xi(3) + \frac{160}{3} \xi(5) \right] + C_{F}T^{2}n_{f}^{2} \left[\frac{4832}{27} - \frac{1216}{9} \xi(3) \right] - C_{F}\sigma^{2} \left[\frac{11}{3}C_{A} - \frac{4}{3}Tn_{f} \right]^{2} + \frac{\left[\sum_{f} Q_{f} \right]^{2}}{\left(N \sum_{f} Q_{f}^{2} \right)^{2}} \frac{D}{16} \left[\frac{176}{3} - (28\xi(3)) \right] \right] \right].$$

$$(5.1)$$

Rev. Mod. Phys., Vol. 67, No. 1, January 1995

3.27

One mass scale: Q². No logarithms!!!

Drelly-Yan at 2 Loops:

Sterman et al.: Handbook of perturbative QCD

$$\begin{split} H_{q\overline{q}}^{(2),\overline{q}+\nu}(z) &\simeq \left[\frac{\alpha_{x}}{4\pi}\right]^{2} &(1-z) \left[C_{A}C_{F} \left[[\frac{35}{2} - 24\zeta(3)] \ln \left[\frac{Q^{2}}{M^{2}}\right] - 11 \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] - \frac{12}{5} \zeta(2)^{2} + \frac{55}{7} \zeta(2) + 28\zeta(3) - \frac{1559}{12} \right] \\ &+ C_{F}^{2} \left[[18 - 32\zeta(2)] \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] + [24\zeta(2) - 176\zeta(3) - 93] \ln \left[\frac{Q^{2}}{M^{2}}\right] \\ &+ \frac{8}{5} \zeta(2)^{2} - 70\zeta(2) - 60\zeta(3) + \frac{51}{44} \right] \\ &+ n_{f}C_{F} \left[2 \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] - \frac{24}{3} \ln \left[\frac{Q^{2}}{M^{2}}\right] + 8\zeta(3) - \frac{179}{5} \zeta(2) + \frac{27}{8} \right] \right] \\ &+ C_{A}C_{F} \left[-\frac{44}{5} \mathcal{D}_{0}(z) \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] + \left\{ [\frac{156}{3} - 16\zeta(2)] \mathcal{D}_{0}(z) - \frac{156}{3} \mathcal{D}_{1}(z)] \ln \left[\frac{Q^{2}}{M^{2}}\right] \right] \\ &+ C_{A}C_{F} \left[-\frac{44}{5} \mathcal{D}_{0}(z) \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] + \left\{ [\frac{156}{3} - 16\zeta(2)] \mathcal{D}_{0}(z) - \frac{156}{3} \mathcal{D}_{1}(z)] \ln \left[\frac{Q^{2}}{M^{2}}\right] \right] \\ &+ C_{A}C_{F} \left[[64\mathcal{D}_{1}(z) + 48\mathcal{D}_{0}(z)] \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] + \left[192\mathcal{D}_{2}(z) - 96\mathcal{D}_{1}(z) - \left[128 + 64\zeta(2) \right] \mathcal{D}_{0}(z) \right] \ln \left[\frac{Q^{2}}{M^{2}}\right] \right] \\ &+ 128\mathcal{D}_{3}(z) - (128\zeta(2) + 256)\mathcal{D}_{1}(z) + 256\zeta(3)\mathcal{D}_{0}(z) \right] \\ &+ n_{f}C_{F} \left[\frac{4}{3} \mathcal{D}_{0}(z) \ln^{2} \left[\frac{Q^{2}}{M^{2}}\right] + \left[\frac{13}{3} \mathcal{D}_{1}(z) - \frac{45}{3} \mathcal{D}_{0}(z) \right] \ln \left[\frac{Q^{2}}{M^{2}}\right] + \frac{52}{3} \mathcal{D}_{2}(z) - \frac{186}{3} \mathcal{D}_{1}(z) - \left[\frac{27}{23} + \frac{37}{3} \zeta(2) \right] \mathcal{D}_{0}(z) \right] \\ \end{split}$$

Two mass scales: $\{Q^2, M^2\}$. Logarithms!!!

(7.14)

218

Renormalization Group Equation

More Differential Quantities \Rightarrow More Mass Scales \Rightarrow More Logs!!!

$$\frac{d\sigma}{dQ^2} \sim \ln\left(\frac{Q^2}{\mu^2}\right) \qquad \qquad \frac{d\sigma}{dQ^2} \sim \ln\left(\frac{Q^2}{\mu^2}\right) \quad and \quad \ln\left(\frac{q_T^2}{\mu^2}\right)$$

How do we resum logs? Use the Renormalization Group Equation

For a physical observable R:

$$\mu \; \frac{dR}{d \, \mu} \; = \; 0$$

Using the chain rule:

$$\left\{ \mu^2 \frac{\partial}{\partial \mu^2} + \left[\mu^2 \frac{\partial \alpha_s(\mu^2)}{\partial \mu^2} \right] \frac{\partial}{\partial \alpha_s(\mu^2)} \right\} R(\mu^2, \alpha_s(\mu^2)) = 0$$

$$\beta\left(\alpha_s(\mu)\right) \quad \text{Solution} \Rightarrow \quad \ln\left(\frac{Q^2}{\mu^2}\right) = \int_{\alpha_s(\mu^2)}^{\alpha_s(Q^2)} \frac{dx}{\beta(x)}$$

Renormalization Group Equation: *OVER SIMPLIFIED!*

$$\begin{cases} \mu^2 \frac{\partial}{\partial \mu^2} + \beta \left(\alpha_s(\mu) \right) \frac{\partial}{\partial \alpha_s(\mu^2)} \end{cases} R(\mu^2, \alpha_s(\mu^2)) = 0 \\ \uparrow \\ If we expand R in powers of \alpha_s, and we know \beta, \\ we then know \mu dependence of R. \\ R(\mu, Q, \alpha_s(\mu^2)) = R_0 + \alpha_s(\mu^2) R_1 \left[\ln \left(Q^2/\mu^2 \right) + c_1 \right] \\ + \alpha_s^2(\mu^2) R_2 \left[\ln^2 \left(Q^2/\mu^2 \right) + \ln \left(Q^2/\mu^2 \right) + c_2 \right] + O(\alpha_s^3(\mu^2)) \end{cases}$$

Since μ is arbitrary, choose μ =Q.

$$R(Q, Q, \alpha_s(Q^2)) = R_0 + \alpha_s(Q^2) R_1[0 + c_1] + \alpha_s^2(Q^2) R_2[0 + 0 + c_2] + \dots$$

We just summed the logs

For $R(\mu,Q,\alpha_s)$, we could resum $\ln(Q^2/\mu^2)$ by taking $Q=\mu$. What about $R(\mu,Q,q_T,\alpha_s)$; how do we resum $\ln(Q^2/\mu^2)$ and $\ln(q_T^2/\mu^2)$. Are we stuck? Can't have $\mu^2=Q^2$ and $\mu^2=q_T^2$ at the same time!

Solution: Use Gauge Invariance; cast in similar form to RGE

Use axial-gauge with axial vector ξ . This enters the cross section in the form: ($\xi \bullet p$).

$$\sigma\left(x,\frac{Q^2}{\mu^2},\frac{\left(p\cdot\xi\right)^2}{\mu^2},\ldots\right)$$

 $\frac{d\sigma}{d\mu^2} = 0$ RGE allows us to vary μ to resum logs $\frac{d\sigma}{d(p \cdot \xi)^2} = 0$ Gauge invariance allows us to vary ($\xi \bullet p$) to resum logs

It is covenient to transform to impact parameter space (b-space) to implement this mechanism

The details will fill multiple lectures: See Sterman TASI 1995; Soper CTEQ 1995

3) We assumed gluon emission was uncorrelated

$$\frac{d\sigma}{d\tau \, dy \, dp_T^2} \approx \frac{\ln s/p_T^2}{p_T^2} \times \exp\left\{-\frac{2\alpha_s}{3\pi}\ln^2\frac{s}{p_T^2}\right\}$$

This leads to too strong a suppression at $P_T=0$. Need to impose momentum conservation for P_T .

> A particle can receive finite k_T kicks, yet still have $P_T=0$

A convenient way to impose transverse momentum conservation is in impact parameter space (b-space) via the following relation:

$$\delta^{(2)} \left(\sum_{i=1}^{n} \vec{k}_{iT} - \vec{p}_{T} \right) = \frac{1}{(2\pi)^{2}} \int d^{2}b \ e^{-i\vec{b}\cdot\vec{p}_{T}} \prod_{i=1}^{n} e^{-i\vec{b}\cdot\vec{k}_{iT}}$$

4) We encounter Non-Perturbative Physics

$$S(b,Q) = \int_{-1/b^2}^{-Q^2} \frac{d\mu^2}{\mu^2} \left\{ A(\alpha_s(\mu^2)) \ln\left(\frac{Q^2}{\mu^2}\right) + B(\alpha_s(\mu^2)) \right\}$$

as $b \rightarrow \infty$, $\alpha_s(\sim 1/b) \rightarrow \infty$. **PROBLEM!!!**

Solution: Use a Non-Perturbative Sudakov form factor (S_{NP}) in the region of large b (small q_T)

with $b_* = \frac{b}{\sqrt{1+b^2/b_{max}^2}}$ Note, as $b \to \infty$, $b_* \to b_{max}$. $b_* = \frac{b}{\sqrt{1+b^2/b_{max}^2}}$ $b_* = \frac{b}{\sqrt{1+b^2/b_{max}^2}}$ $b_* = \frac{b}{\sqrt{1+b^2/b_{max}^2}}$ $b_* = \frac{b}{\sqrt{1+b^2/b_{max}^2}}$

A Brief (but incomplete) **History of Non-Perturbative Corrections**

Original CSS: $S_{NP}^{CSS}(b) = h_1(b,\xi_a) + h_2(b,\xi_b) + h_3(b) \ln Q^2$

J. Collins and D. Soper, Nucl. Phys. B193 381 (1981);

erratum: B213 545 (1983); J. Collins, D. Soper, and G. Sterman, Nucl. Phys. B250 199 (1985).

Davies, Webber, and Stirling (DWS): $S_{NP}^{DWS}(b) = b^2 \left| g_1 + g_2 \ln(b_{max}Q^2) \right|$

C. Davies and W.J. Stirling, Nucl. Phys. B244 337 (1984);

C. Davies, B. Webber, and W.J. Stirling, Nucl. Phys. B256 413 (1985).

Ladinsky and Yuan (LY): $S_{NP}^{LY}(b) = g_1 b \left[b + g_3 \ln(100\xi_a\xi_b) \right] + g_2 b^2 \ln(b_{max}Q)$

G.A. Ladinsky and C.P. Yuan, Phys. Rev. D50 4239 (1994); F. Landry, R. Brock, G.A. Ladinsky, and C.P.Yuan, Phys. Rev. D63 013004 (2001).

"BLNY":
$$S_{NP}^{BLNY}(b) = b^2 [g_1 + g_1 g_3 \ln(100\xi_a \xi_b) + g_2 \ln(b_{max} Q)]$$

F. Landry, "Inclusion of Tevatron Z Data into Global Non-Perturbative QCD Fitting", Ph.D. Thesis, Michigan State University, 2001. F. Landry, R. Brock, P. Nadolsky, and C.P.Yuan, PRD67, 073016 (2003)

" q_{T} resummation": $\widetilde{F}^{NP}(q_{T}) = 1 - e^{-\widetilde{a} q_{T}^{2}}$

(not in b-space)

R.K. Ellis, Sinisa Veseli, Nucl. Phys. B511 (1998) 649-669 R.K. Ellis, D.A. Ross, S. Veseli, Nucl. Phys. B503 (1997) 309-338

Functional Extrapolation:

J. Qui, X. Zhang, PRD63, 114011 (2001); E. Berger, J. Qiu, PRD67, 034023 (2003) Analytical Continuation:

A. Kulesza, G. Sterman, W. vogelsang, PRD66, 014011 (2002)

1) We now summed the two leading logarithmic singularities, $\alpha_s(L^2+L)$.

- 2) We still assumed exponentiation; but sketched ingredients of proof. The existence of two scales $(Q,p_T) \equiv (Q,q_T)$ yields 2 logs per loop Use Renormalization Group + Gauge Invariance Transformation to b-space
- 3) Gluon emission was assumed to be uncorrelated. Impose momentum conservation for P_T. (*In b-space*)

4) Introduced Non-Perturbative function for small q_T (large b) region.

What do we get for the cross section

$$\frac{d\sigma}{dy dQ^2 dq_T^2} = \frac{1}{(2\pi)^2} \int_0^\infty d^2 b e^{ib \cdot q_T} \widetilde{W}(b,Q) e^{-S(b_*,Q) + S_{NP}(b,Q)}$$

with

$$-S(b,Q) = -\int_{-1/b^{2}}^{-Q^{2}} \frac{d\mu^{2}}{\mu^{2}} \left\{ A \ln\left(\frac{Q^{2}}{\mu^{2}}\right) + B \right\}$$

where we have resummed the soft gluon contributions

I've left out A LOT of material

Let's expand out the resummed expression:

$$\frac{d\sigma}{dq_T^2} \sim \frac{\alpha_s L}{q_T^2} e^{\alpha_s (L^2 + L)} \sim \frac{1}{q_T^2} \left\{ \alpha_s L + \alpha_s^2 (L^3 + L^2) + \dots \right\}$$

Compare the above with the perturbative and asymptotic results:

$$d\sigma_{resum} \sim \left\{ \alpha_{s}L + \alpha_{s}^{2}(L^{3} + L^{2} + 0 + 0) + \alpha_{s}^{3}(L^{5} + L^{4}) + \dots \right\}$$

$$d\sigma_{pert} \sim \left\{ \alpha_{s}L + \alpha_{s}^{2}(L^{3} + L^{2} + L^{1} + 1) + \alpha_{s}^{3}(0 + 0) \right\}$$

$$d\sigma_{asym} \sim \left\{ \alpha_{s}L + \alpha_{s}^{2}(L^{3} + L^{2} + 0 + 0) + \alpha_{s}^{3}(0 + 0) \right\}$$

Note that σ_{ASYM} removes overlap between σ_{RESUM} and σ_{PERT} .

We expect:

 σ_{RESUM} is a good representation for $q_T \sim 0$ σ_{PERT} is a good representation for $q_T \sim M_W$

transverse momentum q_{T}

We'll look at Z data where we can measure both leptons for $Z \rightarrow e^+e^-$

D0 Z Data

CDF Z Run 1

different $S_{NP}(b,Q)$ functions yield difference at small q_T .

Let's return

to the

measurement

of M_w

Transverse Mass Distribution

We can measure $d\sigma/dp_T$ and look for the Jacobian peak. However, there is another variable that is relatively insensitive to $p_T(W)$.

Transverse Mass
$$M_T^2(e, v) = \left(|\vec{p}_{eT}| + |\vec{p}_{vT}|\right)^2 - \left(\vec{p}_{eT} + \vec{p}_{vT}\right)^2$$
Invariant Mass $M^2(e, v) = \left(|\vec{p}_e| + |\vec{p}_v|\right)^2 - \left(\vec{p}_e + \vec{p}_v\right)^2$

In the limit of vanishing longitudinal momentum, $M_T \sim M$. M_T is invariant under longitudinal boosts.

 M_{T} can also be expressed as: $M_{T}^{2}(e, v) = 2 |\vec{p}_{eT}| |\vec{p}_{vT}| (1 - \cos \Delta \phi_{ev})$

For small values of P_T^W , M_T is invariant to leading order.

Exercise:

a) Verify the above definitions of M_{T} are \equiv .

b) For $p_{Te} = +p^* + p_T^W/2$ and $p_{Tv} = -p^* + p_T^W/2$; verify M_T is invariant to leading order in p_T^W .

Compare P_{T} and **Transverse** Mass Distribution

 M_{T} distribution is much less sensitive to P_{T} of W

Still, we need P_T distribution of W to extract mass and width with precision

> PDF and $p_{\rm T}(W)$ uncertainties will need to be controlled: currently uncertainty: ~10-15 & 5-10 MeV/ c^2

Statistical precision in Run II will be miniscule...placing an enormous burden on control of modeling uncertainties.

The Future:

Tevatron Run II ... happening now

LHC ... happening soon

Transverse Mass Distribution and M_w Measurement

Transverse Mass Distribution from CDF

Combined World Measurements of M_w

T.Affolder, et al. [CDF Collaboration], PRD64, 052001 (2001) Measurement of the W boson mass with the Collider Detector at Fermilab,

Preliminary Run II measurements **Electroweak Physics High priority measurements** • W->ev cross-section

Yuri Gershtein

D0 Results from Run 2: Wine & Cheese, July 26, 2002

13

The W-Mass is an important fundamental quantity

Finding the W Boson Mass:

The Jacobian Peak, and the W Boson P_{T}

Multiple Soft Gluon Emissions

Single Hard Gluon Emission

Road map of Resummation

Summing 2 logs per loop: multi-scale problem (Q,q_T)

Correlated Gluon Emission

Non-Perturbative physics at small q_{T} .

Transverse Mass Distribution:

Improvement over P_{T} distribution

What can we expect in future?

Tevatron Run II

LHC

Jeff Owens Chip Brock C.P. Yuan Pavel Nadolsky **Randy Scalise** Wu-Ki Tung Steve Kuhlmann Dave Soper

and my other CTEQ colleagues

and the many web pages where I borrowed my figures

....

References:

Ellis, Webber, Stirling

Barger & Phillips, 2nd Edition

Rick Field; Perturbative QCD

CTEQ Handbook CTEQ Pedagogical Page:

CTEQ Lectures:

C.P. Yuan, 2002 Chip Brock, 2001 Jeff Owens, 2000

Attention:

You have reached the very last page of the internet.

We hope you enjoyed your browsing.

calculate

Now turn off your computer and go out and play.

