Jets at Hadron Colliders

Andrey Korytov

(CDF and CMS Collaborations)

Andrey Korytov, University of Florida

- Introduction: what is jet physics and why bother?
- Hadron Colliders
- Detectors at Hadron Colliders
- What is a jet, after all?
- Jet Physics:
 - jet production (X+jets)
 - jet structure
 - jets as a probe of GQP
 - jet pollution

• Summary: all you need to remember

Jets at Hadron Colliders Jet Physics in SM and Beyond

SM Physics with jets

- jet production (X+jets)
 - \rightarrow QCD at large energy scales

SM Physics of jets

jet structure
 → QCD at small energy scales

SM Physics using jets as a probe

jet propagation through Quark-Gluon Plasma
 → QCD of dense states

QCD and Jets are the key to New Physics

- new physics is likely to be born in a QCD process
- new physics often results in jets in final states
- most of the time, QCD is the major background

QCD foundations are well understood, but:

• Theoretically, QCD calculus remains to be a challenge, both at

- <u>at large energy scales</u>, despite of α_s being relatively small (~0.1)
- and even more so <u>at low energy scales</u> where α_s diverges

• Experimentally, Jets

- are a mess by themselves (hard to have a firm grip on them)

- Introduction: why bother with jet physics?
- Hadron Colliders
- Detectors at Hadron Colliders
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution
- Summary: all you need to remember

Jets at Hadron Colliders Hadron Colliders

- ISR (Intersecting Storage Rings) at CERN
- SppS (Super Proton-Antiproton Synchrotron) at CERN
- Tevatron at Fermilab
- LHC (Large Hadron Collider) at CERN

Collider	Years	Particles	CoM Energy	Max Luminosity
ISR	1971-1984	рр	60 GeV	2×10 ³² cm ⁻² s ⁻¹
SppS	1981-1990	рр	600 GeV	6×10 ³⁰ cm ⁻² s ⁻¹
Tevatron	1987-2009	pp	2 TeV	10 ³² cm ⁻² s ⁻¹
LHC	2007-	рр	14 TeV	10 ³⁴ cm ⁻² s ⁻¹

• RHIC (Relativistic Heavy Ion Collider) at Brookhaven

RHIC 2000	A+A	2×100×N GeV	10 ²⁷ cm ⁻² s ⁻¹
-----------	-----	-------------	---

Tevatron accelerator complex

Jets at

Hadron Colliders

Andrey Korytov, University of Florida CTEQ2005, Puebla, May 24, 2005

Tevatron accelerator complex

Jets at

Hadron Colliders

- Negatively ionized hydrogen gas enters linear accelerator (400MeV).
- Ions pass through carbon foil to remove electrons.
- Booster accelerates protons to 8GeV
- Protons enter MI—accelerated to 150GeV.
- Protons from MI used to produce antiprotons
- Antiprotons sent to MI—accelerated to 150GeV
- Protons and antiprotons injected into the main ring and accelerated to 980 GeV

Tevatron accelerator complex

Jets at

Hadron Colliders

Run I

- 1992-1996
- CoM Energy 1.8 TeV
- Max L = 2×10^{31} cm⁻² s⁻¹
- Int. L = 0.1 fb⁻¹

Run II

- 2001-2009
- CoM Energy 1.96 TeV
- Int. L = 4-8 fb⁻¹ (by 2009)
- So far:
 - Max L: ~10³² cm⁻² s⁻¹
 - Integral L: ~1 fb⁻¹

Jets at Hadron Colliders Large Hadron Collider

Andrey Korytov, University of Florida CTEQ2005, Puebla, May 24, 2005

- Introduction: why bother with jet physics?
- Hadron Colliders
- Detectors at Hadron Colliders
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution
- Summary: all you need to remember

Hadron Colliders Hadron Collider Detector: Coordinates

- φ azimuthal angle η – pseudorapidity
 - η=0 (θ=90°)
 η=1 (θ=40°)
 η=2 (θ=15°)
 - soft particles are approxumately uniformly distributed along η
 - hard-scattered partons may have a boost along the beam line, but $\Delta \eta = \eta_1 - \eta_2$ remains Lorentz-invariant with respect to such boosts and is related to the polar scattering angle in the center of mass of scattered partons
 - in central region $\eta < 1: \Delta \eta \sim \Delta \theta_{LAB}$

Hadron Colliders Hadron Collider Detector: Concept

Detector:

- solenoid
- inner tracker
- em calorimeter
- had calorimeter
- muon system

Primary Physics Objects:

- electron
- photon
- hadron jet
- individual charged hadron
- muon
- missing E_T

Jets at Hadron Colliders Hadron Collider Detector: CDF (example)

- 3d vertex coverage: $|\eta|$ <2
- Tracking coverage: |η|<2
- Calorimeter coverage: |η|<3.6
- Mini-plug calorimeter: 3.6<|η|<5.1
- Muon coverage: |η|<1.5

Andrey Korytov, University of Florida

CTEQ2005, Puebla, May 24, 2005

- Introduction: why bother with jet physics?
- Hadron Colliders
- Detectors at Hadron Colliders
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution
- Summary: all you need to remember

Two jets as seen by CDF detector (event with the highest E_T jet)

Jets at Hadron Colliders Jet: from birth to death

Pick two partons and their momenta

• parton density functions, PDF

Hard Scattering: $2 \rightarrow X$

- exact matrix element at LO
- some known at NLO,...

Soft final state radiation

• approximate resummation in all orders of pQCD: LLA (leading log approximation), NLLA

Hadronization

• phenomenological models

Calorimeter response

- electromagnetic shower for photons
- hadronic shower for "stable" hadrons

Jet identification (and corrections)

• jet finding algorithms

Jets at Hadron Colliders Jet: Parton Density Functions

PDF $f_a(x, Q)$ – parton probability density function to find parton *a* with momentum p=xP, where

- *a*—quark (or antiquark) of particular flavor or gluon
- *P*—proton/antiproton momentum
- Q—transferred momentum

PDFs

- not calculable from first principles
- pQCD does predict Q-dependence
- obtained from global fits (ee, ep, pp, etc)
 - uncertainties; very large for g(x) at large x
 - beware of the vicious circle:

PDFs are obtained from data and then

re-used in data analyses to judge on agreement of theory and experiment

Hadron Colliders Jet: Exact Matrix Element (e.g., inclusive jets)

• LO $(2 \rightarrow 2, \sim \alpha^2)$ is available:

Sample of LO diagrams:

jet = parton

• NLO (2 \rightarrow 2 and 2 \rightarrow 3, ~ α^3) is available:

jet = 1 or 2 partons

- NNLO: "soon to become available" for many years...
- Is NLO good enough?
 - NLO is very far from the actual multiplicity of particles in jets
 - Merging criteria on whether 2 partons in NLO form one or two jets may be quite different from the experimental definitions: more phenomenological parameters
 - -NLO x-section remains sensitive to the choices of renormalization scale

Jets at Hadron Colliders Jet: Leading Log Resummations

If we push k_T cutoff scale Q_{cutoff} low:

- α_s gets larger
- colinear/soft divergences lead to large log terms:

probability to emit n partons: $p(n) \sim \alpha_s^n \left(C_0 \ln^{2n} \frac{E_{jet}}{Q_{cutoff}} + C_1 \ln^{2n-1} \frac{E_{jet}}{Q_{cutoff}} + \dots \right)$

- multi-gluon production becomes inevitable at Q~10 GeV! (E_{jet}~100)
- resummation techniques in all orders are a-must
- fortunately, theorists managed to account for and resum all orders with the leading-log (C₀) and next-to-leading-log (C₁) precision:
 - LLA Leading-Log Approximation
 - NLLA Next-to-Leading-Log Approximation
 - ~ NOTE: some beyond-NLL terms are often included in calculations, which may result in <u>various flavors of NLLA</u>, depending on what was included

Jets at Hadron Colliders Jet: Hadronization

Transition from parton shower to hadrons—theory does not exist

- hopefully, hadrons inherit partons' properties... Local Parton Hadron Duality Hypothesis
- To make parton-hadron connection closer, can we push Q_{cutoff} to Λ_{QCD} ? Yes, e.g. Modified LLA, or MLLA (actually, NLLA + some extra terms)
- Naively, MLLA+LPHD would imply:
 - N_{hadrons} = K * N_{partons} with K~1
 - momentum distribution of hadrons = that of partons
 - parton-parton correlations (momentum, multiplicity): do they survive hadronization?

Transition from parton shower to hadrons—Monte Carlo Generators

- stop parton shower development at Q_{cutoff} ~ 1 GeV
- and then do hadronization
 - completely phenomenological
 - different MC Generators do it differently!
 - with many tuning parameters to match data...

Jets at Hadron Colliders Jet: Detector Response

Fluctuations, fluctuations, fluctuations...

- jet: mostly π^{\pm} , π^{0} ($\pi^{0} \rightarrow \gamma \gamma$), ~10% K, few p/n number of particles and their relative composition fluctuate wildly
- em shower is dense, short, with intrinsic fluctuations
- had shower is broad and long, with large intrinsic fluctuations
- sampling technology (passive/active media) adds non-negligible fluctuations
- EM Cal response on hadrons is larger than that of Had Cal (different sampling density): varying starting point of had shower gives large fluctuations in the response

So, how many jets are out there?

Jets at

Hadron Colliders Jets at Hadron Colliders

Jet: How well can we measure it, after all?

Before getting to the answer:

- corrections:
 - out-of-cone losses
 - **—** UE contribution subtraction
 - is it a clean cut?
- calibration:
 - test beam
 - jet-jet energy balance
 - jet-photon energy balance
 - are they all directly applicable?

Net Result:

• Jet Energy Resolution (stochastic):

$$\frac{\delta E_T}{E_T} \approx \frac{70\%}{\sqrt{E_T(GeV)}} \oplus 6\%$$

• Absolute Scale Uncertainty (systematic):

$$\frac{\delta E_T}{E_T} \approx 5\%$$

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - **—** Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Diffractive jets
 - Multi Parton Interaction jets
 - Physics of jets
 - q/g jet differences
 - particle momentum distributions
 - Jets as a probe of QGP — jet quenching at RHIC
 - Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at Hadron Colliders Inclusive jet production

$p + \overline{p} \rightarrow Jet(E_T, \eta) + X$

With only two variables in the game, we may want to and do choose to study

- E_T differential x-section: dσ/dE_T
- for different η-bins...

Hadron Colliders Inclusive jet production: Run I story...

Andrey Korytov, University of Florida

CTEQ2005, Puebla, May 24, 2005

Hadron Colliders Inclusive jet production: Run II data vs NLO

Run II data and theory:

- reasonable agreement with NLO+CTEQ6.1
- déjà vu:
 "high-E_τ excess" again?
- ~20% dip at lower E_T? (not present in Run I)
- must beat systematic errors down:
 - Theory: PDFs
 - Experiment: energy scale

Hadron Colliders Inclusive jet production: Run II vs Run I

d²σ/dp_Tdy (pb/GeV) Cross Section Ratio 3.5**CDF Run II Preliminary** inclusive jet cross section 10 Integrated L = 177 pb⁻¹ cone algorithm R_{cone}=0.7 10 $0.1 < |\eta_{\text{Det}}| < 0.7$ (central region) JetClu Cone R = 0.7 10 NLO pQCD Uncertainty (CTEQ 6.1) 2.5 $\sigma(N_{s} = 1.96 \text{ TeV}) / \sigma(N_{s} = 1.8 \text{ TeV})$ 1 3% Energy Scale Uncertainty 10 10 1.5 NLO 10 = 1.96 TeV 10 = 1.8 TeV 50 100 150 200 250 300 350 400 450 200 400 600 Inclusive Jet E_T (GeV) p_T (GeV)

 σ (Run II) / σ (Run I)

- PDF uncertainties largely cancel out...
- The Run II Run I discrepancy remains, but within energy scale errors that become really annoying...

Hadron Colliders Tevatron: 1.8 TeV vs 630 GeV

Déjà vu again?

- the current discrepancy "dσ/dE_T(1.96) vs. dσ/dE_T(1.8)" is disturbingly similar to
- the past discrepancy "dσ/dx_T(1.8) vs. dσ/dx_T(0.63)"

Andrey Korytov, University of Florida

Andrey Korytov, University of Florida

CTEQ2005, Puebla, May 24, 2005

Jets up to E_T=4 TeV

Andrey Korytov, University of Florida

Huge (x,Q²) range

$$p + \overline{p} \rightarrow Jet_1 + Jet_2 + X$$

With 5 independent variables in the game (E₁, η_1 , E₂, η_2 , $\Delta\phi_{12}$), one might want to look at:

- dijet mass M_{JJ} (differential x-section)
- dijet axis polar angle θ_{cm} in dijet CoM frame (distribution)
- azimuthal angle $\Delta \phi_{12}$ (distribution)
- ...

Jets at Hadron Colliders Dijets: polar angle (I)

Dijet polar angle distribution can disentangle whether the high ${\rm E}_{\rm T}$ access is due to

- quark substructure: new physics!
- or enhanced PDF f(x) at large x: g(x) at large x is poorly constrained

Enhanced PDF *f*(*x*) at large *x*

- increased dσ/dE_T at high E_T (and dσ/dM_{JJ} at high M_{JJ})
- unchanged forward angular distribution characteristic of t-channel exchange a la Rutherford scattering: dN/dθ~1/sin⁴ (θ/2)

Quark substructure results in

- increased dσ/dE_T at high E_T (and dσ/dM_{JJ} at high M_{JJ})
- more central angular distribution

 θ^* – smaller polar angle in dijet center of mass frame

$$\chi = \frac{1 + \cos \theta^*}{1 - \cos \theta^*} = e^{|\eta_1 - \eta_2|}$$

 $\frac{dN}{d\chi}$ distribution is ~flat for Rutherford scattering Jets at Hadron Colliders Dijets: polar angle (II)

Andrey Korytov, University of Florida

Jets at **Dijets:** azimuthal angle $\Delta \phi_{12}$ Hadron Colliders

jet3

- LO is very poor at $\Delta \phi \sim \pi/2$ and $\Delta \phi \sim \pi$ - NLO fixes $\Delta \phi \sim \pi/2$, but still no good at $\Delta \phi \sim \pi$
- * Herwig is quite good everywhere
- * Pythia is too low at $\Delta \phi \sim \pi/2$ (needs ISR enhancement)

Dijet spin-off: any narrow resonances in M_{JJ}?

Jets at

Hadron Colliders Jets at Hadron Colliders 3-, 4-, 5-, 6-jet production

$p + \overline{p} \rightarrow N Jets + X$

Run I:

- all independent kinematical distributions with up to 6 jets in the final states were checked for consistency with QCD
- no discrepancies outside of the experimental and theoretical systematic uncertainties were found

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Diffractive jets
 - Multi Parton Interaction jets
 - Physics of jets
 - q/g jet differences
 - particle momentum distributions
 - Jets as a probe of QGP — jet quenching at RHIC
 - Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at Hadron Colliders **b-jet production**

- Cross section is known up to NLLO + LLA resummation
- Understanding of the phenomenological B-meson fragmentation function is critical for evaluating B-tagging efficiency

Jets at Hadron Colliders **b-jet tagging**

Method

• Jets with tracks forming displaced vertex

- b-tagging efficiency: ~40%
- decay length distribution e^{-L/λ} peaks at 0
 b-tagging purity: ~30%
 - c-jets
 - q/g jets with mis-id or mis-measurements
 - invariant mass formed by displaced tracks can be used to evaluate purity

Other Methods used:

- hadronic (combined with displaced vertex)
 - inclusive, $H_b{\rightarrow}$ J/ ψ + X
 - exclusive, e.g. $B^{*} {\rightarrow}$ J/ ψ + K^{*}
- semi-leptonic:

- $H_b \rightarrow \mu + X$

Jets at Hadron Colliders b-jet production

b-jet production:

- ~3% of all jets (almost P_T independent)
- agrees with pQCD
 - Pythia Monte Carlo = LO: data/LO ~ 1.4 (as expected)
 - NLO comparison is forthcoming

b-production: Run I controversy (1)

Experiment vs Theory in Run I

• data/theory ~ 3 (excess? exciting!)

Theory since Run I:

- Fixed Order NLO + LL resummation became available
- b-quark fragmentation function updated (LEP data input)
- more resent PDFs

Jets at

Hadron Colliders

b-production: Run I controversy (2)

Jets at

Hadron Colliders

Experiment vs Theory in Run I

• data/theory ~ 3 (excess? exciting!)

Theory since Run I:

- Fixed Order NLO + LL resummation became available
- b-quark fragmentation function updated (LEP data input)
- more resent PDFs

Experiment since Run I

- Run I results: not changed
- Run II agrees with Run I

Experiment vs Theory now

• coexist in peace (boring...)

Hadron Colliders b-jet production spin-off: Search for Higgs

SM Higgs

- likes to couple to heavy particles:
 ZH, WH are best bets, if any at all, for discovering SM Higgs at Tevatron (t is the best, but hard to produce)
- H->bb is the dominant decay channel

MSSM Higgs (in most of parameter space)

- Z and W couplings suppressed
- coupling to down-fermions enhanced: bbH production cross section is large
- H->bb still the dominant decay channel
- Look for multi b-jets!

b-jet production spin-off: Search for Higgs Colliders

Calibrate your analysis on 2 b-jet events

- heavy flavor bkgd: QCD bbj+X
- mistag: QCD jjj+X
- other bkgd: Zj, tt, bbbb, etc.

Jets at

Hadron

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Ζ, γ)
 - Diffractive jets
 - Multi Parton Interaction jets

• Physics of jets

- q/g jet differences
- particle momentum distributions
- Jets as a probe of QGP
 jet quenching at RHIC
- Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Hadron Colliders EWK vector bosons (W, Z, γ) + jets

Examples of LO diagrams

• Smaller subset of diagrams, different mix of initial partons: PDF contribute differently as compared to the plain jet production

Theory (on example of W):

- W inclusive: can be generated at NNLO level
- W + 1 jet: NLO level
- W + 2, 3, 4 jets: LO level

Notes:

- Inclusive distributions are not affected by jet finding uncertainties
- W/Z/γ identification algorithms have their own caveats...

Inclusive <i>σ(W)×Br(W→ev</i>)			
	Run I (1.8 TeV)	Run II (1.96 TeV)	
CDF:	2.38±0.24 nb	2.64±0.18 nb	
LO:	1.76	1.94	LO is significantly off
NLO:	2.41	2.64	NLO works quite well
NNLO:	2.50	2.73	NNLO makes little difference

 $\sigma(W + \geq N \text{ jets}) \times Br(W \rightarrow e v)$:

Z + jets

Ratio $\sigma(Z + \ge N \text{ jets}) / \sigma(Z)$ agrees well with

- LO Matrix Element (MadGraph) + Parton Shower (Pythia)
- MCFM (NLO total x-section)

Jet P_T in Z+jets events agrees well with

• LO Matrix Element (ALPGEN) + Parton Shower (Pythia)

Hadron Colliders Z+jet spin-off: Extra Dimension searches

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - **—** Diffractive jets
 - Multi Parton Interaction jets

• Physics of jets

- q/g jet differences
- particle momentum distributions
- Jets as a probe of QGP — jet quenching at RHIC
- Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at Hadron Colliders Diffractive Dijets

Typical parton-parton interaction

- two partons scatter and produce two jets
- proton and antiproton remnants carry on along the beam line and produce forwardbackward debris
- <u>color strings</u> between outgoing hard-scattered partons and spectator partons break resulting in flow of particles between jets and beam line

Typical diffractive interaction

- <u>one or both protons remain intact</u>
- whatever protons exchange with has <u>quantum numbers of vacuum</u>, but still must have QCD as an underlying theory
 - diffractive cross section is relatively large
 - hadrons/jets readily produced in such events
- <u>no color strings</u> between outgoing partons and protons are formed resulting in
 - characteristic rapidity gaps (intervals of pseudorapidity unpopulated with any particles)

Double Pomeron Exchange Dijet fraction

Jets at

Hadron Colliders

"Double Pomeron Exchange" Dijets Non-Diffractive Dijets ~ 10% (E_{T2} > 7 GeV)

Andrey Korytov, University of Florida CTEQ2005, Puebla, May 24, 2005

Jets at
Hadron
CollidersDiffraction dijets: new twist (diffractive Higgs?)

Khoze, Martin, Ryskin (2002):

Clean Signal at LHC

• σ~3 pb

30 events in 1 yr at L=10³³

• Signal/Bkgd ~ 3

We can check the model at Tevatron!

- σ ~ 40 pb (E_T>25 GeV), with factor of 2 uncertainty
- ~100% gg jets

Jets at Hadron Colliders

Diffractive Exclusive Dijets?

Jets at Hadron Colliders Diffractive Exclusive Dijets: so does it check?

CDF Run II Preliminary

More statistics is needed...

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Diffractive jets
 - Multi Parton Interaction jets

• Physics of jets

- q/g jet differences
- particle momentum distributions
- Jets as a probe of QGP
 jet quenching at RHIC
- Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at **Jets from Multi-Parton Interactions** Colliders

Impact parameter

Hadron

- **Process** *a*:
 - γ -jet: cross section σ_a
- **Process** *b*:
 - dijet:
- cross section σ_{h}

Double-parton scattering in single pp collision:

- $(\gamma$ -jet) + (dijet)
- cross section σ_{ab}

$$\sigma_{ab} = \frac{\sigma_a \sigma_b}{\sigma_{eff}}$$

- σ_{eff} characterizes
 - transverse proton size and density of partons
 - clumping of partons together (the smaller σ_{eff} , the clumpier the structure is)
 - x_1 - x_2 correlations for combined pdf $f(x_1, x_2)$: (should σ_{eff} be x-dependent, it would be a tale tell sign of two-parton correlations)
- if partons are uniformly distributed in a sphere of radius r, related to the total non-diffractive inelastic cross section ~50 mb, then

Overlapping area A(r)

Jets from Multi-Parton Interactions

interaction (tend to be back to back)

Jets at

Hadron Colliders

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Multi Parton Interaction jets
 - Diffractive jets
 - Physics of jets
 - q/g jet differences
 - particle momentum distributions
 - Jets as a probe of QGP
 jet quenching at RHIC
 - Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at Hadron Colliders Jet Fragmentation: Gluon vs. Quark Jets in Historical Perspective

Ratio r = N_{ch}(gluon jet) / N_{ch}(quark jet)

Jet Fragmentation: Gluon vs Quark jets Colliders

Difference of Particle Multiplicities in Gluon and Quark jets: r = N_{hadrons}(gluon jet) / N_{hadrons}(quark jet)

calculations (for partons):

Jets at

Hadron

- various extensions of NLLA: r=1.5-1.7 (depends on $Q=E_{iet}$. θ_{cone})

— resolve for $N_{\rm g},\,N_{\rm q}$ and their ratio, RESULT: $r\sim 1.6\pm 0.2$

Jets at Hadron Colliders

Jet Fragmentation: momenta, multiplicities

Momentum distribution of charged particles in jets

- dijet events with well-balanced E_T
- 15-30° cone around dijet axis

Two parameter fit (MLLA+LPHD):

- works surprisingly well in wide range of dijet masses
- MLLA Q_{eff} = 230±40 MeV
 ☞ k_T-cutoff can be set as low as Λ_{QCD}
- K_{LPHD(±)} = 0.56 ± 0.10
 ☞ N_{hadrons} ≈ N_{partons}

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:
 - jet production
 - jet structure
 - jets as a probe of GQP
 - jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Multi Parton Interaction jets
 - Diffractive jets
 - Physics of jets
 - q/g jet differences
 - particle momentum distributions
 - Jets as a probe of QGP
 jet quenching at RHIC
 - Jet pollution
 - photon fakes
 - lepton fakes

• Summary: all you need to

Jets at Hadron Colliders **RHIC: Jets as a probe of QGP (I)**

Jet Quenching—sign of Quark-Gluon Plasma?

Hadron Colliders RHIC: Jets as a probe of QGP (II)

Absorption dependence on the path in GQP

Andrey Korytov, University of Florida

CTEQ2005, Puebla, May 24, 2005

- Introduction: why bother v
- Hadron Colliders
- Detectors at Hadron Collic
- What is a jet, after all?
- Jet Physics:

- jet production
- jet structure
- jets as a probe of GQP
- jet pollution

- Jet Physics at Hadron Colliders
 - Physics with jets (jet production)
 - Jets (inclusive, dijets, Njets)
 - Heavy flavor jets
 - V+jets (W, Z, γ)
 - Multi Parton Interaction jets
 - Diffractive jets
 - Physics of jets
 - q/g jet differences
 - particle momentum distributions
 - Jets as a probe of QGP
 jet quenching at RHIC
 - Jet pollution
 - photon fakes

Summary: all you need to

- lepton fakes
Jets at Hadron Colliders Jet Pollution: fake photons

Photon id:

- EM Cluster:
 - E_T > 7 GeV
 - **—** HAD/EM < 0.055+0.00045E_T
 - 0 or 1 track with $p_T < 1+0.005E_T$
- Energy in Isolation Cone ∆R=0.4 (excluding EM Cluster)
 - Cal Energy < 2+0.005E_T
 - Track Energy < $5+0.005E_T$
- Shower shape
 - χ^2 <20 (transverse profile at the depth of shower maximum)

Jet faking photon:

- via fragmentation fluctuation
 - one prompt π^0
 - very few and soft π^{\pm} , π^{0} in $\Delta R=0.4$

Jets at Hadron Colliders Jet Pollution: leptons

Electron:

• source of mis-id

-fragmentation:

 π^{\pm} - π^{0} overlap with low isolation energy

Muon:

source of mis-id

- fragmentation:

 π/K decays b-jets (B $\rightarrow \mu$ +X) punchthrough all with low isolation energy

Tau (hadronic):

• source of mis-id

-fragmentation:

1-3 prompt π 's with low isolation energy

Jet Physics:

- jets + X production
- jet structure
- jets as a probe of GQP
- jet pollution to non-jet specific analyses—jets are everyone's business (even if you search for SUSY in Same-Sign di-Muon channel and could not care less of jets...)

Jets and New Physics:

• Understanding jet physics is the key for discovering phenomena beyond the Standard Model at hadron colliders

Jets and Standard Model:

• QCD, being simple underneath, is very reach with diverse phenomena (compare to condense matter physics, all of which stems from plain EM)