Jets at e^+e^- colliders

Bill GARY

Department of Physics U. California, <u>Riverside</u>

OPAL Collaboration at LEP BaBar Collaboration at SLAC

email: bill.gary@ucr.edu

- (I) <u>Overview</u> and historical perspective
- (II) <u>Basic tools:</u> Monte Carlo simulation programs $(\rightarrow \text{ test of the hadronization process})$
- (III) Basic tools: jet finding algorithms
- (IV) Test of <u>matrix elements</u>
- (V) Measurement of the color factors
- (VI) <u>Differences</u> between gluon & quark jets
- (VII) Tests of the hadronization process

Overview and historical perspective

- e^+e^- annihilations $| \longrightarrow$ The simplest type of accelerator experiment currently possible
 - No parton distribution functions
 - No strong interaction ISR
 - No beam remnants (underlying event)
- Uniquely precise with respect to theoretical modeling and clean interpretation of data
- Played a vital role in establishing QCD as the correct theory of strong interactions \longrightarrow "Precision" tests of QCD

- A number of fundamental discoveries in jet physics:
 - \longrightarrow First observation ("discovery") of jets
 - \rightarrow First direct observation of the **gluon**
- Many unique & classic studies, first (and often still best) measurements which helped to establish QCD:
 - \longrightarrow Spins of the quark and gluon
 - \longrightarrow Precise, consistent measurements of $lpha_S$
 - \longrightarrow Running of α_S

 - Precise measurements of the color factors
 & establishment of SU(3) gauge structure
 - \longrightarrow Differences between gluon & quark jets
 - First experimental demonstration of coherence effects in QCD (string effect)

Principal e ⁺ e ⁻ experiments in QCD			
	$\sqrt{\mathrm{S}}$ (GeV)	Experiment	Dates
LEP	88 - 208	ALEPH, DELPHI, L3, OPAL	1989-2000
SLC	91	SLD	1991- ~1998
TRISTAN	52 - 64	AMY, TOPAZ, VENUS	1987-1995
PEP	29	DELCO, HRS, MAC, MARK-2, TPC	1980-1990
PETRA	12 - 44	CELLO, JADE, MARK-J, PLUTO, TASSO	1978-1986
CESR	10	CLEO	1979-2003
SPEAR	3 - 8	SLAC-LBL Collab.	1975-1976
$\boxed{EXPERIMENT} = Still \text{ producing QCD results in late 2003 or later}$			

Herwig Parton shower based on LO Altarelli-Parisi splitting functions, π with NLO accuracy at high x [option: $\mathcal{O}(\alpha_S^2)$ matrix elements] Hadronization the Cluster model K $\mathbf{Z}^{0}/\gamma^{*}$ K π Clusters π Gluons from the parton shower are split to $q\overline{q}$ pairs π Color singlet clusters are formed from neighboring \mathbf{q} and $\overline{\mathbf{q}}$ The low mass clusters decay into hadrons according to 2-body phase space \rightarrow isotropic decay in cluster c.m. π \rightarrow No analytic functions to parametrize the longitudinal or transverse momentum spectra of hadrons or to specify the relative abundance of different hadrons (π^{\pm} , K^{\pm} , etc.) Intrinsically more simple than String Hadronization, but the overall description of data not as good

The JADE jet finder

[JADE Collab., Z. Phys. C33 (1986) 23]

 \rightarrow The original recombination jet finder:

- $M_{ij}^2 = 2E_i E_j (1 \cos \theta_{ij}) \approx (\text{invariant mass})^2$
- Original version based on the E_0 scheme

Sometimes leads to the formation of "junk jets"

 \rightarrow Two-jet events with ≥ 2 soft, collinear gluons can be classified, unnaturally, as three-jet events

 \rightarrow Inhibits re-summation techniques from being applied

The Durham k_{\perp} jet finder

[S. Catani et al., Phys. Lett. B269 (1991) 432]

 \rightarrow Introduced to reduce the problem of junk jets

• $M_{ij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$

• E scheme combination of particles: $(i, j) \rightarrow k$

 \longrightarrow Consider small emission angles θ_{ij} :

$$\begin{split} M_{ij}^2 &\approx 2\min(E_i^2, E_j^2) \left[1 - \left(1 - \theta_{ij}^2/2 + \cdots \right) \right] \\ &\approx \min(E_i^2, E_j^2) \, \theta_{ij}^2 \approx K_\perp^2 \end{split}$$

(min. transverse momenta of one particle w.r.t. the other)

 \rightarrow Soft, collinear radiation is attached to the correct jet

factor ratios $\mathrm{C}_{\mathrm{A}}/\mathrm{C}_{\mathrm{F}}$ and $\mathrm{T}_{\mathrm{F}}/\mathrm{C}_{\mathrm{F}}$, with $\sigma_{A}\cdots\sigma_{E}$ taken from theory

Procedure

ightarrow Select 4-jet events using a jet finder: K_{\perp} , JADE, etc.

 \longrightarrow Order jets by energy: $E_1 > E_2 > E_3 > E_4$

 \rightarrow For simplicity, usually employ standard angular correlation variables, rather than the 2-jet invariant masses y:

• Bengtsson-Zerwas angle:
$$\cos \chi_{\text{BZ}} = \left| \frac{(\vec{p}_1 \times \vec{p}_2) \cdot (\vec{p}_3 \times \vec{p}_4)}{|\vec{p}_1 \times \vec{p}_2| |\vec{p}_3 \times \vec{p}_4|} \right|$$

• (modified) Nachtmann-Reiter angle: $\cos \Theta_{\text{NR}}^* = \left| \frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{p}_3 - \vec{p}_4)}{|\vec{p}_1 - \vec{p}_2| |\vec{p}_3 - \vec{p}_4|} \right|$

• Angle between jets 3 and 4: $\cos \alpha_{34} = \frac{\vec{p}_3 \cdot \vec{p}_4}{|\vec{p}_3| |\vec{p}_4|}$

 \rightarrow Account for the effects of hadronization using corrections from the MC

ightarrow Fit theoretical expression to the data to find $rac{{
m C}_{
m A}}{{
m C}_{
m F}}$ and $rac{{
m T}_{
m F}}{{
m C}_{
m F}}$

Bill GARY / U. California, Riverside

CTEQ Summer School, Puebla Mexico, 22 May 2005

Bill GARY / U. California, Riverside

CTEQ Summer School, Puebla Mexico, 22 May 2005

Multiplicity distributions of unbiased gluon and quark jets, $E_{ m jet}pprox 40$ GeV

Higher moments of the multiplicity distribution (shape of the multiplicity distribution)

$r_{g/q}$ in the asymptotic limit, $m E_{particle} << E_{jet}$

[OPAL Collab., Eur. Phys. J. C11 (1999) 217]

- Determine $\Gamma_{
 m g/q}$ as the particle momentum p gets <u>smaller</u>: $p \leq p_{max}$
- Require $p_{\perp} > 0.8~{
 m GeV/}{c}$: $p_{\perp} < 0.8~{
 m GeV}{c}$ dominated by hadronization
- Parton and hadron level MC predictions both converge to $r_{g/q} = 2.25$ for soft particles (note: $r_{g/q} \rightarrow 0$ for hard particles, G ff softer than that of Q)

- → <u>Much more sensitive</u> to pop-corn/diquark model differences than previous studies
- → Data strongly support the diquark hypothesis
- $\rightarrow \mbox{ The "diquark" behaves as a } \\ \mbox{ fundamental entity (the qq$ pair is strongly bound together when $$produced from the vacuum, $$similarly for the $$\overline{q}\overline{q}$ pair) }$

- A gluon jet has <u>two chances</u> to acquire a baryon as its leading particle, compared to a quark jet which has only one
- An enhancement of ~ 2 in the rate of high energy baryons in gluon jets compared to quark jets, beyond the enhancement due to the color factors, discussed earlier, which is common to <u>all</u> particle species
- Cluster hadronization & octet strings:
 - No mechanism for an enhancement of baryons in gluon jets beyond that observed for all particles

CTEQ Summer School, Puebla Mexico, 22 May 2005

